Liu et al. J Wireless Com Network

(2022) 2022:102 EURASIP Journal on Wireless
https://doi.org/10.1186/513638-022-02160-0

Communications and Networking

RESEARCH Open Access

n

SKDStream: a dynamic clustering algorithm =
on time-decaying data stream

Hui Liu', Aihua Wu'", Mingkang Wei' and Chin-Chen Chang?

*Correspondence:
ahwu@shmtu.edu.cn

! Department of Engineering,
Shanghai Maritime University,
Shanghai, China

2 Department of Information
Engineering and Computer
Science, Feng Chia University,
Taichung, Taiwan

@ Springer Open

Abstract

Data stream is a type of data that continue to grow over time. For example, network
security data stream will constantly be generated in the field of data security, and
encrypted data stream will be generated in the privacy protection scenario. Clustering
is a basic task in the analysis of data stream. In addition to the large amount of data and
limited computer memory, there are the following challenges in time-decaying data
stream clustering: (1) How to quickly process time-varying data stream and how to
quickly save vaild data. (2) How to maintain and update clusters and track their evolu-
tion in real time. Based on the fact that the existing data stream algorithms do not pro-
vide a good strategy to the above problems, this paper proposes a dynamic clustering
algorithm named SKDStream. The algorithm divides the entire data space into distinct
minimal bound hypercubes, which are maintained and indexed by a newly defined
structure, SKDTree, that aggregates and updates clusters in real time without requiring
large primary storage. Clusters are composed of dense hypercubes. Experiments on
synthetic datasets and real datasets show that the response time of the algorithm is
similar to that of existing dataflow algorithms, but the quality of the generated clusters
is relatively stable over time. Furthermore, the SKDStream algorithm is able to track the
evolution of the number of clusters, centers, and density in real time, and compared to
D-stream, SKDStream is efficient and effective in clustering.

Keywords: Data mining algorithm, Density-based clustering, Decaying stream, High

density subspace

1 Introduction

Time-decaying data stream is a kind of stream with vitality relationship which decays
over time. Each of these data points is alive and has a vitality attribute. It begins to fade
out as soon as arrives and eventually becomes invalid. The dynamic clustering of time-
decaying data stream focuses on the real time of data that are not attenuated, and pays
more attention to the recent changes. For each of data point, the higher the priority
level is in the short term, the lower the priority level is in the longer term. It is mainly
used in scenarios such as communication data encrypting, network attack monitoring,
public opinion monitoring, real-time analysis of stock trading and weather forecasting.
Real-time clustering of the unattenuated part of the data stream has important practical

©The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13638-022-02160-0&domain=pdf

Liu et al. J Wireless Com Network ~ (2022) 2022:102 Page 2 of 31

significance, which can not only help people understand the current focus, but also pro-
vide a basis for further analysis of its evolution.

Scenario 1: Detection of hot and sensitive topics in public discussion. Comments on
social media are typical time-decaying data stream, which contain socially sensitive top-
ics [10], one of the focus of public opinion monitoring. In traditional data analysis, hot
topics can be revealed by density-based clustering of a given set of comments. How-
ever, in practical applications, based on the dynamic, sensitive and frequently changing
characteristics of comment sets, people are more inclined to pay attention to the latest
topics. To find such topics, obsolete data should not be included in clustering. How to
cluster the comments stream to find current sensitive topics is a typical dynamic cluster-
ing problem on time-decaying data stream.

Scenario 2: Analysis of eye-tracking information in recommendation system. A new
technology in the field of e-commerce is to capture the users’ interest or theme by track-
ing their eye-movements. The eye-tracking information is generated continuously while
browsing the web, which is fast-changing, orderly, and potentially limitless.

Finding recommended objects can be accomplished by clustering user eye-tracking
stream [26]. The dynamic changes in these recommended objects should reflect current
interests and should not be swayed by outdated data. Obviously, this is also a typical
dynamic clustering problem on time-decaying data stream.

Scenario 3: Identification of malicious network attacks. Network access [30] is another
kind of time-decaying data stream. If new clusters are discovered through dynamic clus-
tering, it indicates the start of a wave of malicious attacks. Capturing such changing clus-
ters and tracking their evolutionary trends has important practical implications, helping
to identify malicious attacks in real time and take appropriate preventive measures.

Unlike normal stream, each data in the time-decaying stream has life, with the high-
est vitality at birth as time goes by, so it is a challenge to dynamically cluster such data.
Firstly, except for restriction on traditional stream clustering, such as computer, mem-
ory, and time constraints, source data are dynamic and require an appropriate stor-
age strategy to store newly arrived data and eliminate outdated data in time. Secondly,
a cluster at one moment may no longer meet the density requirement as time going,
some data in it have no life and should be abandoned while the others need to be merged
into new clusters. Thus, the clustering algorithm must have the ability to automatically
detect the change in source data and dynamically adapt the clusters. The reorganization
of clusters in turn requires the original data to be traceable, which is a huge challenge to
limited memory. The key point for these challenges is an effective storage structure so
that it can dynamically adapt to fast-arriving stream, and timely remove the influence of
outdated data accurately, it can also ensure that newly arrived data can be classified into
appropriate clusters in one scan and existing clusters can be merged and reorganized
immediately, or a solution to extract information in one scan which can approximately
represent and restore all valid data, so the dynamic clustering algorithm can match the
scheme.

We propose SKDStream, a dynamic clustering algorithm based on time decaying-
data streams, which treats clusters as a dense data space and uses three types of stor-
age within it: a fragment of main storage for data before forming initial clusters and
few live outliers, an index tree for clusters and a group of disk files for cluster details.

Liu et al. J Wireless Com Network ~ (2022) 2022:102 Page 3 of 31

At the beginning, when one window data come, a clustering will be activated, once
the first cluster formed, an index tree named SKDTree will be created, and all data
in the cluster will be summarized as a leaf node of SKDTree, while the other data are
still stored in the main memory. Later, when new window of data comes, for any one
of its data, if it belongs to a cluster space, it will not be stored but be summarized
in the cluster node, otherwise, it will be kept in the main memory. Once the main
memory is full, outdated data will be discarded and a new clustering will be activated.
SKDTree, an improved version of KD-tree [5], used in this paper to store cluster
units, each node of which represents a downwardly contained data space. Particularly
each leaf node of SKDTree represents a smallest cluster, a data space with a density
exceeding given threshold. As new data rolling up, a subtree of cluster may appear
where density of each non-leaf node is also larger than the threshold. The whole sub-
tree will be fanned out as a disk file, only the root will remain in the SKDTree, i.e., the
SKDTree will only keep cluster units and not any subsets of them. Thereby the tree
height is limited and can be maintained in memory. With the dynamic changes in
the data, the subtrees fanned out to the hard disk may be read back, which not only
ensures the validity of the dynamic clustering results, but also reduces the data stor-
age pressure of the algorithm.

Main contributions of this paper are threefold:

« A new tool for describing the available data space with redefined minimum
bounding hypercube in stream clustering. Minimum bounding hypercube is a sub-
space of data points and a closed volume that contains all its descendant spaces.
It can be described by density, effective value, boundary range, etc. Depending on
the time span of stream, the density of the hypercube can be determined through
the formula defined in this paper, thereby we can dynamically adjust the cluster-
ing results. By reducing memory and computing costs, the minimum bounding
hypercube works as an effective technology for dynamic clustering.

+ We propose a new cluster storage structure SKDTree. The SKDTree divides the
data space from top to bottom until the cluster cells. Only by dynamically main-
taining summary information such as the clusters’ density and their ancestor
nodes, the cluster space can be summarized upwards in a prompt and efficient
manner. This is a simple and straightforward structure and needs far less memory.
The nature of its KD-tree is conducive to efficiently query the space of adjacent
clusters, and by further merging them, the final clustering results are obtained.

+ A dynamic clustering algorithm for time-decaying data stream has been proposed. It
can summarize high-density subspace online. Compared with existing algorithms, it
supports obtaining evolving clustering results. The clusters are formed by the sum-
marizing and merging of nodes in SKDTree. The number of clusters, cluster center,
and cluster density are all dynamic, reflecting the clustering of current valid data.

Next, the second section is related work, the third section introduces the basic con-

cepts, the fourth section introduces the structures and operation of the SKDTree, the

Liu et al. J Wireless Com Network ~ (2022) 2022:102 Page 4 of 31

fifth section of the SKDStream algorithm, the sixth section is the experimental part of
the algorithm.

2 Related work
In recent years, many data stream clustering algorithms have been proposed.

The two-stage clustering algorithm [2, 4, 8, 9, 17, 25] is a classic solution to solve the
data stream clustering problem. Algorithms extract summary statistics from valid data
in the online phase. When entering a new data, the summary statistics will be updated.
Then performing clustering in the offline phase to obtain clusters. This type of algo-
rithms can obtain clusters on the data stream, but require frequent execution of the
offline process, which is time-consuming and computationally expensive. It also cannot
dynamically update clusters and track the evolution process. The article [4] proposed an
improvement to it, choosing an appropriate time to run the offline process, but it did not
really solve the high cost of the essential problem of the offline process.

