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1  Introduction
In recent decades, with the development of computer technology and electronic con-
trol technology, more and more electronic products replace the traditional mechanical 
structure on the aircraft, which doubles the number of on-board electronic equipment, 
making the wiring network of the aircraft more and more complex. Accordingly, the 
diagnosis data increase, which requires edge computers to process large-scale data. 
The emergence of edge computing provides a new solution to large-scale data process-
ing in the Internet of things (IoT) environment [1–7]. Meanwhile, algorithm researches 
on processing large-scale data with edge devices become possible. The improvement of 
fault diagnosis technology based on edge computing also guarantees the safety of the 
aircraft wiring network.

Since the 1960s, the fault diagnosis technology of aircraft wiring has changed from 
manual detection to automatic testing in the aircraft assembly stage. Many fault diagno-
sis methods of cable wiring are widely used, including time domain reflectometry (TDR) 
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[8], frequency domain reflectometry (FDR) [9], sequence time domain reflectometry 
(STDR) [10] and noise domain reflectometry (NDR) [11]. Through this work, cold weld-
ing joints, worn points and other anomalies are detected with time or frequency domain 
reflection methods or phase diagnosis frequency antireflection method. The study of 
the cable fault positioning through the signal analysis gains great achievements. Broken 
points or worn points can be located on the single wiring.

Due to the large number of test nodes and the complex topological network of the test 
equipment, the valid feature information in the fault diagnosis of aircraft wiring network 
is scattered, and the relevant information between the test nodes is ignored, which leads 
to the low accuracy fault diagnosis. The existing automatic test system of the aircraft wir-
ing network can report the fault but cannot define the accurate fault type. Objectively, 
the wiring failure can be caused by the open circuit or short circuit of the wiring on the 
aircraft, and also by pseudo-faults, such as unreliable connections to the test equipment 
and the damage in the test equipment itself. Because of its electrical and mechanical 
properties and the chemical stability, aircraft wiring can run stably at temperatures rang-
ing from − 65 to + 200 degrees Celsius. Ignoring the serious impact of aging, a single 
aircraft wiring is rarely worn or broken [12]. Due to continuous improvement of avia-
tion cable physical quality and the mature assembly process, the aircraft wiring network 
faults, especially the faults on newly produced aircraft, are mostly pseudo-faults. Before 
analyzing the causes of the faults, pseudo-faults must be first eliminated, which usually 
takes half the total test time or more. Therefore, an effective method is needed to clas-
sify pseudo-faults and real faults. The fault classification cannot be completed with time 
domain reflection method or frequency domain reflection method. It requires new fault 
diagnosis approaches to classifying data.

2 � Related work
Kuželka and Davis [13] studied at the theoretical level the applicability of learning 
Markov logical network weights in the knowledge base on the condition of lacking data. 
After weight learning, the first-order logical rules are mapped on the Markov network 
which uses the soft logic as its logical component and the Markov network as its statisti-
cal model. The method can simulate human reasoning and is also able to assist reason-
ing with domain knowledge. To ensure the accuracy of reasoning, it needs to define and 
analyze each type of the faults, but the rules of reasoning are not easy to make because 
of its reliance on large scale of domain knowledge. There is another method to analyze 
and classify complex data based on data mining [14] and naive Bayes method [15]. This 
method needs an enormous rule formulation basis. Indeed, such methods are difficult to 
apply.

As research goes future, attention has been focused on graph data embedding and 
classification as a new research direction. Researches based on graph structure data, 
including node classification [16], link prediction [17] and graph classification [18], 
come out. In recent years, because of the powerful expression of graph structure, the 
study of graph analysis with machine learning method has been paid more and more 
attention. Graph neural network (GNN) has recently become a widely used graph 
analysis method due to its superior performance and interpretability [19]. Other 
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representative methods include graph convolutional network (GCN) [20], Graph 
SAGE [21], graph attention network (GAT) [22, 23] and their variants [24].

