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1  Introduction
Towards the next generation of mobile and wireless networks, machine-to machine 
(M2M) communications [3] is envisioned to play a significant role that forms the basis 
for the future Internet of Things (IoT). It is anticipated that the number of M2M devices 
connected to a single cellular base station (BS) may exceed 5 million by the year 2030 [4]. 
In such a massive connectivity scenario, conventional random access and resource allo-
cation schemes [5] are not sufficient to handle the massive amount of communication 
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requests from the M2M devices, thereby posing significant challenges in the design and 
operation of the wireless networks.

For large-scale networks such as M2M communication networks, distributed resource 
allocation schemes are highly desired in order to alleviate the scaling issues due to mas-
sive connectivity [6]. In distributed schemes, each device decides semi-autonomously on 
which resources to access the channel, which results in a significant reduction of signal-
ing overhead for coordination and information exchange between the devices and the 
BS. Moreover, considering the limited computing capability of the M2M devices [7], 
there is a strong need for low-complexity solutions that require relatively low computing 
power.

Apart from the massive number of devices, a key feature of the M2M traffic is that the 
device activity patterns are typically sporadic [8] so that at any given time instant each 
device has a low probability of being active. This results in a certain level of sparsity in 
the device activity. To this end, compressed sensing (CS) [9–12] is identified as an ideal 
framework in such scenarios since it provides tools for efficient reconstruction of high-
dimensional signals with a sparse representation. Moreover, it is often observed that the 
messages sent by the M2M devices are strongly correlated, e.g., due to proximity, the 
same service type, and etc [7]. Therefore, it is in particular beneficial to partition a given 
set of all devices into a number of clusters such that similar requests can be handled 
jointly. Given this cluster-like behavior and the sparse nature of the M2M traffic, the 
activation pattern of the devices can be modeled as a block-sparse signal with an addi-
tional in-block structure [13] in CS-based applications.

The main objective of this study is to seek for an efficient resource allocation scheme 
to mitigate serious scaling problems resulting from massive connectivity, by exploiting 
the specific sparsity feature in the device activity. A special attention is attached to low 
overhead communication with enhanced spectral efficiency and reduced computational 
complexity. Towards this end, we propose a three-phase resource allocation scheme, 
where we use a distributed approach to reduce the communication overhead and a 
sketching algorithm to lower the computing load.

1.1 � Related works

Conventional cellular networks are designed based on the scheduling of active users to 
orthogonal time or frequency resources. The excessive control overhead incurred by 
the massive number of sporadically active M2M devices, however, renders such kind of 
resource allocation schemes unrealistic. As an alternative, contention-based schemes, 
such as slotted ALOHA [14], have been proposed to deal with this issue. However, the 
main drawback of these schemes is the lack of deterministic performance guarantees, 
and in particular the performance deteriorates significantly under massive connectiv-
ity settings. In addition, the authors of [15] also raised concerns of energy efficiency 
in large-scale M2M networks, where systems with less computational complexity and 
lower power consumption are particularly desired for low-cost M2M devices with lim-
ited operational capability.

Taking sparsity in the activity pattern into account, access schemes using CS also 
receive a great deal of attention in recent years. To the best of our knowledge, the 
authors of [16] were the first to propose the idea of CS-based multi-user detection. They 
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introduced a smart adaptive algorithm that switches between a CS-based reconstruction 
algorithm and a classical detection method depending on the sparsity level of the signals 
being detected. Reference [17] proposed greedy CS algorithms to facilitate a joint detec-
tion of device activity and transmitted data. The idea was further extended in [18] to 
include multicarrier access schemes and to provide higher spectral efficiency and more 
flexibility of such schemes. Furthermore, schemes for distributed compressed sensing 
were also widely studied (e.g. in [19]) to take advantage of both inter- and intra-signal 
correlations by jointly reconstructing signals that have been compressed independently. 
The concept of distributed compressed sensing has been applied by the authors of [20] 
to facilitate device detection in M2M communications, which shows significant perfor-
mance gains expressed in terms of robustness.

However, none of the works mentioned above has exploited the particular cluster-like 
behavior of M2M devices, thereby ignoring the block sparsity structure in the activa-
tion pattern. In addition, greedy algorithms such as orthogonal matching pursuit (OMP) 
[21] are widely used in detection schemes owing to their low computational complexity. 
However, in many wireless applications including that considered in this study, even this 
reduced complexity is a bottleneck due to strictly limited computing resources on the 
M2M devices. Therefore, we employ a sketching algorithm in our proposed approach 
to further offload the computation burden incurred by massive M2M communications.

1.2 � Main contribution

In this work, we present and analyze a novel distributed scheme for device detection and 
contention-free resource allocation in large-scale M2M communication networks. We 
partition the M2M devices into disjoint clusters in advance based on service type, and 
assign to each device a cluster-specific signature that active devices use for their initial 
access. In this paper, we use the following definition of an active cluster.

Definition 1  (Active cluster) We say that a cluster is active if there is at least one active 
device in this cluster.

The devices in each cluster are totally ordered according to some given criterion such 
as service priority. In other words, the set of devices in each cluster is a totally ordered 
set S so that if a, b ∈ S , a �= b and a ≤ b , then a < b . This order is a priori known at 
all cluster members and gives rise to what we call active ranking that determines the 
order within each cluster in which the active devices access the set of assigned resource 
blocks, i.e., an active device that is the i-th element in the active ranking accesses the i-th 
resource block.

Definition 2  (Active ranking) The active ranking associated with each active cluster is 
the totally ordered subset induced by the active devices in a cluster.

Motivated by the CS principle, the proposed scheme mainly consists of three phases:

•	 Phase (i) Signal acquisition The active devices transmit simultaneously pre-equalized 
individual signatures, each of which indicates the membership to a particular cluster. 
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Exploiting full-duplex transceivers,1 all the devices and the BS obtain their individual 
measurements, which are the superposition of the transmitted signatures from the 
active devices.

