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1  Introduction
WSNs have been applied to many domains, such as environmental and habitat moni-
toring, precision agriculture, animal tracking, disaster rescue, military surveillance, 
the Internet of things, aging healthcare application and almost touch upon all aspects 
of our life [1–3]. Moving target tracking is a representative application of WSNs. 
Localization and tracking of moving target need to be supported by energy efficiency 
tracking technology. Although many advantages presented by WSNs, such as cheap, 
non-infrastructure, large-scale, and long-term work, bring new perspective for track-
ing applications, the intrinsic characteristics of sensor nodes with limited energy, lim-
ited computation capacity, limited data process capacity [4], poor reliability, large scale, 
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random distribution, and short communication distance also present great challenges to 
target tracking in WSNs.

Tracking could be defined as a process in which target states indicated the target 
position, movement and other kinematic behaviors are estimated through measure-
ments available from various sensors or through establishing coherent relations of tar-
gets between successive events. Target tracking for unmanned systems in terrestrial, 
aerial or underwater environment, such as unmanned aerial vehicle (UAV), unattended 
air system (UAS) and autonomous underwater vehicle (AUV), mostly utilizes artificial 
intelligence, positional information collection and environmental understanding [5–7], 
considering 2D or 3D kinematic information [8, 9].

Classical tracking algorithms exist in most applications, such as Bayesian algorithm 
[10–13], Kalman filter [14, 15] and CLS algorithm [16]. Most of target tracking used 
in WSNs can basically be classified into two categories: clustering and predicting [17, 
18]. In clustering method, cluster member nodes detect the target and send the data to 
cluster head node, and then the proximate location or behavior can be fused by cluster 
head to track the moving targets [19–24]. The most prominent characteristic of clus-
tering method is that the network needs maintain coverage and network connectivity. 
Clustering, routing and connecting usually need to establish a plenty of communication 
between nodes, which can consume much energy [25]. In predicting method, the states 
indicated target position, movement and other kinematic behaviors are predicted based 
on the measurements available from various sensors. Less energy is consumed for pre-
dicting method for less communication need to be established between nodes.

There are also some other tracking methods, such as energy-based auto regressive 
neural network [26, 27], deep learning method [28] and genetic algorithm [29]. Consid-
ering network clustering consumes much energy for limited-energy WSNs, a predicting 
target tracking scheme is proposed in this work, called MC-MPMC which tracks the 
target based on predicted locations. To guarantee the sample diversity, adaptive mixture 
PMC model for generating proposals varying from each iteration is presented. Super-
numerary measurements generating method is introduced to compensate missing pre-
dicted locations or false estimations, avoiding tracking behavior degradation. And also, 
HTC scheme is performed at the beginning of each iteration to obtain the specific 1-hop 
and 2-hop neighbors of target or sensor nodes (including normal nodes and anchors), 
which can dramatically reduce energy consumption and time delay.

The rest of this paper is structured as follows. Section 2 gives a summary of related 
works and analysis premise of our model. A novel MC-MPMC scheme is proposed in 
Sect.  3, after presenting the original PMC algorithm. Performance analysis models of 
MC-MPMC accompanying with HTC scheme are also presented in Sect. 3. In Sect. 4, 
accurate analyses and validations of localization error, delay and consumption are pre-
sented, and performance comparisons of MC-MPMC scheme with other tracking 
schemes are also proposed. Finally, results and discussion are presented in Sect. 5.

2 � Related works
State and period are estimated based on the Bayesian tracking scheme after determin-
ing the sequence of Markovian states maximizing the probability given the measure-
ments and the semi-hidden Markov model (SHMM) parameters in [11]. A multi-target 
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Bayes filter with the target detection is developed in [12] by applying a method for target 
detection based on the rule-based track initiation technique, to enhance the capability 
of the marginal distribution Bayes (MDB) filter and the probability hypothesis density 
(PHD) filter on target detection.

A new pseudolinear Kalman filter (PLKF) for target tracking in 2D-plane is presented 
in [14], using AOA (angle-of-arrival), TDOA (time difference of arrival) and FDOA 
(frequency difference of arrival) measurements sensed by stationary sensors. A closed-
form PLKF is developed by rearranging measurement equations to compensate for the 
nonzero mean of the noise vector. A bias compensation PLKF (BCPLKF) estimator is 
presented to tackle the bias issue of PLKF, and an instrumental variable-based Kalman 
filter (IVKF) is presented to alleviate the bias by utilizing BCPLKF estimates instead 
of noisy measurements to compute the measurement matrix, in which the posterior 
Cramér–Rao lower bound (PCRLB) is derived for the nonlinear filtering problem. An 
improved strong tracking Kalman filter algorithm for tracking analysis is proposed in 
[15], in which a location is identified with the GPS and basic GSM with message setting. 
This KF-based scheme is outstanding for its real-time behavior.

An enhanced least-square algorithm (CLS) based on improved Bayesian scheme BELS 
is developed in [16] for moving target localization and tracking in WSNs, in which an 
improved Bayesian algorithm obtains a set of sub-range probability based on target 
predictive locations, and forming a range joint probability matrix. The weight of every 
measurement is calculated and normalized based on the range probability matrix, and 
the correction value of the target prediction position is calculated according to the 
weighted least-square algorithm.