However, these GNN-based methods can be only applied to homogeneous graphs 
[25], whose node types and edge types are unique. In the manufacture process, the graph 
data often contain multiple node types and edge types. Furthermore, each type of nodes 
may be associated with attributes in different feature spaces. Such graphs with hetero-
geneity can also be called heterogeneous information networks (HINs) [26]. To tackle 
the heterogeneity of graphs, a common method is to manually design meta-path [27], 
a composite relation scheme, widely used to represent node relationships in heteroge-
neous graphs [28]. Based on HAN [29], Metapath2vec [30] uses the manually defined 
meta-path to obtain graph representation and structure learning. Obviously, it requires 
enormous labor to generate meta-path, and its application scope is limited because of its 
dependence on work experience and domain knowledge. Then, a graph transformer net-
work (GTN) is adopted to model the graph to obtain node embedding [31]. GTN learns 
to transform a heterogeneous input graph into useful meta-path graph for each task and 
learns node representation on the graphs. GTN can also aggregate the representations of 
meaningful neighbors of nodes by multi-channel mechanism.

In this paper, the topological network-graph transformer network (TN-GTN) is pro-
posed to make fault diagnosis of aircraft wiring network by data classification. TN-GTN 
can generate new meta-path based on the network topology information of test equip-
ment. TN-GTN can also aggregate representations of meaningful neighbor nodes on 
heterogeneous graph. The trained GTN will add new feature information to test nodes, 
which is named the feature-enhanced test nodes. TN-GTN uses feature-enhanced test 
nodes as new input and classifies the final labels by artificial neural network.

The contents of this paper are summarized as follows:

(1)	 AWTE (Aircraft Wiring Test Equipment) network is established to analyze associa-
tions between test nodes. In the network, the nodes include test nodes, plugs on 
aircraft wiring network and test equipment, while the edges represent the associa-
tions between nodes.

(2)	 TN-GTN is employed to learn new graph structures on the basis of predefined 
meta-path. New graph structures involve useful meta-paths and multi-hop connec-
tions between unconnected nodes on the original graph. TN-GTN can be used to 
aggregate the information of different nodes and obtain the feature-enhanced test 
nodes.

(3)	 Evaluation results show that TN-GTN outperforms ANN approach in fault diagno-
sis of aircraft wiring network.

3 � TN‑GTN method
In this section, basic definitions and concepts of TN-GTN method are introduced. In 
addition, algorithm application background is also illustrated by constructing AWTE 
network. Meta-path generation, heterogeneous convolution and final fault classifica-
tion through TN-GTN are described with details.
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3.1 � Construction of the AWTE network model

AWTE network model is constructed to analyze associations between test nodes, which 
involves a lot of preparatory work, including original data collection, establishing the 
test equipment network schema model and constructing heterogeneous graph (Fig. 1).

The data and information collected mainly include equipment information, topologi-
cal network information of AWTE, aircraft wiring network conduction relationship and 
the original data of test results.

According to the function of test equipment system structure, test process and wiring 
network fault diagnosis, the schema model can be designed (Fig. 2).

Definition of the relationship between the AWTE network and the aircraft wiring net-
work is described in Tables 1 and 2:

The input graph is regarded as a heterogeneous graph G = (V, E), where V  is a set of 
nodes, E is a set of observed edges with a node type mapping function fv: V → Tv and 
an edge-type mapping function fe:E → Te . Each node Vi ∈ V has a node type, fv(Vi) ∈ Tv . 

Fig. 1  Construction of the AWTE network model

Fig. 2  Schema model of test equipment for aircraft wiring network
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Similarly, eij ∈ E, fe(eij) ∈ Te . When | Te|= 1 and | Tv|= 1, it becomes a homogeneous graph. 
In this paper, the set condition is | Te|> 2 and | Tv|> 2.

According to AWTE schema model, all nodes are simplified into three categories, (1) 
Equipment-test devices on AWTE, (2) Plug–Plug2 connectors on aircraft wiring network 
and (3) Test Node-Junction between Plug1 connectors on test equipment and Plug2 con-
nectors on aircraft wiring network.