In recent years, scholars have proposed algorithms for online processing of data stream
clustering problems, such as [11, 13, 20, 21, 28, 29]. The algorithms perform clustering
for each newly entered data to obtain the latest clustering results. Due to memory con-
straints, and usually the most recent data are more valuable. The proposed algorithms
are designed based on the window model or decaying models. With the passage of time,
the vitality of data continues to decay. Some define the data life weights according to
their vitality. When the life weights is less than the threshold, the data will be deleted
directly, and the deleted data will be permanently invalid, and will not be restored again,
and affect any subsequent clustering results.

Existing online algorithms are mainly divided into two categories: partitioning-based
and density-based algorithms. Partitioning-based data stream clustering algorithms
group data into a predefined number of clusters in the light of the distance (or similarity)
to cluster centroids. Thereby, the number of clusters should be set up in advance. Algo-
rithms choose to insert existing clusters based on the distance between newly entered
data and existing clusters or initialize a new cluster, such as [1, 15, 18, 22]. Partitioning-
based algorithms are simple and feasible in general. However, they are highly dependent
on distance, radius and other parameters, and only spherical clusters are generated.

The density-based data stream clustering algorithms [7-9, 16, 20, 24] find clusters
according to the dense area. The algorithms abstract the summary information of the
arrived data constantly in many existing cluster cells, which can be represented as fea-
ture vectors. These cluster cells are then merged into clusters according to their acces-
sibility and connectivity. Density-based algorithms are able to monitor the change in the
number of clusters directly. They have the capability to handle noise data with strong
robustness too. The ref. [16] proposed a data stream clustering algorithm EDMStream
that explores the evolution of the density mountain. The core idea is to use the density
mountain to abstract the distribution of real-time data stream, and on this basis to track
the changes in data distribution and the evolution of clusters, yet unfortunately the algo-
rithm has fixed the central point at the beginning, and will not update them later. Con-
sequently, the algorithm can only track the disappearance of clusters and the adjustment
between clusters, and is unable to identify the emergence of a new cluster. CEDAS [19]

is a fully online density-based time-decaying stream clustering algorithm. Specifically,

Liu et al. J Wireless Com Network ~ (2022) 2022:102 Page 5 of 31

CEDAS clusters and creates a graph structure. In the graph structure, the nodes are the
micro-clusters and the edges are the connectivity between micro-clusters. But when the
density of data space is not even, the clustering result will be low quality.

Another typical density algorithms, grid-based data stream clustering algorithm [6,
12, 14, 27], divides the data space where the stream data are grouped into multiple grid
units, all data are mapped to the grid, and clusters are achieved by recording the den-
sity of the grid. In order to reduce the calculation and memory costs, grid cells in clus-
tering algorithms are generally of fixed size, however an inflexible structure generally
brings limitations. Furthermore, sparse grid cells will be directly discarded in the final
clustering, which affects the accuracy of the final clustering results. MuDi-Stream [3] is
a hybrid algorithm which is based on both density-based and grid-based approaches. It
customizes the density threshold for each cluster and overcomes the problem multi den-
sity clusters. However, the calculation is high, at the cost of reducing quality of clusters.

The SKDStream algorithm proposed in this paper is a density-based clustering algo-
rithm for data stream, of which the life weights is designed based on common decay-
ing model, whereas obsolete data remain stored in a certain way and are permitted for
subsequent clustering. Moreover, the online clustering updates the stream data clus-
ters at any time, and tracks the evolution clustering results in real time. The center,
number, and density of the evolutions clusters are constantly changing. Additionally,
the relevant information of all subspaces is stored in the corresponding nodes of the
SKDTree during the execution of the algorithm, which means no small density space
will be discarded randomly but strictly according to the decaying function, therefore
real-time and accurate clustering results are promised.

3 Methods
3.1 Basic conceptions and problem definition

Definition 1 Data Stream

A data stream S = {X;, Xy, ..., Xz }(N — 00) is a sequence of data with same char-
acteristics that arrives in a period of time. Let £; be the start time, and £y be the cur-
rent time. Xy, = {x; = (x},sz, .. ,x]d)}(j > 0) is the set of data that arrived at the time ¢,

where each data x; has 4 attributes.
Definition 2 Life Weights

Given a data X; that arrives at time #; in stream data S, of which the life weights at time ¢
is defined as:

S (i t) = o—At—t;))

J is the decay parameter (1 > 1). The larger the A is, the faster the data decay and thus
the weaker the life weights turns. Obviously, the life weights of X; constantly decreases
over time until drops below the threshold, and consequent that point will be considered

Liu et al. J Wireless Com Network ~ (2022) 2022:102 Page 6 of 31

invalid. This is a wisely used decay function in many stream clustering algorithms. In
this paper, we choose such that fit is in the range (0,1].

Definition 3 Time-Decaying Data Stream

Given a data stream S = {X;, X;,,..., Xy J(N — 00), a life weights f and a thresh-
old 7, Time-Decaying Data Stream DS at current moment ¢y is a subset of S, that is,

DS ={X; =x = (x},xf,,x;’n(fxf (G, t) > 1) A Xy €S},

The time-decaying data stream includes the data whose life weights is larger than the
threshold in the original data stream S. As shown in Fig. 1, S stores all the current data
from the beginning to £y, and the DS only remains the current data whose life weights
greater than 7, while data below the life weights threshold t are regarded stale data.

Definition 4 Minimum Bounding Hypercube (MBH)

Given a set of data X = {x,,}(n € Z) where each data x, = (x,ll,x%, ... ,xﬁ)(k € Z) has
k-dimensional features, the corresponding MBH can be represented by M*:

Mk = (Wll,}’l’lz,. . .,mk)

my = (min(Projecty (X)), max(Project;(X))) represents the binary combination of the
minimum and maximum of the projection of the set X on the kth dimension.

Project() is a projection function, and Project;(X) = {xX}(n € Z) is the projection
of the x,, on kth dimension. It represents the vertical distance to the plane in the kth
dimension.

When k = 2, the minimum bounding rectangle MBR is a rectangular space.

Given two MBHs MK = (m1, mo, ..., mp), Nk = (n1, na, ..., ni):

o Ifm;Nn; # @foranyi(l <i < k), then MF intersects with N;

« If there exists at least an i(1 < i < k) such that max(m;) = min(n;), and m; N n; # @
for any j(1 <j < k,j # i), then M is adjacent to N¥;

« Otherwise, MX is separated from N*.

Any MBH can be divided into multiple adjacent MBHs.

Definition 5 Reachable Space

Stream data direction

‘e 000000000 0 i

DS|OOO.......IOStaIedata

Fig. 1 Stream data at ty.In the figure 1, the black solid circle represents the current data, and the black hollow
circle represents the stale data

Liu et al. J Wireless Com Network ~ (2022) 2022:102 Page 7 of 31

Given a set of MBHs & = {Mk,Mé(,,M/,f} in a k-dimensional space. S is a reach-
able space if for any of its MBH Mlk (1 <i < n), there is at least another hypercube
M}((l <j<mi#j)inS that Mlk is adjacent to M]k

If there exist no superset S’ of S so that S’ is also a reachable space, then S is a maxi-
mum reachable space of the k-dimensional space.

Definition 6 Density(p;)
Given a multidimensional space D that contains multiple data. The density of D at time

t; is defined as

D

pti = V(D) (2)

where v(D) represents hyperplane volume of D, | D| represents the number of data inside
D at t;. Also, t; could be defined as a period of time.

Pt;,1» the density of D at the next time #; 1 is defined as:
IOfH.l = Pi *f(tb ti+1) + lot,""tH_l

where f(¢;,t;11) represents the life weights of data from ¢; to t;11, and py, represents

~lit1
density of new data which arrive between ¢; and ;.

Definition 7 Cluster Cell

Given a data set S and a MBH MF in DS. The density of M* has been defined as p; (M¥).
If p,(M*) > ©, then MBH M¥ is a cluster cell at time ¢.

Definition 8 Dynamic Cluster

Given a data set S and a maximum reachable space in RS. The density of RS has been
defined as p;(RS). If p(RS) > ©,then maximum reachable space RS is a dynamic clus-
ter at time ¢ in S.

At same time, points that do not belong to any dynamic cluster in data set are
defined as Outliers.