A distributed energy optimization method for target tracking is carried out using 
particle swarm optimization in [30]. This P-EETT work is comprised of the estima-
tion phase and prediction phase, in which clustering is performed using the maximum 
entropy method. And, grid exclusion is used for the coverage of nodes in the network. 
An IMM-based target tracking in WSN ITTWSN is proposed in [31], which adopts mul-
tiple models (velocity and acceleration) to handle both maneuvering and non-maneu-
vering targets and multiple sensors to detect and identify the targets. This method can 
overcome some problems of the KF scheme, such as non-availability of target data at 
regular intervals, missing of packets and identifying the target rather than just detect-
ing the target. Energy-efficient management approach of target tracking for WSNs is 
proposed in [32]. After comprehensive analyses of the structure of WSNs and energy 
consumption sources, two indicators, including target detection probability and tracking 
accuracy, are combined to be regarded as the constraints of the energy conserving objec-
tive function.

An innovative target tracking algorithm that combines learning regression tree 
approach and filtering methods using the RSSI metric is developed in [33] for the avail-
ability and low cost of RSSI.T-S fuzzy model identification method based on physical 
membership function is proposed for maneuvering target tracking [34], separating 
inputs–outputs system spaces. A physical membership function with interpretability 
and physical meanings is proposed, and a hyper-planed FSC algorithm is utilized. Then, 
UKF is used to identify parameters and the physical membership function is used to 
fuse local models and estimate final states. After simplifying the existing approximate 
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likelihood function where the distribution of the scaling factor is approximated by 
Gaussian one, a feasible weighting scheme is obtained and a novel particle filtering algo-
rithm (NPFA) is proposed in [35]. A maneuvering target tracking scheme under meas-
urement origin uncertainties is derived based on the approximation and propagation of 
the target state posterior distribution by combining Bayesian decision theory and suit-
able hypothesis merging procedures in [36], in which very low levels of track loss rate are 
obtained even for scenarios with high false alarm probability and trajectories with a high 
degree of maneuverability.

According to the complexity and uncertainty of the detection environment, a novel 
MC-SMC-PHD scheme is proposed in [37], which develops a compensatory measure-
ment generating mechanism and presents a novel measurement compensation-based 
SMC-PHD filter to avoid unreliable clustering. Similar missed detection and corrected 
strategy for target tracking is involved in [38], in which beta distribution is employed 
to describe unknown detection probability. And, beta gamma Gaussian inverse Wishart 
(BGGIW) mixture form accompanying with Poisson multi-Bernoulli mixture (PMBM) 
filter (BGGIW-PMBM) is developed to enhance tracking behaviors. And also, missed 
detection problem for target tracking is also concerned in [39], besides the coales-
cence problem. A novel fusion framework for the Poisson multi-Bernoulli (PMB) filter 
based on the arithmetic average (AA) fusion is proposed, in which integrates both the 
advantages of the TOMB/P filter in dealing with missed detection and the advantages 
of the MOMB/P filter in dealing with coalescence. Bernoulli components in different 
multi-Bernoulli (MB) distributions are associated with each other by Kullback–Leibler 
divergence (KLD) minimization to fuse the different PMB distributions. The semantic 
probability hypothesis density (SPHD) filter is introduced in [40] to simultaneously track 
multiple classes of targets despite measurement uncertainty, including false positive 
detections, false negative detections, measurement noise and target misclassification.

An improved cardinalized probability hypothesis density (CPHD) filter is developed 
in [41], to estimate the time-varying target birth cardinality distribution (i.e., probabil-
ity distribution on number of newborn targets appearing during one sampling time) at 
each processing step adopting a discrete kernel estimator in conjunction with the expo-
nential weighted moving average scheme. Target birth intensity is updated according to 
the resulting estimated birth cardinality distribution, and estimated birth intensity and 
cardinality distribution can be employed by a tracker based on Gaussian mixture CPHD 
(GMCPHD) to modulate its filtering strength for target tracking.

Inspired by the missed detection and corrected strategy in [38] or compensation 
strategy [37], an improved MPLC filter accompanied by a measurement compensation 
scheme is proposed in this work. Original PMC algorithm [42, 43] is presented briefly, 
with its degradation performance because of its sample generating uncertainty and 
proposal generating uncertainty. And an adaptive mixture PMC model for generating 
proposals varying from each iteration is proposed to guarantee the sample diversity. 
Then, measurement compensation method is introduced to resolve the missed detec-
tion. For energy-constrained target tracking in WSNs, either clustering or lots of com-
munication can consume much energy, which is not suitable for WSNs. So, information 
exchange with small packets exists only at the beginning of each iteration adopting the 
HTC scheme [44], accompanied by less consecutive communications between nodes or 
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targets. And then, tracking performance, such as tracking error, delay and consumption, 
especially delay, is presented comprehensively taking parameters such as anchor rate 
γ , node density �0 , proposal generating Poisson distribution parameter �k and location 
detection probability pD into account. Moreover, performance comparisons between 
MC-MPMC algorithm and other tracking schemes based on the system parameters, 
such as BELS [16], P-EETT [30], ITTWSN [31] and MC-SMC-PHD [37]. These compar-
isons demonstrate that delay of MC-MPMC scheme is superior to other predict-based 
tracking schemes, and the performance of tracking error and consumption also presents 
the superiority over other schemes when the numbers of mobile nodes and iterations are 
increased.

The main contributions of this paper are threefold. Firstly, the adaptive mixture PMC 
model (MPMC), generating proposals according to Poisson process varied from each 
iteration, is presented to guarantee the sample diversity. Secondly, the supernumerary 
measurements generating method is introduced to compensate for missing predicted 
locations or false estimations, avoiding tracking behavior degradation. Finally, the HTC 
scheme is performed at the beginning of each iteration to obtain the relative locations 
from specific 1-hop and 2-hop neighbors of target considered as the target states, which 
can dramatically reduce energy consumption and time delay.