The test equipment is a multi-level tree structure network, with many Plugs 1 at the 
end. Each Plug1 contains several pins, and the test equipment forms a complete loop by 
docking the pins on the test equipment end with the pins on the aircraft Plug2 at the test 
node (Fig. 3).

Table 1  Entities and properties of AWTE

Entity Description

Test box Primary child node in test equipment

LRU Primary child node in test equipment: linear replaceable unit

ZIF Secondary child node in test equipment: zero insertion force modular attached on test box

ZIF connector Third-level child node: connector attached on zero insertion force modular

LRU connector Secondary child node in test equipment: connector attached on linear replaceable unit

Aircraft plug Tested object installed on aircraft

Pin (Test node) Test information collection point

Table 2  Relations between AWTE entities

Relation Description

Plugged into Test box-ZIF, indicating that the ZIF is installed on the Test Box

Branch of ZIF connector-ZIF, indicating that the ZIF connector is one of 
many branches of ZIF

Mounted on Pin-connector, indicating that the pinhole is connected to ZIF 
connector/LRU connector

Conduct Pin-Pin, indicating the conduction relationship between pins

Fig. 3  Node simplification on schema model of AWET
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The heterogeneous graph can be represented by a set of adjacency matrices {AK }
K
K=1 

where K =|Te |. AK∈Rn×n is an adjacency matrix where AK[i, j] is nonzero when there is 
a k-th type edge from j to i. More compactly, it can be written as a tensor AK∈Rn×n×K  . 
A feature matrix X∈Rn×d means that the d-dimensional input feature is given to each 
node.

The AWTE heterogeneous graph describes a graph that contains four kinds of edges: 
Te = {NE, EN, PN, NP}.

The yellow adjacency matrix ANE represents the predefined meta-path N NE
→ E , which 

is used to describe the connection between test nodes and test equipment. The red 
adjacency matrix AEN represents the predefined meta-path E EN

→ N  , which is used to 
describe the connection between test equipment and test nodes. The green adjacency 
matrix APN represents the predefined meta-path P PN

→ N  , which is used to describe the 
connection between plugs and test nodes. The blue adjacency matrix ANP represents the 
predefined meta-path N NP

→ P which is used to describe the connection between test 
nodes and plugs. When there is an edge of type k from j to i, the element on AK[i, j] will 
not be zero. For example, if there is an edge between the test equipment with serial num-
ber 1 and the test node with serial number 1 in ANE, E1N1 will not be zero. Otherwise, 
E1N1 is zero (Fig. 4).

EiNj indicates whether there is a connection between the ith test equipment and the 
jth test node. PmNj indicates whether there is a connection between the mth aircraft plug 
connector and the jth test node

3.2 � Classification of key nodes with enhanced feature

Classification based on data-driven approach requires valid feature information as much 
as possible, so it is necessary to enhance features of classified objects. An effective way 
is to collect effective information from relevant nodes. The graph neural network is 
efficient to update the new embedding of the nodes by aggregating information on the 
graph. GTN can transform the heterogeneous graph into a new graph structure through 
meta-path which contains information about nodes and edges. The information about 

(1)

E1N1 E2N1 E3N1

E1N2 E2N2 E3N2

E1N3 E2N3 E3N3

. . .

. . .

. . .
. . .
. . .
. . .

. . .

→

1 0 0
0 0 1
0 0 0

. . .

. . .

. . .
. . .
. . .
. . .

. . .

P1N1 P2N1 P3N1

P1N2 P2N2 P3N2

P1N3 P2N3 P3N3

. . .

. . .

. . .
. . .
. . .
. . .

. . .

→

0 1 0
1 0 1
0 0 1

. . .

. . .

. . .
. . .
. . .
. . .

. . .

Fig. 4  Adjacency matrices of AWET heterogeneous graph
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center edges can aggregate feature information of nodes by different paths, using meta-
path to enhance feature on the basis of relevant nodes. Useful test paths include Node–
Plug–Test Node (NPN) and Test Node–Plug–Equipment (NPE). Therefore, a new model 
is needed to learn node representations and graph structures on heterogeneous graph 
by means of convolution. The model can generate a new soft-selected edge-type graph 
structure (Fig. 5).