We aim to calculate the dynamic cluster on time-decaying stream at a certain
moment. That is, for a given time t and current data stream DS, our aim is to find the
set Cp = {c!,ch,...,cl,,ct}, where cf(1 < i < m) is a dynamic cluster over DS and ¢/ is
the set of outliers, that satisfies the following equations:

dUdu---uc,ud =C
cfﬂc}:@(i;éj)
cfﬂcé:@

m
C = argmin(z MBH(cf))
i=1

Liu et al. J Wireless Com Network ~ (2022) 2022:102 Page 8 of 31

- O
SJels > O (g OO OQO

3D
O o od [oq]| -

fos
J

O
(@)

O currentdata > staledata O newdata
Fig. 2 Dynamic clustering on time-decaying data stream. In the figure2 , each gray area represents
data clustering result at differentinstants of time; the blue rectangle represents the cluster cell and the
orangerectangle represents the dynamic cluster. And the dotted hollow, the solid hollow and the thickened
solid hollow circle represent the stale, curent and newdata respectively.

Fig. 2 depicts the process of dynamic clustering on a data stream. As shown, the first
column includes two cluster cells (the blue rectangles) at time ¢;, and then at £, new data
arrive but some of the current data turn into the stale data, the number of cluster cells
and the location of existing cluster cells are changed. The last column reflects the clus-
tering result at ¢,. It demonstrates the changing of cluster cells as one of the previous
cluster cells has developed into a dynamic cluster (an orange rectangle).

3.2 SKDTree, summary files and operations
3.2.1 SKDTree definition

Definition 9 Splitting Key

In a given d-dimensional data space D, let S = (M%, M4, ..., M%) be the set of all cluster
cells of D at time ¢, and k(1 < k < d) be a specified dimension, then the splitting key on

dimension k is
key:argmin{Count(Ollf > key) — Count(Oll»(< key)} (3)

where O]]f is the attribute value of the center point O; of the j-th cluster MBH on dimen-
sion k within space D, Count(O}]f < key) are the MBHs that meet the condition Ollf < key

in S while Count(O]lf > key) are the MBHs that meet the condition O]]f > key.

All points whose kth attribute equals the key construct a splitting hyperplane Fj which
is an axis, a plane and a volume for 2D, 3D and 4D space, respectively, and in d(d > 4)
dimension is a d — 1 dimensional hyperplane.

Any space L can be divided by a splitting hyperplane into two subspaces: one called
rangey.; in which points with values less than key in the dimension (xf < key) and the
other called range,g,, in which points with values larger than key in the dimension
(xf > key). Obviously Fy, is the upper limit of range,; and the lower limit of range,;g;;.

Liu et al. J Wireless Com Network ~ (2022) 2022:102 Page 9 of 31

> Subspace S

—> M,

P Splitting hyperplane F,,,

L oM,

@ |

Fig. 3 Dividing instances in 3D space. In the figure3, the largest cube represents space D, and each orange
cuberepresents a cluster cell. The gray planes represent splitting hyperplanes be-tween different subspaces

Table 1 Attributes of various nodes in the SKDTree

Attribute Meaning

MK Custer cell

oM Leaf node density: cluster cell density

range The space represented by node indicating MBH

dim Splitting dimension

key Splitting key (Eq. 3)

f Life weights (Eq. 1)

0 Node density: the spatial density represented by nodes (Eqg. 2)
Uast The last update density time

ptrs Pointers to the child node(non-leaf node: two pointers, sub-

leaf node: 1-2d pointers)

If a cluster cell M intersects with Fiey, M is cut by Fiy into two cluster cells in the
space of range;n and range,;g;, respectively.

Fig. 3 shows dividing instances in three-dimensional space. The largest cube rep-
resents space D, which contains all cluster cells in the current time-decaying data
stream. After several divisions based on the splitting key of different dimensions, it
is subdivided into several subspaces. The gray planes represent splitting hyperplanes
between different subspaces. A clear demonstration of space division is subspace S
on the near right which is divided by Fj,, perpendicular to z-axis into two subspaces
Sl(rangejo;) and S2(rangegs). Besides, after the dividing, cluster cell M splits into
two cluster cells M; and My, that separately belongs to S1 and S2.

Definition 10 SKDTree

Given a d-dimensional data space S, the SKDTree is a summary tree of S with following
characteristics:

Liu et al. J Wireless Com Network ~ (2022) 2022:102 Page 10 of 31

+ There are three types of nodes:leaf nodes, sub-leaf nodes and non-leaf nodes,
that are defined using attributes listed in Table 1, namely, MX, f, ¢, ptrs for leaf
nodes, range, f, p, tius;, ptrs for sub-leaf nodes and range, dim, key, f, p, tizs:, ptrs for
non-leaf nodes.

+ Each leaf node is a cluster cell. Sub-leaf nodes can represent the smallest space
containing leaf nodes.They are the father nodes of leaf nodes and contains 1-2d
pointers.

+ A root node is a special non-leaf node which indicates the complete data space.
Apart from leaf nodes and sub-leaf nodes are non-leaf nodes. A non-leaf node in the
i-th layer(the root node if i = 1) has two child nodes, which represents that a parent
space is split into two child spaces range;.s; and range,g; by hyperplane in the (i mod
d) dimension.

KD-tree is actually no stranger to common tree structures. It is essentially a multi-
dimensional binary tree, which is a data structure that divides k-dimensional space.
The binary query tree (ISBST) which we familiar with is essentially a KD-tree in one-
dimensional space. The original KD-tree uses the currently available data to divide the
k-dimensional space, and stores the instance points in the process of continuous divi-
sion space. The segmentation feature enables fast retrieval of data points in the space.
Also, the feature determines that such kind of tree structure can quickly query neigh-
bors in a sample space. Each node of SKDTree splits the space cut by the correspond-
ing parent node again, and further forms different subspace. When searching for the
location of a point, it will be transformed into the subspace where the search point is
located. Similarly in SKDTree, the summary information of the data space is stored
hierarchically where the leaf layer is a cluster cell, but the other node is a rangej, or
rangeygn; which covers all its children. From a spatial perspective, there is a blank space
between the sub-leaf node and the leaf node, indicating that the sub-leaf node is not
equal to the spatial union of its child nodes. Moreover, among other nodes, there is
no blank space between the parent and the child, thus the density of the parent node
is equal to the quotient of the total number of points of all the children divided by the
representative space volume of the parent node. The number of points of the child node
may be calculated in the other direction. Because the density of children varies as the
data change, the density of its ancestor nodes must likewise be updated synchronously.
We simply keep the node density of the tree until querying the clustering results to
increase usability.

Whether the space of a node in SKDTree described above is equal to the sum of child
nodes, is the fundamental reason for introducing sub-leaf nodes. As shown in Fig. 3, the
space D can be described as the root node of the SKDTree. It will be split into two sub-
spaces, range; and rangey;q,:, which can be represented by two child nodes of the root,
and each subspace can be split into two sub-subspaces. . . In such way, the whole space
can be split according to its dimensions one by one, each split produce a new level of two
child nodes until the sub-leaf node, whose child represents a data space of a cluster cell.

Liu et al. J Wireless Com Network ~ (2022) 2022:102 Page 11 of 31

Fig. 4 SKDTree corresponding to data space

Fig. 4 is the SKDTree corresponding to the three(X, Y, Z)-dimensional data space
in Fig. 3, of which the root node represents the entire data space D. The two child
nodes of root represent the two subspaces of D divided by the X dimension. Similarly,
the four subspaces in the third layer can be obtained, respectively, with the two nodes
above divided according to splitting key in Y-dimension, and they may split too. Simi-
larly, these four nodes can also be further divided. Take node P as an example, its left
and right sub-leaf nodes, separated by dimension Z, contain cluster cells J, G, Q, M1, Ry
in subspace &1 and K, L, M3 in subspace Sy, respectively.

In the actual data space, there is no one-to-one correspondence between the cluster
cells and leaf nodes. One cluster cell may be partitioned into different subspaces and
spread into different leaf nodes as a result of space splitting. However, due to their
irregular shapes, dynamic cluster cells in real space are more likely to have numerous
leaf nodes belonging to various sub-leaf nodes, thus the union of them all are needed to
restore the actual cluster cells. At a given moment, the set of all reachable cluster cells in
SKDTree is queried, the dynamic clustering result of the time-decaying data stream is
obtained.

However, due to cluster cells only exist in the leaf layer of the SKDTree, when the
data change dynamically, the leaf layer may: (1) Form new cluster cells; (2) Increase or
reduce the density of existing leaf nodes. The density of sub-leaf nodes will change as
a result of these adjustments, and the level of sub-leaf layer in the tree will be affected
as well (level changes only occur in sub-leaf nodes). When density of the space rep-
resentedby the sub-leaf node overflows, that space must be re-divided, either by rais-
ing its level or by forming a new sub-leaf node. Due to the density change may affect
a sub-leaf node or even an ancestor node, the subtree rooted at this node should be
summarized to a new cluster cell, replacing the subtree in situ. Considering that the
new cluster cell may not match the density requirements in the future due to density
changes, it must be reverted to the subtree that are not supposed to be discarded. In

Liu et al. J Wireless Com Network ~ (2022) 2022:102 Page 12 of 31

this paper, this is implemented with summary files, which are stored in external stor-
age and each records subtree separately. When data changes cause density underflow,
if a cluster cell does not have a corresponding summary file, in addition to deleting the
leaf node from the SKDTree, remaining data size of the cluster cell must be calculated
according to the density and volume, and all of them will be evenly distributed in the
original cluster cell space and put back into the data stream. Otherwise the leaf node
recorded in the summary file will be reloaded into the SKDTree. Of course, the density
of the leaf nodes of the repaired subtree may not meet the requirements of the cluster
cell, and it is still necessary to delete the leaf nodes and put valid part of data back in
the data stream.