3 � Proposed tracking method
For limited-energy WSNs, less computational cost and less complexity method for tar-
get tracking is anticipated. And then, communications between nodes or target can 
consume a lot of energy. So, MPMC scheme accompanying with no clustering and less 
communication is proposed.

3.1 � Problem statement

Figure  1 shows target tracking overview in our WSN. Sensors (including nor-
mal sensors denoted as S , and anchor sensors denoted as A ) are randomly located 
20m× 20m indoor area, according to a two-dimensional Poisson distribution with 
a density of �0 , in which the ratio of anchors is γ . A target, whose path is presented 
as a solid thick line, moves along with its maneuvering trajectory in WSN deploy-
ment area and is detected by sensor nodes (normal sensors or anchors), adopting 
an acceptable tracking strategy. The target, equipped a recognizable sensor, can also 
communicate with other sensors in this WSN. Because the clustering algorithm can 
consume much energy for WSN, the proposed method tracks the target without clus-
tering but through establishing the 1-hop and 2-hop neighbor lists by HTC scheme 
[44]. In each sampling interval, nodes including the target can execute HTC algorithm 
to obtain its 1-hop and 2-hop neighbors. Each HTC request packet contains node ID, 
location and current moment. Receiving this request packet, nodes (including the tar-
get) can obtain distance information of their 1-hop and 2-hop neighbors. Consecutive 
position information obtained from request packet of the specific target is used to 
obtain the target’s velocity. Location and velocity information can be used for itera-
tive MPMC filter to obtain target tracking. For example, target can obtain its 1-hop 
and 2-hop neighbors through performing HTC scheme in iteration k . And then it can 
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derive its relative locations to its neighbors [45]. MPMC filter can derive target track-
ing adopting Nk proposals within these locations, accompanied by measurements or 
observations detected by the target in this iteration k.

The tracking environment for our indoor sensor networks is illustrated in Fig.  2. A 
wireless sensor is made of a transceiver, data processing center, data storage module and 
battery, in addition to a sensing unit, such as a PIR sensor (to detect the information of 
a target, equipped in normal sensors and anchors), a Global Positioning System (GPS) 
receiver (to identify the location of the sensor node equipped in anchor nodes). A target, 
a tracked object, equips a PIR sensor moving as a normal sensing node. All nodes can 
move randomly in our test room. Sensor nodes (including normal nodes and anchors) 
collect the object tracking information and transmit this information to anchor nodes. 
Simultaneously, location and tracking of the target can also be obtained from the infor-
mation of its 1-hop and 2-hop neighbors through executing MC-MPMC scheme. In the 
realistic target tracking scenario, the target is tracked and undergoes occasional maneu-
vers. That is, target may move with a linear trajectory (straight line or local straight line) 
and with a maneuver mode (random trajectory) at any time interval.

Fig. 1  Target tracking overview in WSN. Target can move with maneuvering trajectories

Fig. 2  Tracking environment for our indoor sensor networks
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3.2 � Maneuvering model

The target state is supposed to xk at the time k in the state space X , and the measurement 
or observation model is supposed to mk in the measurement or observation space M under 
random finite set (RFS) models [37]. Then target state and measurement set can be repre-
sented by Xk ∈ F(X) and Mk ∈ F(M), respectively. System model and measurement model 
can be generally described as follows [25, 31]:

where xk is the state vector at time k denoted as xk = (xk ẋk yk ẏk ωk)
T , Fk is target tran-

sition matrix, Gk is control input matrix, and qk is process noise which follows a Gauss-
ian distribution with zero mean and covariance Qk defined as E[qkqTk ] . In the state 
vector representation, xk and yk are the states of target position, ẋk and ẏk are the states 
of target velocity, ωk is the turn rate. And mk is the measurement at time k denoted as 
mk = (xk yk ωk)

T , which presents the measurement of position and turn angle of the tar-
get, Hk is measurement matrix, and vk is measurement noise which also follows a Gauss-
ian distribution with zero mean and covariance Vk defined as E[vkvTk ] . The process noise 
and measurement noise are mutually uncorrelated to each other.

Measurement matrix Hk can be demonstrate the position information of the target in x 
and y directions, which can be presented as,

(1)xk = Fkxk−1 + Gkqk−1

(2)mk = Hkxk + vk

Fk =

1
sin(ωk−1T )
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0
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3.3 � MC‑MPMC‑based tracking method

And now, an improved predicting method for target tracking-based MC-MPMC 
method is proposed. In generally, both measurements and states of the target are 
inherent uncertain. According to Bayesian estimation theory, target state posterior 
probability density πk|k (Xk |M1:k ) can be obtained by Bayes recursion as [43]

in which fk|k−1 (Xk |M1:k ) is the state transition density function based on current 
observations or measurements, πkk−1(Xk |M1:k ) denotes the target probability density 
and ℓk(Mk |Xk ) denotes the target likelihood function, respectively. In many practi-
cal applications, the integrals in Bayes recursion of Eqs. 3 and 4 cannot be obtained in 
closed form or the computational complexity of the integrals grows sharply with samples 
increasing. So, the approximations should be proposed adopting importance sampling 
methods.

in which pD,k(x) is the target detection probability, κk(m) is the process clutter, gk(x) is 
the new generating distribution of state samples from the proposals and βkk−1(x

∣∣y ) is 
the spawning distribution of state samples based on measurements.