At the data collection stage, test nodes only contain the originally collected feature 
information such as resistance measurement value and insulation characteristic test 
result. After enhancing the feature, the TN-GTN model adds a dimensional feature to 
the test nodes, which is used to characterize strength of the correlation between test 
nodes.

3.2.1 � AWTE feature enhancement

From the point of original data collection, test nodes are independent to each other. But 
test nodes are merged into one huge heterogeneous graph in the sense of AWTE topo-
logical network and aircraft wiring network. The correlation between test nodes can be 
obtained by GTN in a way of learning the location information, connector type informa-
tion and test equipment topology network information.

The associations between test nodes can be defined as strong association, weak asso-
ciation and non-association:

Article (1): If test nodes are mounted on the same type of connectors or even the 
same connector, and these test nodes meet the principle of proximity, the association 
between test nodes is defined as strong association.
Article (2): If test nodes meet the requirements of either principle in the previous 
article (1), the association between test nodes is defined as weak association.
Article (3): If test nodes meet neither of the principles in the previous article (1), the 
association between test nodes is defined as non-association.

Fig. 5  Feature enhancement of key nodes
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Useful meta-paths are relevant to predefined meta-paths between target nodes (nodes 
with classifying labels). TN-GTN can discover new graph structures and new relevant 
meta-paths between all types of nodes.

TN-GTN judges whether test nodes  Ni and Nj belong to the same type of connectors 
or even the same connector and whether they meet the principle of proximity through 
valid meta-paths such as NEN, NPN and NPEPN.

Ni and Nj represent different test nodes. Scores of f
(
Ni,Nj

)
 are different according to 

different strength of the correlation between nodes. The score is an additional feature to 
test nodes after enhancing feature.

The core idea of TN-GTN is message passing between plugs with feature information 
of different connector types and test equipment with location information. TN-GTN is 
an effective way to aggregate useful information to enhance the feature of test nodes. 
According to the experience of troubleshooting, test nodes with strong association easily 
lead to some specific types of faults.

3.2.2 � Meta‑path on AWTE

Meta-path [32] denoted by P is a path on the heterogeneous graph G which is con-
nected with heterogeneous edges, i.e., V1

t1
→ V2

t2
→ . . .Vk

tk
→ Vk+1 · · ·

tι
→ Vl+1 where 

tk∈Te denotes an k-th edge type of meta-path. Meta-path defines a composite relation 
R = t1ot2 . . . otι between node V1 and Vl+1 , where R1oR2 denotes the composition of 
relation R1 and R2. Given the composite relation R or the sequence of edge types ( t1,t2
,…,tl ), the adjacency matrix AP of the meta-path P is obtained by the multiplications of 
adjacency matrices as

The notion of meta-path subsumes multi-hop connections and new graph structures 
in AWTE framework are represented by adjacency matrices, i.e., the meta-path: Test 
Node–Plug–Equipment (NPE), which can be represented as N NP

→ P
PE
→ E , generates a 

new adjacency matrix ANPE by the multiplication of ANP and APE.

3.2.3 � Meta‑path generation and heterogeneous convolution

The Metapath2vec approach utilizes a manually defined meta-path [30]. Path learning 
based on HAN [29] gets graph representation. However, it takes enormous labor to gen-
erate a meta-path.

TN-GTN is used to generate different homogeneous subgraphs from original hetero-
geneous graphs and uses softmax to randomly select subgraphs Q1 and Q2 in Fig. 6. The 
matrix multiplication of Q1 and Q2 is used to generate a new meta-path. Graph Trans-
former Layer (GTL) is mainly used to randomly generate multiple meta-paths

The generation of new meta-path graph in Graph Transformer (GT) Layer in Fig. 6 
contains two components. First, GT layer softly selects two graph structures Q1 and Q2 
from candidate adjacency matrices A. Second, it learns a new graph structure by the 

(2)f
�
Ni,Nj

�
=





1
0.5
0

�
Ni,Nj

�
article(1)�

Ni,Nj

�
article(2)�

Ni,Nj

�
article(3)

(3)AP = Atl . . .At2At1
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composition of two relations. A(1) is a matrix multiplication of two adjacency matrices 
Q1 and Q2.