Ancestral relationships may exist between subtrees that are summarized one after
another. For example, after a certain subtree is summarized, the density of the upper
subtree increases, therefore the summary operation continues upwards. If the root
of a subtree in the first summary process is the leaf node of a subtree in the second
summary process, they should be spliced together into the same subtree and placed
in the same summary file. Given two subtrees A and B, we say that B can directly
splice A when there is a leaf node in subtree A which has the same root of subtree
B. When subtree C can be spliced directly to A and subtree B can be spliced directly
to C, then subtree B can be spliced indirectly to A. All subtrees that can be spliced
directly or indirectly should be spliced before written into the summary file.

3.2.2 SKDTree operations
As previously stated, the SKDTree changes dynamically as data arrive. To maintain and
query the SKDTree’s correspondence with the actual data space, some maintenance
operations are necessary, including building a SKDTree, adding leaf nodes, deleting leaf
nodes, summarizing the subtree, subtree re-insertion, and dynamic cluster querying.
Building a SKDTree
Given a d-dimensional data space and the set of cluster cells inside, the algorithm
Build() divides the range enclosing all M* at once along dimensions, and recursively gen-
erates the SKDTree in a top-down way. The main idea is that:

(1) When there is only one input cluster cell, the established SKDTree is a tree with
only a root node, sub-leaf node, and leaf node remain the same range.

(2) When the number of input cluster cell is greater than 1 but less than or equal to 2d,
the established SKDTree has only one root node, one sub-leaf node and multiple
leaf nodes.

(3) When the number of input cluster cells is more than 2d, the root is created, the
dimension and splitting hyperplane are generated by recursive computing. When
the number of cluster cells in non-leaf nodes space is fewer than 2d, creating sub-
leaf nodes and leaf nodes in their own space. The original cluster cell will be sepa-
rated into two cluster cells if it crosses the splitting hyperplane during the space

division process.

Fig. 5 shows the structure of the SKDTree initially built under different numbers of
initial cluster cells.

Liu et al. J Wireless Com Network ~ (2022) 2022:102 Page 13 of 31

n=1 0<n<2d n > 2d

= I

Fig. 5 Build initial SKDTree. In the figure 5, the circles represent non-leaf nodes, the squares representsub-leaf
nodes and the triangles represent leaf nodes in SKDTree

Algorithm 1 Build

Require: {Mk} root, dim, d
Ensure: SKDTree

1: if count({M*}) ; 2d then

2: update dim, calculate key, rangecft, rangerigh:
3: create non-leaf node Q1, Q2, root.ptrs — Q1, Q2
4: for each M* do

5: if min(Project,(M"*) < key) && max(Project,(M") > key) then
6: M*—MF ME

7: end if

8: end for

9: Build({M*} € rangeiesi, Q1, Qi.dim, d)

10: Build({M*} € range,ign:, Qz, Qz.dim, d)

11: else

12: root.ptrs — create sub-leaf node @

13: if count({M"*}) € (1, 2d] then

14: create leaf node p; for each M*

15: Q.ptrs — p;

16: else

17: create a leaf node p

18: Q.ptrs — p, p.range < Q.range

19: end if

20: end if

Adding leaf nodes The SKDTree and the current cluster cell M* which waiting to be
added may have the relationship of intersection, separation, and inclusion.

Liu et al. J Wireless Com Network ~ (2022) 2022:102 Page 14 of 31

According to the specification of SKDTree and the framework of SKDStream algo-
rithm, as illustrated in Fig. 6a, if there exist a node in SKDTree whose range totally cov-
ers MK, they will exist: (1) The node in question is not a leaf node. (2) There must be a
node A with the lowest range that all of the other nodes must be descendants of A. We
say that the cluster cell M¥ and the SKDTree are included in node A.

As shown in Fig. 6b and Fig. 6c, if there are nodes in the SKDTree or its subtrees
that cross the range of M, they will exist: (1) The nodes in question are not leaf
nodes. (2) After these nodes are grouped according to their respective paths, each
group must have a node with the largest range. Let them be By, By, ..., B,. Then, we
say that cluster cell M¥ and the SKDTree intersect at nodes By, By, . . ., By.

If the relationship of MF* and SKDTree (or its subtrees) neither intersection nor
inclusion, then we say that MK and SKDTree are separated, as shown in Fig. 6d. And
apparently when M¥ is separated from the root of the SKDTree, it is definitely sepa-
rated from all other subtrees.

A new cluster cell is always inserted into the SKDTree’s leaf layer, but the meaning
of the corresponding insertion process is different, as is the relationship between the
cluster cell and the tree. Sometimes the insertion causes the tree to grow taller, or it
is required to change the range of ancestor nodes, and other times it is necessary to
divide the cluster cell. Here are some fundamental operations.

Operation 1 Add a new cluster cell M* to the sub-leaf node A.

Prerequisite: M and SKDTrees are included in node A.

Steps: The algorithm checks if A is a sub-leaf node with less than full children. If
so, insert MX as a child node of A. Otherwise, two sub-leaf nodes are generated, and
the nodes in hyperspace become their children, as the children of A and M* together
form a hyperspace to be divided. The splitting key is calculated according to Eq. 4.
Afterward, update the density of all nodes on the path using Eq. 3.

Operation 2 Split the new cluster cell MX.

Prerequisite: M¥* and SKDTree or its subtrees intersect at nodes By, By, . . ., By

(a) b)

(
T

(c) (d)

Fig. 6 The instance of updation after inserting new MBH in 2D space. A Upadation when the new MBH is
included in only one node in SKDTree, B Upadation when the new MBH intersects only one node in SKDTree,
C Upadation when the new MBH intersects more than one node in SKDTree, D Upadation when the new
MBH separates from all the nodes in SKDTree. Note: The black rectangle represents the range of SKDTree root.
The blue rectangle represents the cluster cell to be inserted. The orange solid line represents the original split
hyperplane. The black dashed line represents the updated range. The red dashed line represents the new
range

Liu et al. J Wireless Com Network ~ (2022) 2022:102 Page 15 of 31

Steps: MK splits into MK, ..., MKn, M¥knt1, left Mkt € By,...,M* € B,, and M¥*n+1 is
the remaining part. If the remaining part (if not empty) is not the MBH, it will be split
into several smallest cluster cells. Then calculate the density of cluster cell after split-
ting according to Eq. 3.

Example: As shown in Fig. 7a, where there is only one vertex intersection between
the existing cluster cell A and the cluster cell B to be inserted, B is divided into three
cluster cells By,B and Bs by the extended boundary line. Similarly in Fig. 7b, there are
two vertices that intersect the existing cluster cell C and cluster cell D to be inserted.
Then the extended intersecting boundary line divides D into four sub cluster cells D;
,Dy,D3 and D4. The overlapping space belongs to the existing cluster cell, i.e., B3 and
D; belong to A and C, respectively.

Operation 3:Extend the range of the SKDTree or its sub tree nodes.

Prerequisite: M is separated from the SKDTree.

Steps: Modify the range and density of the root of SKDTree or its subtrees so that
it can absorb MX. Repeat the following steps until the child of the sub-leaf node is
discovered in the children of the changed node, then find the closest node to M* but
separate from M*. Modify the range and density of the node so that it can absorb M,

Thus, the algorithm steps to insert cluster cell M into the SKDTree is:

Examining the relationship between M and root 4, and:

(1) If MX is separated from A, perform operation 3 then operation 1, thereupon
insert MX into the modified sub-leaf node.

(2) If M* and SKDTree included in A4, and A is a non-leaf node, execute operation
2 then split M* into a left child M*1 € A and a right child of M*2 € A, each of which
will be inserted recursively into the left and right subtrees of A. If A is a sub-leaf node,
perform operation 1 and just insert MK,

(3) If M* and SKDTree or its subtrees intersect at nodes Bi,Bo,..., B, per-
form operation 2, and divide MK into MM € Bl,...,Mk” € B, and the remainder
MFnt1 pMkni2 & MKntn| For each M¥, insert it recursively into the subtree with B; as
the root node. For each M*", first execute operation 3 and then operation 1, and
insert M* into the modified sub-leaf node.