•	 Phase (ii) Detection at BS The BS detects the active clusters, the number of active 
devices in each cluster, and also the collision pattern in the received measurements. 
Then it broadcasts the detected information to the devices and assigns a sufficient 
amount of resources to each active cluster accordingly.

•	 Phase (iii) Detection at devices Each active device detects the active ranking of its 
cluster, and then accesses the corresponding resource assigned by the BS based on its 
ranking position.

We study a particular signature design for the devices in each cluster to facilitate the 
detection process of phase (ii) at the BS side and that of phase (iii) at the device side. 
Moreover, based on the Count-Sketch procedure [23, 24], we develop a novel block 
sketching algorithm to perform phase (ii) and to bring down computational complexity 
induced by massive connectivity. Phase (iii) is performed using a conventional greedy 
algorithm such as OMP [21] except that we use feedback information from the BS to 
enhance robustness and to further reduce complexity. Furthermore, with the distributed 
ranking-based resource allocation scheme, each active device accesses autonomously a 
pool of resource blocks assigned by the BS in a contention-free manner without fur-
ther control signaling, thus the communication overhead is significantly reduced. We 
show via theoretical analysis that the proposed scheme achieves a better scaling with 
increasing network size both in terms of communication overhead and computational 
complexity when compared with classical CS-based approaches. Moreover, the simula-
tion results reveal a significantly enhanced robustness of the proposed scheme in the 
presence of Gaussian noise and inaccurate channel estimations.

1.3 � Organization of the paper

The remainder of this paper is organized as follows. Section 2 introduces a mathematical 
model for the proposed scheme. In Sect. 3, we present the detection algorithms in detail. 
Section 4 is devoted to theoretical analysis of the proposed scheme, while Sect. 5 evalu-
ates the performance with numerical simulation results. Finally, Sect.  6 concludes the 
paper with some final remarks.

1.4 � Notational remarks

Throughout this work, matrices and vectors are denoted by uppercase and lowercase 
letters, respectively. The superscript (·)T represents the transpose of a matrix or a vec-
tor, and (·)H indicates the Hermitian transpose. A ◦ B denotes the Hadamard product of 
matrices A and B. The field of binary, real and complex numbers are denoted by B , R and 
C . The cardinality of a set is given by | · | , and the ℓ2-norm is given by || · || . Furthermore, 
O denotes “big-O” according to Knuth’s notation. Unless otherwise stated, all logarithms 
are assumed to be to base 2.

1  The authors in [22] highlighted benefits of the full duplex wireless and rendered its feasibility for implementation in 
future IoT systems.
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2 � Methods
In this section, we introduce the underlying system model and formulate the problem 
which is addressed in this paper.

2.1 � Transmitter side

We consider an M2M network consisting of N devices, which are partitioned into L 
clusters of equal size d according to the service type.2 The members of each cluster are 
known both at the BS and at all devices, which can be achieved via device registration 
to the network. We assume that the devices have sporadic transmissions, which implies 
that at a given time instant, only a relatively small number of devices from a few clusters 
are activated to access the channel. Therefore, we define a twofold sparsity pattern to 
model the active status of the devices:

•	 Block sparsity KB The maximum number of active clusters at any time.
•	 In-block sparsity KI The maximum number of active devices in an active cluster.

Therefore, the total number of active devices in the network is K ≤ KBKI . On the other 
hand, due to the sparsely-activated devices, we have K ≤ KBKI ≪ N = Ld.

We use a K-sparse binary sequence (or vector) x ∈ B
N to model the activation pattern 

of the devices in the network, where entry “1” indicates that the corresponding device is 
active while an inactive device results in “0”. Furthermore, we use xℓ ∈ B

d , ℓ ∈ {1, · · · , L} 
to denote the subsequence (or subvector) of x corresponding to cluster ℓ . In addition, 
the block support, denoted as SB , is defined to be the set of indices of the active clusters: 
SB = {ℓ ∈ {1, · · · , L} : ||xℓ||0 �= 0} . Similarly, the in-block support, denoted as SI ,ℓ , indi-
cates the set of indices of the active devices in cluster ℓ : SI ,ℓ = {j ∈ {1, · · · , d} : xℓ,j = 1} . 
By definition, we have |SB| ≤ KB and |SI ,ℓ| ≤ KI for all ℓ ∈ {1, · · · , L} . Thus, the activa-
tion pattern of the devices x is modeled as a sparse signal with block sparsity KB and 
in-block sparsity KI , and we call signals of such a sparsity pattern (KB,KI ) block-sparse.

Due to the sparsity in x, we use the CS theory [9–11] to reconstruct x based on meas-
urements performed by the BS and the devices in the network. We use A ∈ R

M×N to 
denote the measurement matrix whose exact structure is defined later in Sect. 3.1. Each 
column of A, say column i denoted by ai, i ∈ {1, · · · ,N } , corresponds to the unique sig-
nature sent by device i if it is active, whereas A−,ℓ ∈ R

M×d denotes a submatrix of A cor-
responding to the signatures sent by the devices from the ℓ-th cluster.

2.2 � Receiver side

Due to the superposition property of the wireless channel, each receiver observes a 
noisy superposition of signatures transmitted by the active devices. We assume that 
all frames are received synchronously at the aggregation node. In practical systems 
this can be ensured e.g. by a synchronization signal from the BS. Alternatively, the 
requirement for precise synchronization can be mitigated by using schemes such as 
that considered in [25] which is robust to the lack of synchronization and requires 
only a coarse synchronization. To this end, the received signal at the BS y ∈ C

M is a 
noisy linear combination of the transmitted signatures given by

2  The scheme can be easily extended to unequal-sized clusters. We only use clusters of equal size for simplicity.
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where HB ∈ C
M×N is the channel matrix, and ǫB ∈ C

M denotes the additive noise which 
is assumed to be zero-mean with independent components of variance σ 2

B . The Had-
amard product is used here to model the effective channel when applied with advanced 
technologies such as frequency hopping [26], which is introduced in detail in Sect. 3.2.