The AWTE heterogeneous graph describes a graph that contains four kinds of 
edges:Te = {NE, EN, PN, NP}. The corresponding adjacency matrix is A = { A1,A2,A3,A4 }. 
The soft adjacency matrix selection is a weighted sum of candidate adjacency matrices 
obtained by multi-channel 1 × 1 convolution with  nonnegative weights from softmax 
( W 1

ϕ,W 2
ϕ ... ), where W 1

ϕ = { α1
1,α

1
2,α

1
3,α

1
4},W

2
ϕ  = { α2

1,α2
2,α2

3,α2
4}.

The new meta-path graph computes the convex combination of adjacency matrices as ∑
tι∈Teα

(l)
tl
Atl , where Te denotes a set of edge types, α(l)

tl
 is an attention score for edge 

type tl at the l th GT layer, and Atl denotes adjacency matrix of layer l .
TN-GTN can learn an arbitrary meta-path with respect to edge types and path length. 

The adjacency matrix of arbitrary length l meta-paths can be calculated by Eq. 7 (Fig. 6).

Graph transformer networks (GTNs) learn to generate a set of new meta-path adja-
cency matrices A(l) by GT layers and perform graph convolution as in GCNs on new 
graph structures.

Firstly, different datasets are constructed through multi-channel sampling. Secondly, 
different meta-paths are generated with GT layers, and the output features are spliced as 
the input of a graph convolutional network (GCN) [33]. Finally, GCN is used to extract 
the representation of graph end to end and to learn useful representations for node clas-
sification in an end-to-end fashion.

(4)Q1 = α1
1 ∗ A1 + α1

2 ∗ A2 + α1
3 ∗ A3 + α1

4 ∗ A4

(5)Q1 = α2
1 ∗ A1 + α2

2 ∗ A2 + α2
3 ∗ A3 + α2

4 ∗ A4

(6)A(1) = Q1 ∗ Q2

(7)AP =




�

t1∈Te

α
(1)
t1

At1






�

t2∈Te

α
(2)
t2

At2


 · · ·




�

tl∈T
e

α
(l)
tl
Atl




Fig. 6  GTN learn to generate a set of new meta-path adjacency matrices
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Ã = A+I ∈ RN×N is the adjacency matrix A of the graph G with added self-con-
nections, ⌣

D is the degree matrix of A, and W (l) is a trainable weight matrix. GCN can 
easily observe that the convolution operation across the graph is determined by the 
given graph structure and it is not learnable except for the node-wise linear transform 
H (l)W (l) . The convolution layer can be interpreted as the composition of a fixed convo-
lution followed by an activation function σ on the graph after a node-wise linear trans-
formation. H (l+1) is the feature representations of the (l+1)th layer in GCN, and the 
forward propagation becomes Eq. 8.

3.2.4 � Fault classification of aircraft wiring network based on TN‑GTN

After enhancing features of AWTE network by using the GTN, the ANN model is used 
as a supervised learning model for data classification. The input graph is regarded as a 
heterogeneous graph G = (V, E), and E is four kinds of edges: Te = {NE, EN, PN, NP}. 
V contains three types of nodes:Tv = { XE,XN,XP }. All Vi in X ∈ Rn×d means that the 
d-dimensional input feature is given to each node. TN-GTN generates new meta-path 
on the basis of predefined meta-path. Finally, the m-dimensional feature-enhanced test 
nodes XN∈Rn×(d+m) are used as new inputs into ANN to complete the task of fault clas-
sification. The number of input layer nodes is n, which is also the number of test nodes. 
The number of nodes in output layer is 5, which represents five final classifications, 
including “test result Success, Fault1, Fault2, Fault3 and Fault4” (Fig. 7).