Lo P
D

B.: g (b)
(a)

Fig. 7 The instance of intersection and division after new inserting MBH in 2D space. A Division when nodes
intersect on one dimension, B Division when nodes intersect on multi dimensions. Note: The blue rectangle
indicates an existing cluster cell, and the red rectangle indicates a new cluster cell

Liu et al. J Wireless Com Network ~ (2022) 2022:102 Page 16 of 31

Algorithm 2 AddLeafNode

Require: M?", root, d
Ensure: SKDTree
1: if M* 7,(1 root.range then

2: update root and other related nodes’ range
3: end if

4. for each node n in root.ptrs do

5: if M* C n.range then

6: InsertlnSubLeaf(Mk, root, d)
7 else if M* N n.range # @ then
8: MFE — MR MR MErt
: InsertInSubLeaf(Mki, root, d)
10: else

11: n — n.ptrs

12: end if

13: end for

Algorithm 3 InsertInSubLeaf

Require: MP¥, sub-leaf n, d
Ensure: SKDTree
1: if n.ptrs < 2d then

2 n.ptrs — M*

3: else

4: Build(M*, n, n.dim, d)
5: end if

Deleting leaf nodes When the density of a leaf node in the SKDTree is less than
the threshold ® and there is no summary subtree to connect, the node should be
removed, and the fresh data of the node should be restored to the original stream for
subsequent re-clustering.

The algorithm DelLeafNode() removes leaf nodes with densities less than ©. If all of
its leaf nodes are deleted, the sub-leaf node is also deleted, and the space represented
by the sub-leaf node becomes invalidated. The space represented by the node’s par-
ent is re-divided. Fig. 8 depicts the SKDTree corresponding to 2D space. Assume that
after decaying, the density of the two leaf nodes of sub-leaf node A drop below ® and
the two leaf nodes must be removed directly, space A, as shown on the right of Fig. 8,
become invalid and Build() algorithm will be called to rebuild the space represented
by node C(the gray shaded part). Similarly, deleting all of the leaf nodes of sub-leaf

Liu et al. J Wireless Com Network ~ (2022) 2022:102 Page 17 of 31

A s
T m "=

Fig. 8 The instance of deleting leaf nodes in 2D SKDTree. On the left side of figure 8 is an SKDTree
corresponding to the data spaceon the right. In the SKDTree, non-leaf nodes are represented as hollow
circles,sub-leaf nodes as orange squares, and leaf nodes as purple triangles. In the rightside, the gray shaded
part are in line with non-leaf node C

nodes A and B results in the deletion of the parent node C. The corresponding space
turns invalidated. A, B and C are removed. And the Build() is invoked to reconstruct
the space represented by the parent node of C.

Algorithm 4 dell.eafNode
Require: MF*, ©

Ensure: SKDTree

1: if pps < © then

2 update p of M*’ parent node S

3 if S.ptrs — & then

4: Build(Mk, S.parent, S.parent.dim, d)
5 end if

6 end if

Summarizing the subtree From the beginning of SKDTree building, all leaf nodes
are cluster cells that have met the density threshold ®. Therefore, the process for
summarizing the subtree looks for nodes other than leaf nodes that exceed the den-
sity threshold, summarizes the subtrees rooted at those nodes into a new cluster cell,
and save it as external files, pruning the SKDTree into a simpler structure during
building process in a certain extent. The Summarize() process recursively summarizes
the nodes upwards until the density of a node is less than ®, at which the fan-out
operation is executed. As shown in Fig. 9, the densities of node N and children nodes
A and B are all above the threshold ®. As a result, the algorithm stores the subtree
represented by N as a summary file into external storage, and summarizes N as a new
cluster cell, that is, the new leaf node N in the SKDTree. The summarizing process
also creates sub-leaf node N’ and leaf node N” for node N. The range of nodes N’ and

N" is equal to the size of the cluster cell represented by node N.

Liu et al. J Wireless Com Network ~ (2022) 2022:102

Memery
o
o 5
o)
® [}
o 5
c
P T @ON T~
N, Y
\\‘ ’ \ X
! 7’ \
H ,m \ i , \ \
A H { \
Disk IR 1 B i
\
Vi ‘\‘ Zn IS !
- \. am LN /S
----- NUZEE RSN
\(’y 4 y NN \i’

Fig. 9 The instance of pageln and pageOut. It is a whole SKDTree in the memery, and there are multiple
summarizedsubstrees in the disk

Algorithm 5 Summarize

Require: sub-leaf node P
Ensure: summary file, SKDTree
1: if P.p > O then
2: S < the parent of P

if S.p > © then
P+ S

Summarize(P)

3

4

5

6: else
7 PageOut the Subtree rooted at S.ptrs
8 if S is sub-leaf node then

9: create a leaf node S”’

10: S.ptrs — S”’

11: else if S is non-leaf node then

12: create a sub-leaf S’ and a leaf node S’
13: S.ptrs — S’, S" — S”

14: end if

15: end if

16: end if

Re-inserting the substree Given a node P that has been summarized. When P’s density
is below the threshold as data decay, it indicates that P is not a cluster cell at the moment.
We need read back the corresponding summary subtree and update all nodes’ density in
SKDTree. Such as read the file that stores the subtree corresponding to node P in external
memory and re-insert it into the SKDTree.

Page 18 of 31

Liu et al. J Wireless Com Network ~ (2022) 2022:102 Page 19 of 31

When the density of a leaf node in the SKDTree is less than the threshold ® and there
is a summary subtree that can be spliced, the summary subtree needs to be read back to
the memory and spliced into the SKDTree. Relnsert() returns the summary subtree cor-
responding to the leaf node P to its parent node, that is, the sub-leaf node P’. At the same
time, the density of each node in the newly inserted subtree must be updated and calcu-
lated. DelLeafNode() must be run if the density of leaf nodes in the subtree does not fulfill
the density requirements. As shown in Fig. 9, when the density of node M in the SKDTree
is less than ®, read the corresponding M subtree from the external memory and put it back
into the subtree of the sub-leaf node M’ in the SKDTree. After updating the density of the
subtree node, there is a leaf node that fail to match the cluster cell density constraint, and it
is destroyed directly, as depicted inside the dashed ellipse.

Algorithm 6 Relnsert

Require: P, root

Ensure: SKDTree

1: Pageln the subtree rooted at P <+ file,

2: the sub-leaf node P’ < P.parent
3: P’.ptrs — the subtree root P
4: update the p of the descendant node of P

Query dynamic clusters When the user proposes to query the current clusters, Que-
ryCluster() is called to identify all the reachable space with the summary leaf node R and
obtain the data stream dynamic cluster. The QueryCluster() algorithm searches the reach-
able space of the summary cluster cells for adjacent cluster cells and labels them with the
same cluster label. In the SKDTree, finding the maximum reachable space of a summary
cluster cell requires backtracking from the leaf node to the 2d + 1 level. With each layer
backtracked, all leaf nodes in other child nodes are checked for nodes adjacent to the sum-
mary cluster. The space range represented by the summary node in d-dimensional space
is adjacent to at most 2d hyperplanes, hence it is only necessary to search for reachable
cluster cells in the range that contains and is adjacent to the cluster resolution space. And,
since nodes in the SKDTree contains a relationship from top to bottom, there is no need to
traverse the entire SKDTree, only 2d nodes need to be traced upwards from the leaf nodes
of the summarization. In Sec.4.2.4, the summarizing process creates one sub-leaf node layer
for each summary non-leaf node. To obtain the maximum reachable space of a solution
node, the QueryCluster() algorithm needs to return to 2d+1 levels totally. In Fig. 10, it is
the most special example of summarized sub-leaf node querying dynamic clusters in 2D
space. The summarized cluster is represented by the rectangle denoted by the red solid
line. To obtain a complete dynamic cluster, it is necessary to scan the reachable space in
this case, going back up 2d times according to the marked serial number. Similarly, non-
leaf nodes query dynamic clusters need to backtrack 24 + 1 times, therefore this algorithm
determines that query dynamic clusters backtrack 24 + 1levels.

Liu et al. J Wireless Com Network ~ (2022) 2022:102 Page 20 of 31

@ |-
®

Fig. 10 The instance of query dynamic clusters. In the figure 10, the rectangle outlined in red represents a
example of sum-marized clustering result

®

Algorithm 7 QueryCluster

Require: root, d, ©

Ensure: dynamic cluster cr
1: for each R.p > © in SKDTree do

2: InitStack(S), i=0, r = root

3 while r # R i< 2d IsEmpty(S) do
4 if then

5 Push(S,r)

6: r = p < the node from r to R

7 else

8 Pop(S,), i++

9 for each node g in the other child of r do
10: if R and q satisfy Def.5 then

11: mark them as the cg

12: end if

13: end for
14: end if
15: end while
16: end for

3.3 SKDStream algorithms

The difference between SKDStream and other time-decaying data stream clustering
algorithms is that it can automatically obtain the existing clustering clusters at the cur-
rent time, adjust the clustering results in time and track the evolution of clustering.