In addition, the active devices also perform their own local measurements during 
the acquisition phase. The received signal yD ∈ C

M observed by a particular device 
at some given time instant is obtained as

where HD is an M × N  matrix representing the wireless channels between the devices, 
and ǫD ∈ C

M is the vector of independent noise components with zero mean and vari-
ance σ 2

D.
Furthermore, we make the following assumption on channel knowledge:

Assumption 1  Each device has the channel state information to the BS.

In current systems [5], the channel information can be obtained with pilot-signals 
from the network with no extra cost. Alternatively, it can also be possibly obtained 
via statistical channel knowledge [27], location-based estimation [28], channel reci-
procity [29] or long-term observation [30]. We point out that the entries of HB and 
HD are in general not physical channels but rather effective channels that depend 
on the underlying transmission scheme. For instance, the effective channels of the 
energy-detection based scheme in [25] is related to channel power gains, which are 
much easier to acquire than complex-valued channel coefficients.

2.3 � Problem formulation

Figure 1 illustrates the transmission scenario and the problem of interest in this work. 
As a result of concurrent transmissions of the active devices, the BS observes a noisy 
superposition of the transmitted signatures given by (1), while the received signal at the 

(1)y = (A ◦HB)x + ǫB,

(2)yD = (A ◦HD)x + ǫD,

Fig. 1  Target problem formulation
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devices is as in (2). Hereafter, we apply CS related techniques to reconstruct the ( KB,KI ) 
block-sparse signal x with y at the BS and yD at the devices. To be specific, the BS per-
forms block support recovery to obtain an accurate estimation of the block support S̃B 
and the cardinality of the in-block support |S̃I ,ℓ| for each ℓ ∈ {1, · · · , L} . Subsequently, 
each active device from cluster ℓ performs in-block support recovery to estimate the in-
block support S̃I ,ℓ using the received signal yD in (2) and side information broadcast by 
the BS.

In a typical massive connectivity scenario as in M2M communications, we need to find 
proper solutions of high efficiency and low computational complexity to the following 
problems.

•	 Problem  1 Block support recovery at the BS with 
P S̃B = SB, ∀ℓ∈{1,··· ,L}|S̃I ,ℓ| = |SI ,ℓ| ≥ 1− δ , where δ is a target error bound.

•	 Problem  2 In-block support recovery at the active devices in cluster ℓ with 
P

(

S̃I ,ℓ = SI ,ℓ

)

≥ 1− δ.3

3 � Distributed ranking‑based resource allocation
In this section, we present our algorithm design to tackle the target problems. In par-
ticular, this includes the structured signature model and the decoding procedures at the 
BS as well as at the devices, respectively.

3.1 � Structured random signature model

The measurement matrix A ∈ R
M×N we design here is a structured random matrix, 

which is an extension of those utilized by the Count-Sketch procedure proposed in [23, 
24]. These matrices are desired as they in general facilitate low computational complex-
ity. We denote by A(R,T , L, d,α) a particular distribution over matrices with RT rows 
and Ld columns, which is specified below, and we assume that the measurement matrix 
A is drawn from this distribution, i.e., A ∼ A(R,T , L, d,α) with M = RT,N = Ld.

As illustrated in Fig.  2, the measurement matrix A is composed of the vertical con-
catenation of T individual random matrices that we denote by At,− ∈ R

R×N for 

Fig. 2  Structure of the measurement matrix A 

3  For simplicity we use the same target error bound δ for Problem 1 and 2.
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t ∈ {1, · · · ,T } , where At,− consists of the horizontal concatenation of L sub-matrices 
At,ℓ ∈ R

R×d for ℓ ∈ {1, · · · , L} . Each At,ℓ is a sparse matrix containing exactly d non-zero 
components – located on the same row and with the same value. The index of the row 
with non-zero elements is chosen uniformly at random from the set {1, 2, · · · ,R} , and the 
non-zero components take either the value +α or −α with probability 1/2. For a given 
realization of At,ℓ , let qt,ℓ ∈ {1, · · · ,R} denote the index of the row of At,ℓ with non-zero 
entries, and st,ℓ ∈ {−α,+α} be the corresponding value of the non-zero components in 
At,ℓ . As each signature transmitted by the devices is the corresponding column of A, it is 
therefore a sparse sequence of length M with sparsity level T.

3.2 � Block support recovery at BS

The objective of the decoding procedure at the BS is to obtain an accurate estimation 
of the block support SB and the cardinality of the in-block support |SI ,ℓ| for each active 
cluster ℓ ∈ {1, · · · , L} (see Problem 1 in Sect. 2.3).

The signal y received by the BS at some given time instant is given by (1). Since the 
channel state information HB is assumed to be available at the devices, the active devices 
can perform a channel inversion before transmitting the signatures to indicate their 
active state. Particular variants of (generalized) inverses of the channel matrix may be 
taken at the transmitter side. For example, HB can be inverted by simply taking the recip-
rocal of the non-zero elements whose magnitude is above certain threshold θ , which is 
given by

In this case devices with weak links due to the near-far behavior may stay offline and 
avoid excessively large transmit power and strong interference to other nodes. Then the 
obtained measurements at the BS are given as

In this paper, for the sake of simplicity we develop a fast block sketching algorithm based 
on the Count-Sketch procedure proposed in [23, 24] to realize the decoding process at 
the BS. To be more precise, we use yt ∈ R

R to denote the subvector of y corresponding 
to the observations obtained via submatrix At,− . So, we have

Given yt for each t ∈ {1, · · · ,T } , we form the signal estimate x̃t ∈ R
N by indexing and 

scaling the entries of the corresponding observations yt such that

where each At,− consists of the horizontal concatenation of L submatrices At,ℓ for 
ℓ ∈ {1, · · · , L} . Further recall that each matrix At,ℓ is a sparse matrix containing d 
non-zero components located on the same row qt,ℓ ∈ {1, · · · ,R} and all the non-zero 

(3)(HB)
−1
i,j =

{
1

(HB)i,j
, if |HB|i,j ≥ θ

0, else
, for i = {1, · · · ,M}, j = {1, · · · ,N }.