In this work, an improved target tracking method based on MC-MPMC scheme 
accompanied by HTC algorithm is presented elaborately to approximate or estimate 
the distribution of target states. PMC filter [43] is a well-known iterative adaptive 
importance sampling technique, which is briefly described as follows.

At each iteration k , it generates a set of samples 
{
x
i
k

}N
i=1

 , where i denotes the sample 
index and x denotes the variable of interest which means the object state distribution 
in our tracking system. That is, sampling or resampling iterates once in each time 
interval. In order to obtain the samples, PMC algorithm makes use of a collection of 
proposal densities 

{
qik(x)

}N
i=1

 , with each sample being drawn from a different pro-
posal, xik ∼ qik(x).Then, these samples are assigned an importance weight, respec-
tively, denoted as wi

k =
π(xik )

qik (x
i
k

∣∣µi
k ,Ci)

 , in which π(xik) is the target posterior density 

function, µi
k is the adaptive parameters of proposal densities in the sampling period k 

and Ci is the static parameters. After normalizing these importance weights, the unbi-
ased convergent estimator can be obtained,

(3)

πk|k−1 (Xk

∣∣M1:k−1 ) =

∫
fk|k−1 (Xk

∣∣Xk−1,M1:k−1 )πk−1|k−1 (Xk−1

∣∣M1:k−1 )dXk−1

(4)πkk(Xk |M1:k ) =
ℓk(Mk |Xk )πkk−1(Xk

∣∣M1:k−1 )∫
ℓk(Mk |Xk )pkk−1(Xk

∣∣M1:k−1 )dXk

(5)πkk−1(x) = gk(x)+

∫
fkk−1(x

∣∣∣∣y)πk−1(y)dy+

∫
βkk−1(x

∣∣y )πk−1(y)dy

(6)πk(x) = [1− pD,k(x)]πkk−1(x)+
∑ pD,k(x)ℓk(m|x )πkk−1(x)

κk(m)+
∫
pD,k(y)ℓ(m

∣∣y )πkk−1(y)dy



Page 9 of 26Lv et al. J Wireless Com Network         (2022) 2022:74 	

in which the parameter N  and T  refer to the maximum sample number and the maxi-
mum sampling period, respectively. PMC method performs multinomial resampling 
process by drawing N  independent samples from the discrete probability random meas-
urements, which is denoted as

in which δ(·) is the Dirac delta function. This method proceeds iteratively, building a 
global importance sampling estimator using different proposals at every iteration. This 
can partially avoid the sample degeneracy phenomenon. That is, samples with negligible 
weights or relatively low weights can avoid to be removed directly.

The proposal in each iteration of k , qik(x) , can be formed according to the behaviors 
of the previous qik−1(x) , or depending on the previous samples x1k−1, ..., x

N
k−1 , or the 

joint dependence on them. To be clear, the relative previous or current locations of 
the target from its 1-hop and 2-hop neighbors can be considered as the samples in 
this location-based tracking strategy [46]. There is a series of improved PMC-based 
resampling scheme to predict the variable distribution, such as DM-PMC, GR-PMC 
and LR-PMC [43]. To avoid the sample degeneracy, deterministic mixture weighting 
method DM-PMC is presented. GR-PMC draws multiple samples generated by a pro-
posal or mix band, instead of only one as done in PMC. And LR-PMC performs the 
resampling independently for each proposal. These improved PMC schemes improve 
the diversity of the population for PMC.

Inspired by the time-varying target birth distribution in [41], an iteration-varying 
proposal generating scheme is proposed in this work. Moreover, measurement or 
observation remedy scheme is introduced to correct the missed detection issue. This 
improved MC-MPMC scheme estimates target states, which is presented elaborately 
as follows.

Step 1 Tracking initialization
In the initial period of k = 1 , all nodes in the network, containing the target and sens-

ing nodes (normal nodes and anchors), can establish their 1-hop and 2-hop neighbor 
lists (NL) and update these NLs every iteration stage adopting HTC scheme. Suppose 
that sample generation function of target state distribution can be complied with the 
Poisson distributions, that is, xi1 ∼ P(�1) . And then, select the initial parameters defining 
the N  proposals,

The adaptive parameters a1 =
{
�
1
1, �

2
1, ..., �

N
1

}
.

The corresponding set of static parameters, {Ci}
N
i=1.

The adaptive parameters in a1 are the means of E[�i1] , which is �11, �
2
1, ..., �

N
1  . And the 

parameters {Ci}
N
i=1 are the covariances of cov[ai1] , which is �1, �1, ..., �1.

(7)wk =
1

TN

N∑

i=1

T∑

k=1

π(xik)

qik(x
i
k)

(8)wi
k =

π(xik)

wk−1q
i
k(x

i
k)

(9)π̂N
i (x) =

N∑

i=1

wi
kδ(x − x

i
k)
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Initial sample candidates generated by initial proposals can be denoted as SL1-hop and 
SL2-hop , which refers to locations between target and its 1-hop possible neighbors and 
with 2-hop possible neighbors, respectively, which can be seen in [38]. That the target 
obtains location information used for tracking state establishment can be seen from [39] 
elaborately.