Liu et al. J Wireless Com Network ~ (2022) 2022:102

Storage structures: SKDTree

SKDTree is a data structure for abstracting the data stream sample space. All nodes in

the tree do not store the real data, but only the summary information of the data space. The

nodes of each layer contain the subspace in turn according to the way of dimension alterna-

tion. Each leaf node is a cluster cell meeting the density requirements rather than a single

point. The basic structure and related operations of SKDTree are described in Sec.4.

Initialization

Initially, the initial clusters that absorb the newly arrived points according to the OPTICS

algorithm. Once the size of cached initial clusters exceeds the predefined value, the cluster

cells satisfy the density are obtained. Through executing the Build() mentioned in Sec.4.2.1

to initialize the SKDTree. The tree is saved in memory to facilitate the subsequent update of

the structure.

Key steps

(1)

()

New data assignment. A new data from time-decaying stream is assigned to an
existing cluster cell, so as to place straight into SKDTree leaf node, and update the
density of relevant nodes. Otherwise the new data will be cached in memory.
Cluster cell emergence (SKDTree AddLeafNode(), SKDTree Summarize()). Cluster
cells can be generated in two ways: one is the cluster cells selected by preliminary
clustering after a certain time of cached data in step (1). The other is according the
step (3), there should be a larger cluster cell through merging the existing smaller
cluster cell. The cluster cells satisfying the density threshold obtained from the
time-decaying must be stored in the SKDTree leaf node.

Cluster cell mergence (SKDTree Summarize(), SKDTree DelLeafNode()). With
the entry of new data, timely-density of some existing cluster cells increases con-
tinuously, and so does the density of the subspace contain cluster cells recursively.
When the density of a subspace reaches the density threshold, two or more exist-
ing small cluster cells in the subspace are combined into a larger cluster cell. In our
algorithm, the merge of cluster cells is a recursive process. And the summary infor-
mation of the previous small cluster cells is not explicitly stored in SKDTree.
Cluster cell splitting (SKDTree Relnsert()). The timely-density of some cluster cells
decays as the life weights of data is fading. When the density of cluster cell is lower
than threshold, deleting invalid data in it and recover and retain the previous small
cluster cells if still meet the density requirement. The above process completes the
splitting of cluster cells. Otherwise, we will delete the cluster cells directly.

Tracking the changes of clusters (SKDTree QueryCluster()). The steps (3) and (4)
lead to the cluster evolution. We can track the maximum reachable space to obtain
the timely clusters in time-decaying data stream.

Figure 11 shows the SKDStream overview in which the storage structures SKDTree are

designed and the key steps to perform the algorithm are annotated.

Page 21 of 31

Liu et al. J Wireless Com Network ~ (2022) 2022:102 Page 22 of 31

Memory Disk
SKDTree

M N
/\ .
¢ 1’ 7

5. split

5. track
N

Stream
XXX

Z.emergencew

usisse '

|
Zl

N
o
:
D
®

,
(N

7Y
O
7Y
@
N
O

Fig. 11 SKDStream overview. The left represents the time-decaying data stream, the middle part is
theSKDTree stored in the memery, and the right part are the summarized subtreesin the disk

Algorithm 8 SKDStream
Require: SKDTree, DS

Ensure: dynamic clusters

1: for t do

N

add point x; in th and thH to Buffer[]
3 for z; in Buffer[] do

4 if x; in root.range then

5: insert z; in SKDTree, delete x; from Buffer[]
6: end if

7: end for

8 cluster cell MF(i > 0) +- OPTICS(Buffer[])

9: update the f in Buffer[] and SKDTree

10: delLeafNode(root, ©)

11: Summarize(root,©)

12: Relnsert(P, root, file,)

13: for M* in MF(i > 0) do

14: addLeafNodes(M ", root)

15: delete point in M* from Buffer[]
16: end for

17: Summarize(root,©)

18: end for

19: QueryCluster(root, d, ©)

4 Results and discussion

We compare the SKDStream algorithm with EDMtream and D-Stream algorithm
experimentally. All experimental results are done on a computer with 3.4GHz Intel
Core i5CPU and 8GB RAM. The development environment is based on the Win-
dows operating system and the programming language is Java.

Liu et al. J Wireless Com Network ~ (2022) 2022:102 Page 23 of 31

Table 2 Parameter settings

Parameter name Speed(v) Life weights(/) Neighborhood radius(r)

Parameter value 1000pt/s 0.002 <60

4.1 Preparations
Database The experimental datasets include a synthetic dataset and two real datasets Cov-
erType and KDDCUP99. The synthetic data set is a collection of two-dimensional data gen-
erated by the article [21], named Syn data set by us. It contains 50,000 stream data. It is
clear to describe the clusters and show the evolution by them. Both the public datasets are
from UCI Machine Learning Repository. The CoverType is a 54-dimensional data set, con-
taining 581012 data, and KDDCUP99 is a 34-dimensional data set, containing 494021 data.
Parameter setting In the experiment, unless in a specific experimental situation, the SKD-
Stream algorithm sets the arrival rate to 1000pt/s. At the same time, in order to have the
same decaying effect with other comparison algorithms, SKDStream set the decaying func-
tion the same to article [14], which requires the Def.2 life weights satisfies 2 — 4 = 0.998, so
in the following we set 4 to 0.002. Secondly, we use OPTICS algorithm to obtain the MBH
in the second layer. There are two params including neighborhood radius r and the mini-
mum number of core points neighborhoods pointNum in the OPTICS algorithm. There-
fore, the two parameters are also become the dynamic parameters in SKDStream. But the
effect of pointNum is minimal for the specific implementation process of the SKDStream.
All experiments in the following article, the value of the radius is generally set to » < 60.
The Sec.6.5 will discuss in detail the effect of » on the quality of clustering. Finally, the
adjustment of dynamically density threshold ® will also be discussed in subsequent chap-
ters. Table 2 shows values of other parameters except the density threshold in SKDStream.

4.2 Tracking cluster evolution of data stream

The biggest difference between stream data and other algorithms is the ability to track the
evolution of clustering. We use a two-dimensional synthetic data set to test the ability of
tracking evolution process for SKDStream algorithm. The Syn data set contains 50,000
data. We set the arrival rate of stream data to 1000pt/s. It can be calculated that it takes
50s from the beginning to the end of the stream data. Fig. 12 is a snapshot of the real-time
evolution of data stream clusters. Different data point color represent different cluster. The
figure shows the evolution process of the number and location of the clusters. In order to
describe the changing of clusters more clearly, Fig. 13 shows the evolution of clusters in
concrete form. The horizontal axis represents the clusters life cycle of data stream and the
vertical axis indicates the cluster name. The different line colors indicate the clusters that
exist in the data stream at the moment. The color of the line represents the existence of the
cluster corresponding to the same color of the data in Fig. 12. In addition, it has marked the
process of merging, separating and disappearing clusters in the figure. For example, in the
32s, cluster 3 gradually disappears, after that, cluster 6 is separated into two clusters around
33s, and two new clusters named cluster 8 and cluster 9 appear.

Liu et al. J Wireless Com Network ~ (2022) 2022:102 Page 24 of 31

0

Pyl

00

,,.“..
ed

A

e

20

.‘..
3%
&

20

2

gy}

150

A

il

2,
2
10 ;Iw A ...;.:..“ ‘.".‘i“b‘?

;}2 e ‘.:;;g?ﬁ..t -,

200 250 200 250 2700 2750 200 50 200 50 2600 250 2700 2750 200 50

(a)=Ts (b)=14s

20

200 50 200 2650 2700 2750 200 750 2500 250 2600 250 2700 750 200

(00215 (@)=28s

20

o
™ o

200 250 2600 250 2700 750 00 50 2500 %50 2600 %50 2700 2750 2800 750

20

150

100

(g)=49s
Fig. 12 The snapshot of data distribution clustering at different times. In the figure 12, each of picture
represents a snapshot of clustering resultat a certain time. Data points of dierent color belong to dierent
clusters

4.3 Response time comparison

We compare the response time of SKDStream algorithm with EDMStream and
D-Stream. The three algorithms are tested and compared on two public data sets. The
algorithm runs with a fixed rate on data stream. We record the response time every 25s.
As shown in Figs. 14 and 15, the D-Stream cannot fully obtain the clustering results
on the CoverType. The response time of SKDStream and EDMStream are shorter than

Liu et al. J Wireless Com Network ~ (2022) 2022:102 Page 25 of 31

merge

split*)
6 disappear

Cluster(id)

3+ Sph& 8 disappear

% disappear
1{ =——————38 disappear

v

T T T T T T T T T T

5 10 15 20 25 30 35 40 45 50
Time(s)

Fig. 13 The evolutionary process of clusters. In the figure 13, the horizontal axis represents the clusters life

cycle andthe vertical axis indicates the cluster name. The different line colors indicatethe clusters that exist in

the time-decaying data stream

D-Stream. Although the later response time of EDMStream is lower than SKDStream
a little, however, the SKDStream is significantly better than the EDMStream in the ini-
tial response time. It shows the high effciency of the EDMStream algorithm at the ini-
tialization stage. In the early stage of EDMStream algorithm implementation, compared
with other algorithms to calculate the distance between data, the outline structure of
the MBH takes full advantage which can save time and cost. In the later stage, it takes
more time in later time due to the re-insert of the subtree and the increase of the tree
structure.