(4)y = (A ◦HB ◦H−1
B )x + ǫB := Ax + ǫB.

(5)yt = At,−x + ǫt , for t ∈ {1, · · · ,T }.

(6)x̃t = AT
t,−yt , for t ∈ {1, · · · ,T },
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components have the same value st,ℓ ∈ {−α,+α} . As a result, the i-th entry x̃t,i of x̃t for 
the ℓ-th block can be written as

where yt,ℓ =
(
yt
)

qt,ℓ
 . We use aqt,ℓ,i to denote the entry in the qt,ℓ-th row and i-th column 

of At,− , then we have

Since yt,ℓ is dominated by the non-zero entries on the qt,ℓ-th row of At,− , we denote by 
St,ℓ a set of indices of the clusters which have non-zero components on the same row as 
block ℓ , i.e., St,ℓ = {j = {1, · · · , L} : qt,j = qt,ℓ} . Then yt,ℓ is given by

where (a) follows from the structure of At,ℓ with equal non-zero elements on the same 
row, (b) is due to xi ∈ {0, 1} , and (c) holds since |SI ,k | = 0 if k /∈ SB.

Putting yt,ℓ in (9) into (7) yields

where �t,ℓ is the interference term from other active blocks, and �t,ℓ is the noise term 
with zero mean and variance γ 2.

To mitigate the interference �t,ℓ from other blocks, we consider a block-wise esti-
mate x̄ℓ for each ℓ ∈ {1, 2, · · · , L} given by

Notice that, instead of the mean, the estimate x̄ℓ for block ℓ is equal to the median of x̃t,i 
over O(Td) samples. The rationale behind this approach is to make the estimates more 

(7)x̃t,i = st,ℓyt,ℓ, for i ∈ {dℓ− d + 1, · · · , dℓ}, ℓ ∈ {1, · · · , L},

(8)yt,ℓ =

L∑

k=1

dk∑

i=dk−d+1

aqt,ℓ,ixi + ǫt,ℓ, for t ∈ {1, · · · ,T }, ℓ ∈ {1, · · · , L}.

(9)

yt,ℓ =
�

k∈St,ℓ

dk�

i=dk−d+1

st,kxi + ǫt,ℓ

=

dℓ�

i=dℓ−d+1

st,ℓxi +
�

k∈St,ℓ\{ℓ}

dk�

i=dk−d+1

st,kxi + ǫt,ℓ

(a)
= st,ℓ





dℓ�

i=dℓ−d+1

xi



+
�

k∈St,ℓ\{ℓ}

st,k





dk�

i=dk−d+1

xi



+ ǫt,ℓ

(b)
= st,ℓ|SI ,ℓ| +

�

k∈St,ℓ\{ℓ}

st,k |SI ,k | + ǫt,ℓ

(c)
= st,ℓ|SI ,ℓ| +

�

k∈SB∩St,ℓ\{ℓ}

st,k |SI ,k | + ǫt,ℓ,

(10)

x̃t,i = st,ℓ



st,ℓ|SI ,ℓ| +
�

k∈SB∩St,ℓ\{ℓ}

st,k |SI ,k | + ǫt,ℓ





= α2|SI ,ℓ| +
�

k∈SB∩St,ℓ\{ℓ}

st,ℓst,k |SI ,k |

� �� �

�t,ℓ

+ st,ℓǫt,ℓ
� �� �

�t,ℓ

,

(11)x̄ℓ = median{x̃t,i}
T ,dℓ
t=1,i=dℓ−d+1, for ℓ ∈ {1, 2, · · · , L}.
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robust against outliers, since large value elements in the data stream may spoil some 
subsets of the estimate if the mean is computed.

We show later in Sect. 4.1 that by taking the median value block-wisely among all 
individual estimations as in (11), each estimate x̄ℓ for the ℓ-th block corresponds to 
|SI ,ℓ| with high probability (w.h.p.), and the cardinality of the in-block support set |SI ,ℓ| 
is obtained as

Therefore, since |SI ,ℓ| indicates the number of active devices in cluster ℓ ∈ {1, 2, · · · , L} , 
those clusters with |SI ,ℓ| > 0 are marked as “active” by the BS. For brevity, we assume 
that each device needs one resource block for transmission. Therefore, the number of 
resource blocks assigned by the BS to cluster ℓ ∈ {1, 2, · · · , L} equals to |SI ,ℓ|.

In addition, for a given xi from an active block ℓ ∈ SB , if an individual estimate x̃t,i 
in (7) is much larger than the block-wise estimate x̄ℓ in (11), i.e., x̃t,i ≫ x̄ℓ , then we 
can conclude that the corresponding measurement might suffer strong interference 
from the other active clusters. That is, for a given xi from block ℓ and a particular 
t ∈ {1, · · · ,T } , the interference term �t,ℓ in (10) is non-zero. In such a case, we mark 
the measurement as “collided” for cluster ℓ and keep its index qt,ℓ in the collision pat-
tern vector Qℓ for the corresponding cluster.

The above approach provides the BS with an accurate estimate of SB and |SI ,ℓ| , and 
therefore it solves Problem  1. The detailed proof of the performance guarantee will 
be given in Sect. 4.1. In addition, it provides the collision patterns Qℓ in the measure-
ments for ℓ ∈ {1, 2, · · · , L} . The BS broadcasts these information to the devices and 
assigns to each cluster, say cluster ℓ ∈ {1, 2, · · · , L} , |SI ,ℓ| resource blocks to accommo-
date all active devices in this cluster.