Common faults were divided into four types according to work experience as follows:
Fault1 Wrong connection between the test equipment and test nodes
The ZIF connector A1 is wrongly connected or not connected to the test nodes, caus-

ing the continuity test failure. When this failure occurs, the continuity test of all test 
nodes on ZIF connector fails. This type of fault often occurs on the condition of strong 
correlation between test nodes. The fault type is influenced by the resistance value of the 
test node and the secondary continuity test result (Fig. 8).

Fault2 Wrong connection to a similar connector

(8)H (l+1) = σ

(
⌣

D
− 1

2

Ã
⌣

D
− 1

2

H (l)W (l)

)

Fig. 7  Classification on test nodes with enhanced information
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There are many similar but differently defined connectors on the aircraft, such as 
A1 and A2. The failure continuity test results occur when AWTE connector wrongly 
matches the aircraft plug connector. When this failure occurs, the continuity test of all 
test nodes on the same type of connector fails. This type of fault often occurs on the con-
dition of strong correlation between test nodes. The fault type is not influenced by the 
resistance value of the test node and the secondary continuity test result (Fig. 9).

Fault3 Wrong connections among the aircraft plug connectors.
Adjacent pins in the same connector are misplaced. When this failure occurs, the adja-

cent test nodes on the connector cannot pass the continuity test. This type of fault often 
occurs on the condition of strong correlation between test nodes. The fault type is influ-
enced by the resistance value of the test node and the secondary continuity test result. 
Test nodes must have poor insulation performance (Fig. 10).

Fault4 Wrong connection in the aircraft wiring network

Fig. 8  Wrong connection between the test equipment and test nodes

Fig. 9  Wrong connection to a similar connector
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When broken points or wear is on a single wire, other test nodes in wiring network 
will not be affected. This type of fault often occurs on the condition of weak correlation 
or non-correlation between test nodes. The fault type is only influenced by the resistance 
value of the test node and the secondary continuity test result (Fig. 11).

4 �  Experimental results and discussion
In this section, large-scale experiments are designed to evaluate TN-GTN’s effectiveness 
of fault diagnosis on aircraft wiring network.

The task to diagnose aircraft wiring network is to classify the fault types and achieve 
accurate fault diagnosis according to the feature of test nodes. This paper lists four fault 
types.

Precision, recall and F1-score are used to evaluate the classifying efficiency of fault 
diagnosis. Finally, an experiment is designed to compare the classifying results of 

Fig. 10  Wrong connections among the aircraft plug connectors

Fig. 11  Wrong connection in the aircraft wiring network
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TN-GTN and ANN algorithm. The TN-GTN is implemented in PyCharm and exe-
cuted under the environment of Intel(R) Core (TM) i7-10750H CPU @ 2.60  GHz, 
16 GB RAM and Windows 10, 64bit operating system.

4.1 � Dataset and feature extraction

Heterogeneous graph datasets with multiple types of nodes and edges were used to 
evaluate the efficiency of TN-GTN. Dataset contained three types of nodes (Test 
Node (N), Plug (P) and Equipment (E)), four types of edges (NP, PN, NE and EN) and 
five types of test results (Success and Fault1, Fault2, Fault3 and Fault4) as labels. The 
main task was to classify nodes.

The feature data of the Test Node (N) were obtained from the actual test. A com-
plete loop was formed by aircraft wiring network and test equipment. 13892 piece 
of test results were obtained at one time through a 2  h continuity test and a 5-h 
insulation test. After the test, a check on all test nodes was carried out to confirm 
the results. There was Success (11913), Fault1 (1285), Fault2 (224), Fault3 (347) and 
Fault4 (123). Each piece of data included the resistance value obtained in continuity 
test, the insulation characteristics of test node and the results of secondary continuity 
test. This type of experiment was performed for five times.