Step 2 Mixture weighting and predicting
After initialization step, samples of target states xik(i = 1, 2, ...,Nk) are generated from 

the proposals qik(x) in iteration k according to the behaviors of the previous qik−1(x) and 
measurements mk of locations at the period k . In PMC scheme, each sample is drawn 
from a different proposal. An improved DM-PMC is proposed in [37], which considers 
the average of weighted mixture of all proposals around kernel iteration point as the ker-
nel density approximation of target pdf. This simple mixture can mitigate sample degen-
eracy to a certain extent. But DM-PMC brings weighted mixture only through obtaining 
the mean, without actually taking the sample diversity into account. And also, the mini-
mum mean integrated square error (MISE) estimator is obtained based on the infinity of 
N  (sample number) [37], while N  is finite in our work.

A prominent feature of PMC method is that not only the number but also the distribu-
tion of the proposals in iteration k can be different from each other, without jeopardizing 
the validity [36]. Both the weights and component parameters of a mixture importance 
sampling density are jointly taken into account for M-PMC scheme to obtain the adap-
tive mixture PMC scheme in [47]. The adaption of importance sampling density can 
be presented as weights combined with component density parameters in M-PMC. 
Inspired from DM-PMC and M-PMC, a mixture weighting combined with sample gen-
erating process and measurement process is proposed in MC-MPMC scheme, that is, 
proposals at the period k are generated based on the previous samples at the period 
(k − 1) sensed by 1-hop and 2-hop neighbors of the target and the current measure-
ments mk . And then, the global current samples are generated from these proposals with 
a mixture weighting. In MC-MPMC scheme, samples in iteration k are drawn from pro-
posals qik(x) , which can be presented as

The proposal can be presented with a distribution of a Poisson process with a parameter 
�j(j = 1, 2, ..., nk) , with a probability of p1, p2, ..., pnk , respectively, in which the sum of 
pj is 1, that is, 

∑nk
j=1 pj = 1 . That is, several samples are drawn from different proposals 

with a mixture pattern rather than each sample being drawn from a specific proposal as 

(10)p(x1) =
1

SL1-hop + SL2-hop

(11)π(x1) = ℓ(m1|x 1)p(x1)

(12)x
j
k ∼

{
P
(
�
k−1
j ,Ck−1

j

)}
∪
{
m

j
k(x)

}
j = 1, 2, ..., nk

(13)p(x
j
k) =

nk∑

j=1

pjP
(
�
k
j ,C

k
j

)
m

j
k(x)



Page 11 of 26Lv et al. J Wireless Com Network         (2022) 2022:74 	

in PMC. The distribution and the number of the proposals vary from one iteration to 
another. And then, weights of the mixture PMC can be derived as

in which ϕ(qk |�k ,Ck ) is the density of Poisson distribution with mean value �k and 
covariance Ck at the condition of qk for iteration k . And f(xik |�k ,Ck ) is the density func-
tion of generating samples sensed by 1-hop and 2-hop neighbors of the target according 
to the proposals for iteration k . So, the probability distribution of target states can be 
derived based on the set of {xik−1, w

i
k−1}

nk
i=1 , which is presented as

And then, the probability distribution of target states can be predicted as

in which x̃i
k|k−1

 is obtained according to the proposal distributions qik(x) and measure-

ments mk of locations in the period k,

Step 3 Update and resampling
According to updating strategy in Eq. 9 of PMC scheme, target state sample distributions 

can be updated based on Eq. 15 ~ 16.

in which weights are updated in Eq.  18. Two weight updating parts are contained in 
Eq. 18, whose first factor is the target weight of undetected probability which is denoted 
as wi

k ,c and the second factor is that of detected probability which is denoted as wi
k,t.

(14)wi
k(x) =

f (xik

∣∣∣(Pj)nkj=1, (Cj)
nk
j=1 )m

i
k(x)

∏nk
j=1 ϕ((x

i
k)

j
∣∣∣(Pj)

nk−1

j=1 , (Cj)
nk−1

j=1 )mi
k(x)

(15)πk−1(x) =

nk∑

i=1

wi
k(x)δ(x − x

i
k)

(16)πkk−1(x) =

nk∑

i=1

w̃i
k|k−1

(x)δ(x − x̃
i
k|k−1

)

(17)x̃i
k|k−1

= q(xi
k|k−1

∣∣∣xik−1,mk ) i = 1, 2, ..., nk

(18)w̃i
k|k−1

(x) =
fk|k−1 (x̃

i
k|k−1

∣∣xik−1 )w
i
k−1

qk(x̃
i
k|k−1

∣∣xik−1 ,mk)

(19)πk(x) =

nk∑

i=1

w̃i
k(x)δ(x − x̃

i
k|k−1

)

(20)

w̃i
k(x) = [1− pD,k(x̃

i
k|k−1

)]w̃i
k|k−1

(x)+

∑
pD,k(x̃

i
k|k−1

)ℓk(m
∣∣∣x̃ik|k−1

)

κk(m)+ πk(m)
w̃i
k|k−1

(x)

(21)ℓk(mk |x k) =
∏

S1∈S1-hop

p(S1

∣∣∣xik )
∏

S2∈S2-hop

p(S2

∣∣∣xik )
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When the value of pD,k(x) , shown in Eq.  18, is not equal to 1, that is, the target may 
not be detected in iteration k with the probability of (1− pD,k(x)) . p(S1

∣∣xik ) and 
p(S2

∣∣xik ) refers to the probability of state sample within in 1-hop and 2-hop area of tar-
get, respectively, which is used to obtain the target distribution. Target states may be 
falsely estimated under undetected occasions, especially for the smaller value of pD,k . 
The undetected target can increase tracking time and tracking energy, and consequently 
result in poor tracking performance.

Comprehensive analyses for tracking performance degradation because of unde-
tected target were proposed in [38], and the number of measurements is increased to 
resolve this undetected target problem as related, called as measurement compensa-
tory MPMC (MC-MPMC) method.