4.4 Cluster quality comparison
The focus of our experiment is to evaluate the clustering quality of the SKDStream algo-
rithm on two real data sets. The quality comparison experiment puts up EDMStream
and D-Stream algorithm as reference models, respectively. We calculate the validity
index value of Jaccard coeffcient, FM index and Rand index related to test the clustering
quality. These clustering index values are all distributed in the interval [0, 1]. The larger
the value is, the better the cluster quality is. When the value is equal to 1, it means that
the model to be tested is highly similar to reference model.

These clustering indicators [23] are calculated as follows:

a=|S8§5|,88 = {(x,',xj)l/li =)vj,)u;k = i;‘,i <j}

b = |SDI,SD = {(xi %))|4i = 2}, A7 # 24750 < j},

¢ = |DS|, DS = {(xi, %)) i # 4y A7 = Afsi < j},

d = |DD|,DD = {(xi,xj)Mi * /1/',/1? #*)»;«k,i <j}h

That is, C is the result cluster division of current algorithm, C* is the cluster division
given by the reference model. 4 and 1* represent the cluster label vectors corresponding
to Cand C*.

. . _ a
Jaccard Coefficient: JC = 19—

Liu et al. J Wireless Com Network ~ (2022) 2022:102 Page 26 of 31

10000

1000 a—ah
=)
= e -
T ,/
g X
8 100
&
x
e

10

‘g@@@@@&@@@@@@@@@@@@@@@@@@

R il O R A R
length of stream
~—4—SKDStream —@i=EDMStream = D-Stream

Fig. 14 Comparison of response time(CoverType). In the figure 14, the blue, red and green fold describe the
response time of SKDStream, EDMStream and D-Stream respectively in the CoverType dataset

10000

100

response time(ps)

10

L
"?’Q“’@’\@@@&&@@@@@@@@@’@@@@@”@u@&

length of stream

~4—SKDStream ~—@—EDMStream ~—#—D-Stream

Fig. 15 Comparison of response time (KDDCUP99). In the figure 15, the blue, red and green fold described
the response timeof SKDStream, EDMStream and D-Stream respectively in the KDDCUP99dataset

FM Index: , / ﬁ * ai_i_c

Rand Index: RI = 2(&+4)

m(m—1)
As shown in Fig. 16, the index values are almost all around 0.9 when the EDMStream

as a reference model. And with the passage of time, the cluster quality of clusters is rela-

tively stable with little fluctuation. The reference model in Fig. 17 is D-Stream, effective-
ness index values on the two data sets are slightly lower than EDMStream as reference
model. In addtion, the indicator value fluctuates greatly. It can be seen that the cluster-
ing results of the SKDStream algorithm are more similar to EDMStream. In the article
of EDMStream algorithm has been tested to show that the clustering quality of EDM-
Stream is better than D-Stream. Therefore, the clustering quality of SKDStream is bet-
ter than that of the D-Stream algorithm. The clustering quality of SKDStream is almost
equivalent to EDMStream. It shows the effectiveness of the SKDStream algorithm.

Liu et al. J Wireless Com Network ~ (2022) 2022:102 Page 27 of 31

(a) 1

(\ e - "(\,-—v N
0.9 1SN <(<:/=~§ , i DA —
NidNh4 N/ il

0.7

//

0.6

0.5

e Jaccard
0.4

index value

p—Y]
0.3

Rand
0.2

0.1

0

LSEPELFLLESLESLSLSL SO $
oooco@ooo&@@&&Q@@&&&@@
AT S 0SS S S P <o°'\‘°o° VS S

length of stream
(b) 4
0.9 7/ — =

>,
0.8 Sarg
0.7

0.6
0.5

0.4
03 ==l

s Jaccard

index value

0.2 =Rand

0.1

0
S &S & PSS S
S &QQ %@ $ 6, && § °°,\o> S @,@ °°,\o> S &@@Q@&\%@

length of stream

Fig. 16 Reference model: EDMStream. In the figure 16, the blue, red and green fold were respectively used
to record Jaccard, FM and Rand indicators when reference model is EDMStream. A shows cluster quality in
CoverType and B shows cluster quality in KDDCUP99

4.5 Parameters discussion and influence

The discussion about all the parameters in the SKDStream is based on the CoverType.
The clustering effect is evaluated by the purity of clusters. Due to the arrival rate of
data stream has a certain impact on the quality of clustering. We record the purity
to evaluate cluster quality by changing the arrival rate. As shown in Fig. 18, we vary
the stream data arrival rate (100pt/s, 1000pt/s, 5000pt/s, 10000pt/s, respectively). It
shows that the clustering quality is relatively stable. In addition, the clustering quality
in the case of a small rate is generally better than a high rate. In order to further verify
the influence of the arrival rate for stream data on the SKDStream clustering result.
We calculate the clustering quality with different rates on Covertype. As shown in
Fig. 19, the arrival rate of data has little effect on clustering quality. Even when the
arrival rate is large (> 5000t/s), the average purity can still reach 0.85.

The setting of the neighborhood radius r in the second layer of algorithm has a
greater impact on the quality of the cluster. Fig. 20 shows the effect of neighborhood
radius on the clustering purity in two-dimensional and three-dimensional space. It
can be seen that the neighborhood radius cannot be too large. When radius is too

Liu et al. J Wireless Com Network ~ (2022) 2022:102 Page 28 of 31

(a)

oo . = §
i __A s N \/ /ﬁ"f

0.7

A.

0.6

0.5

e Jaccard
0.4

index value

e FM

0.3
0.2

= Rand

0.1

0

S
POFOIR @@ @ @ @ @@ @ @ @ @@ (96,0@,\9@ ‘,@@Q@@@ﬂ"@ @@ & @@

Iength of stream

(b)

0.9
0s | P \NTA
0.7 /
0.6
0.5
0.4

0.3
0.2 s Rand

N -
= \7.?*&

e Jaccard

index value

Y

0.1
0

O
S @@ (,@ S & @@ (,@ @ > &@ @ S @@Q@Q@ %Q&«%@

length of stream

Fig. 17 Reference model: D-Stream. In the figure 17, the blue, red and green fold were respectively used
to record Jaccard, FM and Rand indicators when reference model is D-Stream. A shows cluster quality in
CoverType and B shows cluster quality in KDDCUP99

100000 150000 200000 250000 300000 350000 400000 450000 S00000
length of stream
—4—100pt/s —d=1000pt/s =—h—5000pt/s === 10000pt/s

Fig. 18 Effect of stream data rate on purity. In the figure 18, different colors are used to indicate the
influence of fourdifferent rates on the clustering purity

large, it will directly affect the quality of clustering. The neighborhood radius is about
15 and 50 in the two-dimensional space. The average purity is the highest at this
moment. In the same way, the neighborhood radius in the three-dimensional space is
about 20 and 35, If the parameter r is too large or too small, it will affect the quality of
stream data clustering. The result can provide guidance for the setting of the neigh-
borhood radius parameter in the experiment of this article.

Liu et al. J Wireless Com Network ~ (2022) 2022:102

1

0 W

2 06
2 04

0.2

0

LS LLLLLL LSS LSS

FEELP LSS E S
rate(pt/s)

Fig. 19 Effect of stream data rate on purity over time. In the figure 19, the blue fold describes purity of
clustering result at multipledifferent rates over time

0.95

0.9

0.85

E 0.8
o

075

0.7

0.65
5 10 15 20 25 30 35 40 45 50 55 60 65 70

two-dimension 0.79916 0.8131 0.904850.856570.831810.841660.834560.884090.87254 0.911530.875410.827810.785480.77119

three-dimension 0.78738 0.8556 0.871550.903660.889880.841610.88491 0.8419 0.801220.781220.781220.766930.766930.76122
r

three-dimension

Fig. 20 Effect of r on clustering purity. The blue curve depicts the effect of radius changes on purity

in two-dimensional space, while the red curve depicts the effect of radius changeson purity in

three-dimensional space

two-dimension

In SKDStream algorithm, the density threshold © is a key parameter to capture clus-
tering results. In real-life scenarios, the arrival rate of streaming data may be constantly
changing. The dynamic adjustment of the density threshold is an indispensable part of
the data stream clustering algorithm. The SKDStream has the ability of adjusting the
density threshold to adapt to the evolution of data distribution. In order to better dem-
onstrate the effectiveness of the dynamic density threshold, we use the synthesized data
set Syn to compare the dynamic adaptive and static fixed density thresholds. The fol-
lowing table counts the number of nodes in the SKDTree tree. In order to compare the
memory consumption cost at different density values, we adjust threshold value in a
timely manner. It can ensure the number of nodes in the tree keeping relatively stable. It
is obvious that the dynamic adjustment of the density threshold usually consumes lower
memory cost than the static fixed value (Table 3).