3.3 � In‑block support recovery at devices

During the signal acquisition phase, each active device also collects its own measure-
ments, which are linear combinations of the transmitted signatures from other active 
devices. In this section, we address Problem 2 in Sect. 2.3. The objective is to develop 
a scheme that enables each active device in cluster ℓ ∈ {1, · · · , L} to reliably estimate 
the in-block support SI ,ℓ with low computational complexity, based on its local meas-
urements and the feedback from the BS as side information.

Given the measurement matrix A under the random structured model in Sect. 3.1 
and the pre-channel correction in (4), the measurement yD collected at an active 
device is given by

According to the specific structure of A, the corresponding submatrix A−,ℓ for cluster 
ℓ ∈ {1, · · · , L} has only T rows with non-zero components. The indices of these rows are 
collected in the set Dℓ . Furthermore, with the feedback information from the BS on the 
collision pattern Qℓ for cluster ℓ indicating those collided measurements to be discarded, 
we form an index set Uℓ = Dℓ ∩ Q̄ℓ . Therefore, in order to perform the in-block support 

(12)|SI ,ℓ| =

[
1

α2
· x̄ℓ

]

, for ℓ ∈ {1, 2, · · · , L}.

(13)yD = (A ◦HD ◦H−1
B )x + ǫD = Ãx + ǫD.
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recovery of xℓ at any device from cluster ℓ , we simply need to focus on yD,ℓ – a vector 
composed of the entries of yD corresponding to Uℓ . We denote ÃD,ℓ as a |Uℓ| × d subma-
trix of Ã with vertical concatenation of rows corresponding to Uℓ and columns for block 
ℓ . Therefore, we have

As introduced in Sect. 2.2, we use technologies such as frequency hopping [26] for the 
transmission where symbols are transmitted hopping over multiple subcarriers. Since 
the channels between the devices over different subcarriers are assumed to be i.i.d., we 
can conclude that ÃD,ℓ has independent columns and row-blocks (e.g., to be i.i.d Sub-
gaussian). Therefore, some classic CS decoding algorithms can be applied to perform the 
in-block support recovery. We argue in favor of the greedy algorithms such as OMP [21] 
due to their low complexity, which is particularly attractive to M2M-based applications 
where limited computational capability as well as energy consumption at the devices are 
important design criteria.

An example of the modification on OMP for in-block support recovery is summa-
rized in Algorithm 1, where the modified steps are marked in boldface. By exploiting the 
broadcast information on the cardinality of the in-block support |SI ,ℓ| for cluster ℓ , the 
stopping criteria for implementing the greedy algorithms can be set by limiting the num-
ber of iterations to |SI ,ℓ| , thereby leading to further reduced computational complexity. 
This is merely an illustrative example assuming that channel knowledge is available at 
the devices. However, this assumption can be further relaxed by using approximate mes-
sage passing (AMP) algorithms as in [31]. 

To this end, Problem 2 is explicitly resolved. In Sect. 4.2, we prove conditions under 
which the in-block support SI ,ℓ can be accurately reconstructed at the devices in cluster 
ℓ . Thus, the activation pattern xℓ of the ℓ-th cluster can be precisely reconstructed and 
detected by the active devices. Thereafter, each active device is able to learn the active 
ranking in its cluster and accesses the corresponding resource blocks assigned by the BS.

(14)yD,ℓ = ÃD,ℓxℓ + ǫ̃D.
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4 � Theoretical performance analysis
This section provides a sufficient condition for the performance guarantees of our pro-
posed scheme. In particular, we come with the following theorem.

Theorem 1  Suppose that the activation pattern of the devices is modeled as a (KB,KI ) 
block-sparse signal x ∈ B

N over block size d, and the signatures transmitted by the devices 
are modeled as a measurement matrix A ∈ R

M×N following the structure designed in 
Sect.  3.1. By applying the block sketching algorithm in Sect.  3.2 for decoding at the BS 
and the modified OMP in Sect. 3.3 for decoding at the devices, x can be reliably recon-
structed by the proposed scheme with computational complexity of O(dK 2

I + N
d
logN ) if 

the length of the transmitted signatures

A rigorous proof of Theorem 1 will be presented in the following, considering both the 
block support recovery at the BS and in-block support recovery at the devices, respectively. 
And we also show that it achieves a better scaling when compared with classical CS-based 
approaches both in terms of communication overhead and computational complexity.

4.1 � Block support recovery at BS

First, we analyze the recovery guarantee for the individual estimate x̃t,i in (7).

Lemma 1  Suppose that x ∈ B
N is a (KB,KI ) block-sparse signal over block size d, and 

A ∈ R
M×N is randomly drawn from A(R,T , L, d,α) . Given y ∈ R

M in (4) and the estimate 
x̃t,i in (7) for a particular entry xi from block ℓ ∈ {1, · · · , L} and a given t ∈ {1, · · · ,T } , let 
Ŵ
(
x̃t,i

)
:= {|x̃t,i − α2|SI ,ℓ|| ≤ 3γ } , where γ 2 is the variance of the noise term �t,ℓ in (10). 

The probability of Ŵ(x̃t,i) is lower bounded by

1 � Proof
According to (10), for a particular estimate x̃t,i of xi in block ℓ with t ∈ {1, · · · ,T } , Ŵ(x̃t,i) 
holds w.h.p. if the corresponding interference term �t,ℓ = 0 , since the noise term ǫt,ℓ is 
randomly drawn from a Gaussian ensemble with zero mean and variance γ 2 [32]. A suf-
ficient (but not necessary) condition for �t,ℓ = 0 to hold is that the set SB ∩ St,ℓ\{ℓ} = ∅ , 
where St,ℓ = {j = {1, · · · , L} : qt,j = qt,ℓ} . This implies that qt,ℓ is distinct from qt,ℓ̄ for all 
ℓ̄ ∈ SB\{ℓ} . Therefore, we have

(17)M = O(max{KB logN ,KBKI log d}).