The predicted state estimation of X̂k ,p and its measurement set M̂k−1,p can be com-
puted by Eqs. 23 and 24, based on X̂k−1,t and process noise and measurement noise.

Target is detected successfully meaning that one of predicted measurement M̂k ,p 
(footnote p denotes prediction) is very close to the true measurement Mk ,t (footnote t 
denotes true), which is detected by anchors or normal sensors for the location or state 
information.

in which Nt is the number of true measurements Mk ,t , γth is a threshold and Pk is called 
as Prediction covariance.

Compensatory measurement set can be computed according to Eqs. 23–26.
The missing detection weight of wi

k ,c in Eq. 20 can be rewritten as Eq. 27, which is 
the compensatory weight of x̃ik ,c.

in which Nc is the number of compensatory measurements 
⌢

Mk,c . And then, the pre-
dicted weight of Eq. 18 can be computed as follows:

(22)πk(m) =

nk∑

i=1

pD,k(x̃
i
k|k−1

)ℓ(mk

∣∣∣x̃ik|k−1
)w̃i

k|k−1

(23)X̂k ,p = Fk−1X̂k ,t + Gkqk−1

(24)M̂k ,p = Hk−1X̂k ,t + vk

(25)
⌢

Mk ,p =
{
Mi

k ,p

∣∣∣(Mj
k ,t − M̂i

k ,p)
TP−1

k (M
j
k ,t − M̂i

k ,p) < γth

}
j = 1, 2, ..., nt

(26)
⌢

Mk ,c = M̂k ,p −
⌢

Mk ,p

(27)w̃i
k,c =

nc∑

j=1

[1− pD,k(x̃
i
k|k−1

)]w̃
i,j

k|k−1
(x)

(28)w̃i
k ,t =

∑
pD,k(x̃

i
k)ℓk(mj,t

∣∣x̃ik )
κk(mj,t)+ Dk(mj,t)

w̃i
k|k−1

(x)
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Step 4 Target state estimations
And then, the estimations of target states are computed according to true measurements 

and compensatory measurements as Eq. 26,

Mixture weights can present more valid estimators with less variance, which improve the 
diversity of the population of PMC algorithm. Also, the whole mixture of observations can 
match well with the targets than each observation separately.

At each time interval, state error can be obtained from Eq. 27 referred from [45], in which 
xiestk  is the estimated state and xik is the actual one, which are the distances between target 
and sensors.

Tracking delay is also an important character in our time-critical tracking system, and we 
always attempt to improve the behavior of delay in order to obtain the real-time monitoring 
and tracking. In MC-MPMC scheme, delay contains two parts Tj(HTC)

k  and Tj(MC-MPMC)

k  . 
The estimation of time delay in communication can be referred as [48],

Tracking consumption is the most important metric in energy-constrained WSNs. Aver-
age cost can be presented in two parts Ei(HTC)

k  and Ei(MC-MPMC)
k  , which refers to the cost of 

performing HTC scheme and MC-MPMC scheme in iteration, respectively.
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4 � Simulation results
In this section, extensive simulations are presented to validate the accuracy of MC-
MPMC method, which are derived based on different parameters such as detection 
probability PD , anchors’ ratio γ , node density �0 , adaptive sample number Nk etc., using 
NS-2 simulator according to previous analyses. Simulation setup is similar to that of 
PMCL, following each data package exchange means as [49].

The target is assumed to move in the two-dimensional scenario (0, 20) × (0, 20) m2 
for 100 sampling period, with three true maneuvering trajectories. Target moving veloc-
ity v plays an important role in target tracking performance, and higher velocity brings 
performance degradation of tracking. The maximum velocity is set 6 m/s. The sensor’s 
sampling period is set to 1 s.

And also, performance comparisons between MC-MPMC method and other tracking 
schemes, such as BELS [16], P-EETT [30], ITTWSN [31] and MC-SMC-PHD [37], are 
proposed. Communication and computation parameters for all these schemes are simi-
larly set as shown in Table 1, and simulation scenes are set to the similar installation.

True target trajectories in this test are shown in Fig.  3, maneuvering trajectories 
including straight-line trajectories and crossover trajectories. It is worth noting that the 
relationship of Nk with the sum of Nc and Nt plays an important role in tracking behav-
iors. That is, if the sum of Nc and Nt is larger than Nk , there are not enough samples to 
participate in tracking, leading to once more iterations and then more delay or energy. 
While the sum of Nc and Nt is smaller than Nk , there are some remaining samples to be 
selected.

4.1 � Target tracking error

Tracking accuracy is an important performance for obtaining the target in WSNs. As 
related in Sect.  3.3, tracking error in MC-MPMC is mostly related to sample num-
ber Nk in iteration k , node density �0 , detected probability pD , iteration period K  , and 
anchor rate γ , which is shown in Eq. 33. With node density �0 increasing, tracking error 
decreases shown in Fig. 4a–c. All predicted locations are detected and correctly man-
aged, and it can obtain higher tracking accuracy.