The feature data of the Plug (P) was objective, which was not generated during 
the testing process. There were a total of 2016 plugs on the aircraft wiring network. 
The feature data of the Plug included the type of the plug and the three-dimensional 
coordinate information under Cartesian coordinates. The data were given as one-hot 
encoding representations of plots.

The feature data of the Equipment (E) were objective, which was not generated dur-
ing the testing process. There were a total of 234 nodes after simplification on AWTE 
network. The feature data of the Equipment (E) included the branch information, the 
type of test box and the manufacture information of test equipment. The data were 
given as one-hot encoding representations of plots (Table 3).

The topological network of three node types was connected by four types of prede-
fined meta-path N NE

→ E , E EN
→ N  , P PN

→ N  and N NP
→ P.

The trained GTN would add new feature information to test nodes, which was 
named the feature-enhanced test nodes. Enhanced feature is Test Node score of 
f
(
Ni,Nj

)
 , 0 score means non-association, 0.5 score means weak association, and 1 

score means strong association according to the different strength of the correlation 
between nodes. (Section. AWTE feature extraction—Eq. 2).

Useful meta-paths are relevant to predefined meta-paths between target nodes 
(nodes with classifying labels). TN-GTN can discover new graph structures and new 
relevant meta-paths between all types of nodes.

Table 3  Datasets on heterogeneous graph

Test node Equipment Plug Edge Nodes type

13892 234 2016 55568 3
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In Table  4, predefined meta-paths and meta-path learnt by TN-GTN were summa-
rized with domain knowledge. Predefined meta-paths were obtained on the basis of cor-
relation between test equipment and aircraft wiring network.

4.2 � Evaluation indicators

Precision, recall and F1-score were selected as evaluation indicators. TN-GTN has 
greatly improved the fault classification accuracy of aircraft wiring network. The evalu-
ation indicators can visually demonstrate the TN-GTN’s excellent performance of test 
nodes’ classification on heterogeneous graph datasets. In the case of evaluating the clas-
sification performance for each class separately, the multi-classification task can be sim-
plified into a classification task that distinguishes its own class from a non-self-class, 
which is transformed into a binary classification task. In this work, precision, recall and 
F1-score are widely used to evaluate the performance of classification algorithms, espe-
cially in the classification evaluation of imbalanced distribution datasets.

where TP is the number of cases where the predicted type of fault is positive and the 
actual type of fault is positive; TN: the number of cases where the predicted type of fault 
is negative and the actual type of fault is negative; FP: the number of cases where the 
predicted type of fault is positive and the actual type of fault is negative; and FN: the 
number of cases where the predicted type of fault is negative and the actual type of fault 
is positive. Precision refers to the proportion of the number of correctly predicted faults 
of a certain type in the predicted faults of a certain type, so it is also called precision rate; 
recall refers to the proportion of the number of correctly predicted faults of a certain 
type in the actual faults of a certain type; and F1-score is the harmonic average value, 
which is an evaluation index considering both precision and recall.

4.3 � Discussion with evaluation of experimental results

The aircraft wiring network test dataset was divided into two parts: 20% of the 13,892 
sampled dataset was used as the test data, and the remaining 80% was used as the 
training data. The training data were randomly divided into 4 groups to test ANN and 

(9)Precision =
TP

TP+ FP

(10)Recall =
TP

TP+ FN

(11)F1− score =
2

1
/
precision+ 1

/
recall

Table 4  Predefined meta-path and meta-path learnt by TN-GTN

Predefined meta-path Meta-path learnt by 
TN-GTN (most useful)

NE, EN, PN,NP NEN, ENE, NPN, PNP

NEPEN, NPEPN, PENEP, PNENP
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TN-GTN under different training conditions (1) lack of training data (20% training: 1 
group of the training data used), (2) scarce training data (40% training: 2 groups of the 
training data used), (3) normal training data (60% training: using 3 groups of the training 
data), (4) sufficient training data (80% training: 4 groups of the training data used).

Table 5 lists the precision, recall and F1-score of the four types of fault classification on 
different training conditions.