(18)P
(
Ŵ(x̃t,i)

)
≥ 1−

KB − 1

R
.

(19)

P
(
Ŵ(x̃t,i)

)
≥ P(�t,ℓ = 0) ≥ P(SB ∩ St,ℓ\{ℓ} = ∅)

= P

(

∀ℓ̄∈SB\{ℓ}
: qt,ℓ �= qt,ℓ̄

)
(a)
=

[
P(qt,ℓ �= qt,ℓ̄)

]KB−1

=
[
1− P(qt,ℓ = qt,ℓ̄)

]KB−1
=

(

1−
1

R

)KB−1

(b)
≥ 1−

1

R
(KB − 1),
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where (a) follows since the index of rows with non-zero entries qt,ℓ are drawn i.i.d. uni-
formly at random for each ℓ ∈ {1, · · · , L} and |SB| = KB , and the inequality in (b) follows 
from the Bernoulli’s inequality [33]. �

Then we look into the recovery guarantee for the block estimate x̄ℓ in (11) obtained via 
the median operator.

Lemma 2  Suppose that x ∈ B
N is a ( KB,KI ) block-sparse signal over block size d, and 

A ∈ R
M×N is randomly drawn from A(R,T , L, d,α) . Given y ∈ R

M in (4) and the block 
estimate x̄ℓ in (11) for a particular block ℓ ∈ {1, · · · , L} , let Ŵ(x̄ℓ) := {|x̄ℓ − α2|SI ,ℓ|| ≤ 3γ } , 
where γ 2 is the variance of the noise term �t,ℓ in (10). The probability of Ŵ(x̄ℓ) is lower 
bounded by

if R = O(KB) and T = O

(

log N
δ

)

 , where 0 < δ < 1 is an arbitrary target error bound.

1 � Proof
As in (11), the block estimate x̄ℓ is obtained by taking the median of the individual esti-
mate x̃t,i over O(Td) samples for a given ℓ ∈ {1, · · · , L} . Suppose at least Td2  estimates x̃t,i 
fulfills the Ŵ condition of Lemma 1, then Ŵ(x̄ℓ) in Lemma 2 will follow affirmatively. We 
analyze in the following where Ŵ(x̃t,i) holds for at least Td2  individual estimates.

Let X1, · · · ,XTd be independent (0,1) Bernoulli random variables where Xt , 1 ≤ t ≤ Td 
indicates whether the corresponding estimate x̃t,i of xi satisfies the Ŵ condition of 
Lemma  1. As proved in Lemma  1, the probability of each Xt being equal to 1 is 
p ≥ 1− KB−1

R  . Then the probability that the number of simultaneous occurrence of the 
events {Xt = 1} exceeds Td/2 is given by [32]

A lower bound on this probability can be calculated using Chernoff’s inequality [34] to 
obtain

The minimum bound can be easily found as achieved by p = 1/2 . By setting a lower 
threshold θ ∈ ( 12 , 1) to the probability p, we have p ≥ 1− KB−1

R ≥ θ from which it fol-
lows that

(20)P(Ŵ(x̄ℓ)) ≥ 1−
δ

L
,

(21)P

(
Td∑

t=1

Xt >
Td

2

)

=

Td∑

t=
⌊
Td
2

⌋

+1

(
n
t

)

pt(1− p)Td−t .

(22)P

(
Td∑

t=1

Xt >
Td

2

)

= P

(

1

Td

Td∑

t=1

Xt >
1

2

)

≥ 1− e
− Td

2p (p−
1
2 )

2

.

(23)R ≥
1

1− θ
(KB − 1) = O(KB).
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4 Furthermore, (22) also implies that the lower bound of the probability scales as 
1− e−O(Td) . By taking T = log

(
Ld
δ

)

= O

(

log N
δ

)

 into (22) proves Lemma 2. �

Given the proof of Lemma 2, the overall performance guarantee for the block support 
recovery at the BS follows inherently.

Lemma 3  Suppose that x ∈ B
N is a (KB,KI ) block-sparse signal over block size d, and 

A ∈ R
M×N is randomly drawn from A(R,T , L, d,α) . Given y ∈ R

M in (4) and the block 
estimate x̄ℓ in (11) for block ℓ ∈ {1, · · · , L} , the probability that Ŵ(x̄ℓ) in Lemma 2 satisfies 
for all blocks ℓ ∈ {1, · · · , L} is lower bounded by

if R = O(KB) and T = O

(

log N
δ

)

 , where 0 < δ < 1 is an arbitrary target error bound.

1 � Proof
Since the block estimate x̄ℓ for each block is i.i.d., the probability that Ŵ(x̄ℓ) in Lemma 2 
holds for all ℓ ∈ {1, · · · , L} is obtained as

where the second inequality follows from Bernoulli’s inequality [33] since δ/L ≪ 1 . �

Proposition 1  The computational complexity for reliable block support recovery at the 
BS is of O(N

d
logN ).

1 � Proof
According to (7), for a particular entry xi of x from block ℓ ∈ {1, · · · , L} and a given 
t ∈ {1, · · · ,T } , the calculation of its corresponding estimate x̃t,i only involves a single mul-
tiplication. Thereafter, the block-wise estimate x̄ℓ in (11) is obtained as the median of x̃t,i 
over O(Td) samples. The computational complexity for finding the median of an unsorted 
array with N elements is of O(N ) by using the median-of-medians algorithm [35]. Moreo-
ver, since the submatrix At,ℓ in (6) has same non-zero entries on the same row, the calcu-
lation cost for the block-wise estimate x̄ℓ can be further reduced to T times multiplication 
and O(T ) operations to find the median, resulting in the computational complexity of 

(24)P
(
∀ℓ∈{1,··· ,L} : Ŵ(x̄ℓ)

)
≥ 1− δ,

(25)