Nodes, concluding anchors and target, are assumed to locate randomly uniformly over 
indoor room according to Poisson distribution with a density of �0 , and all nodes can 
move in maneuvering mode. The number of Nk is less than the sum of Nc and Nt , which 
leads to tracking participated samples less than the sum of true samples and compensa-
tion samples. And so, actual samples are not enough to exact tracking the target, which 
leads to much error such as Nk = 30 and Nk = 50 in Fig. 4d–f. With the increasing of 

Table 1  Parameter set

Symbol Value set Symbol Value set

K 100 s Nc 30

R 20 m γ 20%

T 1 s νmax 6 m/s

S 20× 20 σx 0.01

Nt 30 σy 0.001
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pD , error decreases much. And with normal nodes increasing, the samples observed 
by known anchors increases, leading to more accuracy shown in Fig. 4a, b. And when 
� > 0.06 , error can reach stable values.

Tracking error for line part of trajectory 2 is less than that of maneuvering trajectory 
for predicted computation increasing, as shown in Fig. 4a–f. With the increasing of iter-
ation, the error decreases. Proposal generating distribution for each iteration follows 
Poisson process, and �k of iteration period k is adaptive with each other.

4.2 � Localization delay

Delay is also an important character in tracking system, especially for our time-critical 
system. And we always attempt to improve the behavior of delay in order to obtain the 
real-time monitoring.

With node density �0 increasing, tracking delay decreases as shown in Fig.  5a–c. 
With the number of normal nodes increasing, the target can contact its 1-hop and 
2-hop neighbors with higher probability to establish HTL which contains tracking sam-
ples. And also, the target needs to redetect the relative location when pD is low, which 
consumes much time such as pD = 0.8 and pD = 0.9 . With the increasing of �0 , delay 
decreases for pD = 0.8 and pD = 0.9 , while delay increases for pD = 0.96 and pD = 1 
when �0 > 0.06 , especially for trajectory 2 and trajectory 3 shown in Fig. 5b, c. Detected 
samples carry enough information for tracking the target, and lots of remained samples 

Fig. 3  True target trajectories. a A single target moves in a maneuvering trajectory without any intersection; 
b a single target moves in a maneuvering trajectory with one intersection and straight-line part; c a single 
target moves in a maneuvering trajectory with two intersections
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are required to be processed, which consumes much extra time. More valid samples 
of target states exchange sensed target location and moving information, more time 
consumes.

With the iteration increasing at k ≤ 60 , delay increases sharply while increases slowly 
for k > 60 . Delay maintains at a relatively high stable value at iteration 80 when Nk 
is more than 60. The preset of Nk is higher, delay will be lower as regular, but delay is 
higher at Nk > 60 when iteration period is higher than 80, as shown in Fig. 5d–f.

4.3 � Localization consumptions

In most analyses of tracking consumption, computational cost and communication cost 
are both taken into account for energy-limited WSNs [50, 51], which include energy 

Fig. 4  a–c Tracking error related to detected probabilitypD based on node density�0 . a Trajectory 1; b 
Trajectory 2; c Trajectory 3; d–f Tracking error related to samplesNk based on iteration periods. d Trajectory 1; 
e Trajectory 2; f Trajectory 3
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consumption for performing HTC scheme and MC-MPMC scheme. Nodes obtain their 
HTLs through transmitting small packages of HTC Pair Request, HTC Information 
Exchange, HTC Information Notification and HTC information Confirmation. These 
small package exchanges can consume some relatively low energy. Besides these small 
package exchanging, MC-MPMC cost small computational energy for its computation 
of missing detection and its correction.

With node density � increasing, localization consumption decreases shown in Fig. 6a–
f. Cost is a stable value for anchor rate �0 > 0.07 for trajectory 1, while increases again 
for �0 > 0.06 as trajectory 2 and 3 shown in Fig. 6a–c. Maneuvering mode involves the 
randomly turn, which brings nodes much sensing energy and identifying energy.

Fig. 5  a–c Tracking delay related to detected probabilitypD based on node density�0 . a Trajectory 1; b 
Trajectory 2; c Trajectory 3; d–f Tracking delay related to samplesNk based on iteration periods. d Trajectory 1; 
e Trajectory 2; f Trajectory 3
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And also, localization consumption decreases with the iteration Nk increasing. Energy 
consumed for Nk = 30 is lower than that of Nk = 50 . Similar to delay, energy consump-
tion decreases for pD = 0.8 and pD = 0.9 the increasing of �0 , while energy consumption 
increases for pD = 0.96 and pD = 1 when �0 > 0.06 , especially for trajectory 2 and tra-
jectory 3, as shown in Fig. 6b, c.

Tracking performance such as accuracy, delay and consumption depends on the net-
work parameters such as detection probability pD and samples Nk for a great extent, and 
node density �0 and anchor rate γ likewise. With increasing detection probability pD , 
the target identification probability increases. And also, the increasing number of nodes 
including anchors can bring about more samples, avoiding low weighted samples fading 
away. But too many nodes or too many samples can also lead to inferior performance 

Fig. 6  a–c Tracking energy consumption related to detected probabilitypD based on node density�0 . a 
Trajectory 1; b Trajectory 2; c Trajectory 3; d–f Tracking energy consumption related to samplesNk based on 
iteration periods; d Trajectory 1; e Trajectory 2; f Trajectory 3
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for too much information sensed by samples need to be fused and exchanged, leading to 
much energy and delay cost.

4.4 � Performance comparisons

Experiment results shown above are comprehensive for applications, and we can pre-
sent that MC-MPMC scheme can bring about expectant behaviors for our target track-
ing. And also, we can compare the performance metrics of MC-MPMC mechanism with 
those of other target tracking schemes, such as BELS [16], P-EETT [30], ITTWSN [31] 
and MC-SMC-PHD [37].