The ANN model contained a hidden layer. 100 nodes were built by using tanh function 
in the first layer and sigmoid in second layer as activation function. The number of nodes 
in output layer was 5, which represented five final classifications, including “test result 
Success, Fault1, Fault2, Fault3 and Fault4.” The learning rate of ANN model was set 0.4. 
The end of TN-GTN was also an ANN model with the same hidden layer parameters for 
comparison experiments.

The original data, such as resistance value of test nodes, continuity test results and 
leakage test results, were used for training ANN model. Graph data contained more 
information like topological network information, location, relevant information 
between test nodes and connector types. The graph data were used for training TN-
GTN model.

When the training set was scarce, it could be seen that TN-GTN improved precision, 
recall and F1-score in all types of fault classification compared to ANN. In particular, 
Fault2, Fault3 and Fault4, which relied on the enhanced features obtained from TN-GTN 
to judge, had been significantly improved, and the precision improvement was above 
0.1. Classification performance in Fault1 was relatively good, and Precision could reach 
above 0.9. The features of Fault1 were more obvious, and high precision of classification 
could be obtained with enough training data. It could be seen from the experiments that 
TN-GTN used more relevant feature information than ANN. It was rarely misdiagnosed 
the current type of fault with another type of fault, so the recall score was also relatively 
high. With the increase in training data, the precision of ANN for Fault1 and Fault3 had 
reached more than 0.9, the precision of Fault2 was basically unchanged, and the classifi-
cation effect of TN-GTN for Fault2 had been significantly improved. ANN’s judgment of 
Fault4 depended closely on a large number of training data. When the number of sam-
ples was sufficient (80% training), the accuracy reached 0.8. TN-GTN was more accurate 
for Fault4 classification regardless the sample sufficiency (Fig. 12).

It could be seen from the experiment results that both ANN and TN-GTN had a good 
effect on the classification of Fault1 with the increase in training data. Recall score of 
TN-GTN in Fault1 had been relatively high, which showed that TN-GTN could effec-
tively reduce the misjudgment of other types of faults as Fault1. The performance of 
TN-GTN on Fault2 was much better than ANN; especially when the training data were 
insufficient, TN-GTN could improve the classification accuracy by aggregating the 
information of surrounding test nodes. Wrong connections among the aircraft plug con-
nectors were more likely to appear in the test nodes with strong association. TN-GTN 
aggregated other types of node information in heterogeneous graphs, which was more 
sensitive to identify such faults. Compared with pseudo-faults such as Fault1 and Fault2 
appearing on the AWTE side, real faults such as Fault3 and Fault4 appearing on the 
aircraft wiring network side were key points in troubleshooting. TN-GTN could trans-
form the topological network information on the aircraft wiring network side through 
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meta-paths, which enabled the TN-GTN classification method of performing well even 
with only a small amount of training data.

5 � Conclusion
In this paper, TN-GTN (topological network-graph transformer network) is proposed 
to learn node representations on a heterogeneous graph of aircraft wiring network and 
Aircraft Wiring Test Equipment network. This approach is employed to learn new graph 
structures on AWTE, which involves identifying useful meta-paths and multi-hop con-
nections between unconnected nodes on the original graph. The actual test data gener-
ated in the diagnosis process of aircraft wiring network can be used to prove efficiency 
of TN-GTN. The results show that TN-GTN is superior to traditional classification 
approach in terms of classification accuracy. TN-GTN can achieve high precision in 
some types of fault diagnosis, especially with fewer samples. At the same time, this data-
driven approach reduces the dependence on domain knowledge. To integrate the feature 
information in time dimension into TN-GTN approach will be an interesting direction 
in the future. We will take more datasets from multiple aircraft into the consideration of 
heterogeneous graph to provide more proof for fault nodes predicting.

Abbreviations
GTN	� Graph transformer network
TN-GTN	� Topological network-graph transformer network
ANN	� Artificial neural network
GNN	� Graph neural network
HINs	� Heterogeneous information networks

Fig. 12  Experimental results for different fault classification: a Fault1; b Fault2; c Fault3; and d Fault4
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