P
(
∀ℓ∈{1,··· ,L} : Ŵ(x̄ℓ)

)
= (P(Ŵ(x̄ℓ)))

L

≥

(

1−
δ

L

)L

≥ 1− L ·
δ

L

= 1− δ,

4  An alternative way of proving this bound is by considering that p ≥
(
1− 1

R

)KB−1
≥ θ which follows from the deriva-

tion in (19). In this case, we obtain again R ≥ 1

1−θ
1

KB−1

≈ 1

− 1

KB−1
ln θ

=
KB−1

− ln θ
= O(KB) , where the approximation follows 

from the limits of exponential functions since 0 ≈ 1

KB−1
≪ 1.
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O(T ) . To obtain the block-wise estimate x̄ℓ for all L blocks and by taking T = O(logN ) in 
Lemma 3, the overall computational complexity for reliable block support recovery at the 
BS is of O(TL) = O(N

d
logN ) . � �

Remark If the cluster size d scales linearly with the increasing network size N, i.e., 
d = O(N ) , the term N

d
 turns to be an arbitrary constant value. Thus, the algorithm 

achieves sublinear complexity of O(logN ) that scales significantly better than conven-
tional approaches.

In short, the above analysis shows that by choosing R and T large enough, i.e., 
R = O(KB) and T = O(logN ) (for a total of M = O(KB logN ) measurements), a reliable 
block support recovery at the BS can be guaranteed w.h.p. and the computational com-
plexity is of O(N

d
logN ).

4.2 � In‑block support recovery at devices

Lemma 4  Suppose that x ∈ B
N is a ( KB,KI ) block-sparse signal over block size d, and 

A ∈ R
M×N is randomly drawn from A(R,T , L, d,α) . Given yD ∈ R

M in (13) and by 
applying the algorithm in Sect. 3.3, xℓ for block ℓ ∈ {1, 2, · · · , L} can be reliably recovered 
with computational complexity of O(dK 2

I ) if R = O(KB) and T = O(KI log d).

1 � Proof
As shown in (14), the effective measurements that can be used to perform the in-block 
support recovery of xℓ for a given ℓ ∈ {1, · · · , L} comprise only the entries of yD indexed 
by Dℓ\Qℓ , where Dℓ is the index set of rows with non-zero components in A−,ℓ , and Qℓ is 
the set of collided measurements feedback by the BS. By Lemma 1 and by the fact that the 
individual estimates are independent, it follows that the overall number of effective meas-
urements TI for the in-block support recovery of an active cluster ℓ ∈ SB can be estimated 
as

To elaborate the in-block support recovery at a device using Algorithm 1, for simplic-
ity we assume that ÃD,ℓ in (14) is real-valued and the system is noise-free. However, the 
scheme can be easily extended to complex settings and noisy cases as in [36]. Since ÃD,ℓ 
has independent columns and row-blocks, it follows the column-independent model 
[37, p. 49] for Subgaussian matrices. Herein ÃD,ℓ can be decomposed as ÃD,ℓ = �Q and 
we have yD,ℓ = �Qxℓ = �x̃ℓ , where � is the column-normalized matrix of ÃD,ℓ and Q is 
a diagonal matrix with each diagonal entry to be the original norm of the corresponding 
column. Furthermore, [38] provides a sufficient condition on the measurement matrix 
for uniform and robust sparse signal recovery, which is the well-known Restricted isom-
etry property (RIP). Moreover, according to [37], random matrices with i.i.d. Subgaussian 
entries and normalized columns have optimal RIP, therefore � follows the RIP condition 
and is admissible for reliable sparse signal recovery. It has been further investigated in 

(26)TI = T · P
(
Ŵ(x̃t,i)

)
≥ T ·

(

1−
KB − 1

R

)

.
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[39] that a K-sparse signal of dimension N can be uniformly reconstructed using OMP 
with an admissible measurement matrix if its dimension lies in the regime O(K logN ) . 
While the activation pattern x̃ℓ to be reconstructed for cluster ℓ is of dimension d and 
sparsity level KI , the support can be recovered w.h.p. if the number of effective measure-
ments TI satisfies

Recall that 1− KB−1
R ≥ θ , θ ∈ ( 12 , 1) should be satisfied for the block support recovery 

procedure at the BS with R = O(KB) , then we have T = O( 1
θ
KI log d) = O(KI log d) 

since θ is a given constant.

It is further verified in [40] that the computational complexity is of O(NK 2) for sparse 
signal recovery via OMP. Thus, since the signal to be reconstructed for in-block support 
recovery at a device is of dimension d and sparsity level KI , O(dK 2

I ) operations are suf-
ficient for decoding with the modified OMP algorithm.�  �

4.3 � Proof of Theorem 1

For a given realization of the measurement matrix, Lemma 3 guarantees that R = O(KB) 
and T = O(logN ) are sufficient for reliable block support recovery at the BS, while 
Lemma  4 shows that R = O(KB) and T = O(KI log d) measurements are required for 
the in-block support recovery at the devices. Taking the maximum value of both cases 
yields a sufficient condition on the required number of measurements

Furthermore, since the algorithms for block support recovery at the BS requires 
O(N

d
logN ) operations and the in-block support recovery at the device side requires 

O(dK 2
I ) operations, the overall computational complexity is of O(dK 2

I + N
d
logN ) for a 

successful detection process.
Remark If the signal is treated as a conventional K-sparse vector (where K = KBKI ) as 

in [11] without exploiting knowledge of the block-sparse structure, a sufficient condition 
for reliable signal recovery using OMP would be M = O(K logN ) = O(KBKI logN ) 
with computational complexity is of O(NK 2) . As M is the length of the unique signature 
transmitted by an active device, it is also an indication of the signal acquisition time or 
the communication overhead. Since d ≪ N  and KI ≪ K  , we can see that from the scal-
ing point of view, both the communication cost and the computational complexity are 
significantly reduced by the proposed scheme.