BELS [16] is based on improved Bayesian scheme and enhanced least-square (CLS) 
algorithm. Sub-range probability is obtained based on target predictive location, form-
ing a range joint probability matrix which is updated in a dormant state in order to save 
energy in WSNs. The main energy-saving strategies in BELS scheme conclude that it 
introduces a geometric model to localize and track the target and fuses the distribution 
and true attributes of the measurement data to form a range joint probability matrix. 
BELS improves the tracking performance of delay and energy.

P-EETT [30] adopts particle swarm optimization, comprising of estimation and pre-
diction phase. It is a clustering-based target tracking scheme, which performs cluster-
ing by adopting the maximum entropy method. P-EETT scheme costs much energy on 
clustering.

An IMM based target tracking in WSN ITTWSN is proposed in [31], which adopts 
multiple models (velocity and acceleration) to handle both maneuvering and non-
maneuvering targets and multiple sensors to detect and identify the targets. This track-
ing scheme overcomes the problem of location error and missing detection, and saves 
much energy.

MC-SMC-PHD scheme [37], SMC-PHD denoted in simulation Figs. 7, 8 and 9, devel-
ops a compensatory measurement generating mechanism and presents a novel meas-
urement compensation-based SMC-PHD filter to track target, avoiding unreliable 
clustering. This is a high-efficiency target tracking scheme, not applying to track the tar-
get for WSNs. We can attempt to apply this scheme in WSNs, and derive that this track-
ing scheme has the same high-efficiency tracking.

MC-MPMC scheme is used for time-critical, low mobile velocity monitoring and 
detection application, in which minimized delay is the most important target, and locali-
zation accuracy likewise. Delay performance metrics of MC-MPMC scheme accompa-
nying with HTC algorithm are improved over other schemes, while error and energy 
efficiency are improved over others on the conditions of more node density and more 
iterations.

Through tracking comparisons as shown in Fig. 7a–c, we can obtain that these track-
ing schemes can exactly track the target. Some errors appear when tracking the begin-
ning. Most tracking positions of tracking schemes are in accordance with target true 
positions, and the most error within 5.1%-11.5%.

Tracking error comparisons are shown in Fig. 8a–f. With node density �0 increasing, 
tracking error decreases. And tracking error of SMC-PHD is higher than that of MC-
MPLC when �0 > 0.03 for trajectory 1, �0 > 0.04 for trajectory 2. With iteration periods 
increasing, tracking error decreases.
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Tracking delay comparisons are shown in Fig. 9a–f. With node density �0 increasing, 
tracking delay decreases. But delay increases for MC-MPMC scheme when �0 > 0.06 
shown in Fig.  9a, for much valid information sensed by nodes including anchors 
exchanges. Valid samples are enough to predict the states of target, and redundant sam-
ples sensing can consume much energy and time. With iteration periods increasing, 
tracking delay increases.

Tracking energy consumption comparisons are shown in Fig. 10a–f. With node den-
sity �0 increasing, tracking consumption decreases. But energy consumption increases 
for MC-MPMC scheme when �0 > 0.06 shown in Fig.  10a–c, for the same reason of 
delay increasing as Fig. 9a. With iteration periods increasing, tracking error decreases.

5 � Results and discussion
In this paper, we have presented a prediction-based target tracking scheme MC-MPMC 
for mobile sensor networks, accompanied by an HTC algorithm. At first, the original 
statistical PMC scheme is denoted briefly. Then, an improved location-based tracking 
scheme adopted MPMC scheme is elaborately proposed, combined with a measurement 
compensation strategy to resolve the problem of missing detection or false measure-
ment. Firstly, the mixture weighted method used for proposal generating is introduced 
to avoid sample degeneracy and maintain the diversity of samples. Secondly, inspired 

Fig. 7  Maneuvering trajectory tracking comparisons for a single target moving.
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by the missing detection or correction of MC-SMC-PHD scheme, a measurement com-
pensation method is proposed to enhance the tracking performance. Thirdly, the HTC 
scheme is introduced to decrease the communication cost and delay for exchanging 
tracking information with small packages at the beginning of each iteration. Tracking 
performance such as tracking error, delay and consumption, especial delay, is presented 
based on the statistical point of view taking parameters such as anchor rate γ , node 
density �0 , mixture nodes Nk and detected probability pD into account. Comprehensive 
simulations are presented to verify the behaviors based on the straight-line trajectory 

Fig. 8  a–c Tracking error comparisons related to node density�0 . a Trajectory 1; b Trajectory 2; c Trajectory 3; 
d–f Tracking error comparisons related to iteration periods. d Trajectory 1; e Trajectory 2; f Trajectory 3
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and maneuvering trajectory. Moreover, performance comparisons between MC-MPMC 
algorithm and other tracking schemes are made.

Multiple target tracking used for large-scale crab aquaculture sensor networks is stud-
ied in the future based on the MC-MPMC scheme. In aquaculture networks, the track-
ing scheme can take not only the positions of objects into account as in this work, but 
also take the appearance of objects into account in future works [52]. We can also apply 
MC-MPMC tracking method to track other aquatic products underwater.

Fig. 9  a–c Tracking delay comparisons related to node density�0 . a Trajectory 1; b Trajectory 2; c Trajectory 3. 
d–f Tracking delay comparisons related to iteration periods. d Trajectory 1; e Trajectory 2; f Trajectory 3
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Fig. 10  a–c Tracking energy consumption comparisons related to node density�0 . a Trajectory 1; b Trajectory 
2; c Trajectory 3. d–f Tracking energy consumption comparisons related to iteration periods. d Trajectory 1; e 
Trajectory 2; f Trajectory 3
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