5 � Results and discussion
We conduct numerical experiments to verify the performance of the proposed distrib-
uted device detection and resource allocation scheme. Mapped into our mathematical 
model, the target problem is to reconstruct a K-sparse binary vector of length N from 
M distributed measurements obtained via the measurement matrix A ∈ R

M×N which 

(27)TI ≥ T ·

(

1−
KB − 1

R

)

= O(KI log d).

(28)M = O(max{KB logN ,KBKI log d}).
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is randomly drawn from A(R,T , L, d,α) introduced in Sect. 3.1. We compare the per-
formance of the proposed scheme to conventional CS-based approaches, among which 
we take the classic greedy algorithm OMP with random Gaussian measurements as the 
baseline. We assume for the baseline that the signal to be reconstructed is treated as a 
conventional K-sparse vector, and centralized decoding is performed without exploiting 
knowledge of the block-sparse structure.

In our simulations, we take the number of devices N in the network within the range 
[103, 106] and they are partitioned into clusters with equal size d = 100 . The sparsity 
level of the signal is set to be K = 20 , with block sparsity KB = 4 and in-block spar-
sity KI = 5 , respectively. For each plot we average over 1000 pairs of realizations of the 
measurement matrix and the block-sparse signal.

Figure 3a and b give an intuitive comparison between the proposed scheme and stand-
ard OMP with Gaussian measurements for reliable signal recovery, in terms of both the 
length of signatures transmitted by the active devices and the number of operations 
conducted by the algorithms. It can be seen that the proposed scheme requires a sig-
nificantly reduced signature length and computational complexity, especially when the 
number of devices in the network becomes excessively large. As the signature length also 
implies the signal acquisition time or communication overhead in distributed systems, 
the proposed scheme leads to a drastically reduced communication cost.

Figure 4a depicts the detection success probability as a function of the signature length 
for the proposed scheme and the baseline, while taking the network size N = 104 . The 
performance is evaluated for the noise-free case. We can see that the proposed scheme 
significantly outperforms standard OMP, where less measurements are required by the 
proposed scheme to achieve the same detection success probability as the baseline. Fig-
ure 4b further extends the evaluation to noisy settings as well as with imperfect channel 
knowledge. The performance for the noisy case is evaluated by setting the signal-to-
noise ratio (SNR) to 5 dB in the simulations. In addition, since the channel estimation 
error can be treated as a component that contributes as an additional source of distor-
tion independent of noise [41], it is modeled as an additive noise term in the measure-
ment matrix with the same variance as the white Gaussian noise. We can see that the 
proposed scheme achieves significantly higher detection success probability than the 
baseline under noisy conditions. The performance gain mainly comes from the reli-
able detection of in-block support cardinality of the active clusters using the sketching 
algorithm, which sets an appropriate stopping criteria for Algorithm 1 and minimizes 
the occurrence of false alarms in the detection. Therefore, the proposed scheme shows 
strong robustness in the presence of noise and imperfect channel knowledge.

We also compare performance of the proposed scheme with two classical random 
access schemes, namely the LTE RA procedure [5] and the conventional cluster-based 
approach [42] where a cluster head aggregates messages/requests for the rest of the 
devices in the cluster and initiates the RA procedure on behalf of the cluster mem-
bers. We set the number of measurements M to be 839 bits in the simulation—same as 
the length of Zadoff-Chu sequence [5] used for the LTE RA procedure, thus the three 
schemes are running with the same signature length. The sparsity level K = KBKI is set 
within the range between 10 and 100.
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Figure 5a depicts the detection probability by the three schemes as a function of the 
number of active devices in the network (i.e., the sparsity level), and Fig. 5b plots the 
averaged access delay performance of the three schemes. It can be easily observed that 
the proposed scheme significantly outperforms the LTE RA procedure both in terms of 
higher detection success probability and reduced access delay, thus achieving much bet-
ter scalability with the increasing network size and leading to more robustness in the 
detection process. Moreover, when compared with the cluster-based approach, the pro-
posed scheme also achieves better detection performance if the sparsity level is suffi-
ciently large ( ≤ 70). Meanwhile, since the proposed distributed scheme is able to avoid 
the excessive communication and coordination between the devices as well as to the 
infrastructure as required by the cluster-based approach, the signaling overhead is sub-
stantially reduced and thus leading to significantly decreased access latency.

However, there are still some limitations on the proposed approach, especially on 
the requirement of perfect synchronization during the acquisition phase and priori 

Fig. 3  Performance comparison between the proposed scheme and standard OMP with Gaussian 
measurements
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knowledge of the channel state by the M2M devices. Further extensions to relax these 
limitations will be investigated in future work.

6 � Conclusion
This work utilizes the framework of CS for detection of the network activation pattern to 
facilitate distributed resource allocation in large-scale M2M communication networks. 
The particular block-sparsity in the activation pattern of the M2M devices is exploited, 
thus mapping the objective into a support recovery problem for a particular block-
sparse signal—with additional in-block structure—in CS based applications. The detec-
tion techniques are mainly based on sketching and greedy algorithms, which inherit 
the virtues of low computational complexity. Furthermore, by applying the distributed 
ranking-based resource allocation scheme, each active device decides autonomously 
on which resource to access the channel in a contention-free manner without further 
coordination, thus excessive control overhead is avoided. It has been verified via theo-
retical analysis that a ( KB,KI ) block-sparse binary signal x ∈ B

N over block size d can 
be reliably reconstructed using the proposed scheme with O(max{KB logN ,KBKI log d}) 

Fig. 4  Robustness of the proposed scheme compared with standard OMP
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measurements and computational complexity of O(dK 2
I + N

d
logN ) , which achieves 

a better scaling compared with conventional CS based approaches. Furthermore, the 
simulation results also reveal the strong robustness of the proposed scheme under noisy 
conditions and with imperfect channel knowledge.
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