5 Conclusion

We propose the SKDStream algorithm, a dynamic clustering algorithm on time-decay-
ing data stream, which employs a hierarchical strategy to rapidly process dynamically
decaying data. SKDStream defines MBH to abstract subspaces, thereby effectively rep-
resenting summary information, and maintains clusters in real-time through the storage

Page 29 of 31

Liu et al. J Wireless Com Network ~ (2022) 2022:102 Page 30 of 31

Table 3 The numbers of node in SKDTree

Time 5 10 15 20 25 30 35 40 45 50
Static 18 23 46 58 81 68 74 56 50 49
Dynamic 18 29 35 41 52 44 63 48 53 46

structure SKDTree. We compare SKDStream with EDMStream and D-Stream in terms
of response time and clustering quality, the final experimental results demonstrate the
efficient and effective of clustering, as well as the ability of tracking the evolution of
clusters, including number, center and density. In future, we hope that SKDStream algo-
rithm can be improved to adapt to complex stream data, such as multiple stream data
with mapping relationship and multi-view stream data.

Abbreviations
MBH Minimum bounding hypercube

Author contributions
All authors reviewed and edited the manuscript. All authors read and approved the final manuscript.

Funding
This work is supported by the National Natural Science Foundation of China(61202022). Innovative Research Group
Project of the National Natural Science Foundation of China.

Availability of data and materials
The experimental datasets generated and analyzed during the current study are from UCI Machine Learning Repository.

Declarations

Competing interests
The authors declare that they have no competing interests.

Received: 11 May 2022 Accepted: 15 August 2022
Published online: 15 October 2022

References

1. MR. Ackermann, M Martens, C. Raupach, K. Swierkot, C. Lammersen, C. Sohler, Streamkm-++ a clustering algorithm
for data streams. J. Exp. Algorithmics 17, 1-2 (2012)

2. C.Aggarwal, S.Y. Philip, J. Han, J.Wang, A framework for clustering evolving data streams. In: Proceedings 2003 VLDB
conference, pp. 81-92. Elsevier, (2003)

3. A Amini, H. Saboohi, T. Herawan, T.Y. Wah, Mudi-stream: a multi density clustering algorithm for evolving data
stream. J. Netw. Comput. Appl. 59, 370-385 (2016)

4. A.Amini, T.Y. Wah, H. Saboohi, On density-based data streams clustering algorithms: a survey. J. Comput. Sci. Tech-
nol. 29(1), 116-141 (2014)

5. JL. Bentley, Multidimensional binary search trees used for associative searching. Commun. ACM 18(9), 509-517
(1975)

6. AM.Berg, S.T. Mol, G. Kismihdk, N. Sclater, The role of a reference synthetic data generator within the field of learn-
ing analytics. J. Learn. Anal. 3(1), 107-128 (2016)

7. CG.Bezerra, BS.J. Costa, LA. Guedes, PP. Angelov, An evolving approach to data streams clustering based on typi-
cality and eccentricity data analytics. Inf. Sci. 518, 13-28 (2020)

8. F.Cao, M. Estert, W. Qian, A. Zhou. Density-based clustering over an evolving data stream with noise. In: Proceedings
of the 2006 SIAM international conference on data mining, pp. 328-339. SIAM, (2006)

9. Y.Chen, L.Tu. Density-based clustering for real-time stream data. In: Proceedings of the 13th ACM SIGKDD interna-
tional conference on Knowledge discovery and data mining, pp. 133-142, (2007)

10. S. Chung, D. Mcleod, Dynamic topic mining from news stream data (Springer, Berlin, 2003)

11. M. Cui, D. Han, J. Wang, An efficient and safe road condition monitoring authentication scheme based on fog com-
puting. IEEE Internet Things J. PP(99), 1-1 (2019)

12. M. Cui, D. Han, J. Wang, K.C. Li, C.C. Chang, Arfv: an efficient shared data auditing scheme supporting revocation for
fog-assisted vehicular ad-hoc networks. IEEE Trans. Veh. Technol. 69(12), 15815-15827 (2020)

13. J.de Andrade Silva, E.R. Hruschka, J. Gama, An evolutionary algorithm for clustering data streams with a variable
number of clusters. Expert Syst. Appl. 67, 228-238 (2017)

Liu et al. J Wireless Com Network ~ (2022) 2022:102 Page 31 of 31

14. J.Gama, P. P.Rodrigues, L. Lopes, Clustering distributed sensor data streams using local processing and reduced
communication. Intell. Data Anal. 15(1), 3-28 (2011)

15. M. Ghesmoune, M. Lebbah, H. Azzag, State-of-the-art on clustering data streams. Big Data Anal. 1(1), 1-27 (2016)

16. S.Gong, Y. Zhang, Y. Ge, Clustering stream data by exploring the evolution of density mountain. Proc. VLDB Endow.
11(4),393-405 (2017)

17. D.Han, N. Pan, K.C. Li, A traceable and revocable ciphertext-policy attribute-based encryption scheme based on
privacy protection. I[EEE Trans. Depend. Secure Comput. PP(99), 1-1 (2020)

18. D.Han, Y. Zhu, D. Li, W. Liang, A. Souri, K.C. Li. A blockchain-based auditable access control system for private data in
service-centric iot environments. IEEE Transactions on Industrial Informatics, (2021)

19. R.Hyde, P. Angelov, AR. MacKenzie, Fully online clustering of evolving data streams into arbitrarily shaped clusters.
Inf. Sci. 382, 96-114 (2017)

20. C.lIsaksson, M.H. Dunham, M. Hahsler, Sostream: self organizing density-based clustering over data stream. In: Inter-
national workshop on machine learning and data mining in pattern recognition, pp. 264-278. Springer, (2012)

21. MK Islam, M.M. Ahmed, K.Z. Zamli, A buffer-based online clustering for evolving data stream. Inf. Sci. 489, 113-135
(2019)

22. P.Kumar, Data stream clustering in internet of things. SSRG Int. J. Comput. Sci. Eng. 3(8), 1-14 (2016)

23. V.Kumar, JK. Chhabra, D.Kumar, Initializing cluster center for k-means using biogeography based optimization. In:
international conference on advances in computing, communication and control, pp. 448-456. Springer, (2011)

24. H.Li,D.Han, M. Tang, A privacy-preserving storage scheme for logistics data with assistance of blockchain. IEEE
Internet of Things J (2021)

25. J.Ren, R. Ma, Density-based data streams clustering over sliding windows. In: 2009 Sixth international conference on
fuzzy systems and knowledge discovery, pp. 248-252. IEEE, (2009)

26. J. Steil, M.X. Huang, A. Bulling, Fixation detection for head-mounted eye tracking based on visual similarity of gaze
targets. In: Proceedings of the 2018 ACM Symposium on eye tracking research & applications, pp. 1-9, (2018)

27. Q.Tian, D. Han, K.C. Li, X. Liu, L. Duan, A. Castiglione, An intrusion detection approach based on improved deep
belief network. Appl. Intell. 50(10), 3162-3178 (2020)

28. K. Udommanetanakit, T. Rakthanmanon, K. Waiyamai, E-stream: evolution-based technique for stream clustering. In:
International Conference on advanced data mining and applications, pp. 605-615. Springer, (2007)

29. X.Ji,G.Wang, T. Li, W. Deng, G. Gou, Fat node leading tree for data stream clustering with density peaks. Knowl.
Based Syst. 120,99-117 (2017)

30. C.Yin, L. Xia, J. Wang, Application of an improved data stream clustering algorithm in intrusion detection system. In:
advanced multimedia and ubiquitous engineering, pp. 626-632. Springer, (2017)

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com

	SKDStream: a dynamic clustering algorithm on time-decaying data stream
	Abstract
	1 Introduction
	2 Related work
	3 Methods
	3.1 Basic conceptions and problem definition
	3.2 SKDTree, summary files and operations
	3.2.1 SKDTree definition
	3.2.2 SKDTree operations

	3.3 SKDStream algorithms

	4 Results and discussion
	4.1 Preparations
	4.2 Tracking cluster evolution of data stream
	4.3 Response time comparison
	4.4 Cluster quality comparison
	4.5 Parameters discussion and influence

	5 Conclusion
	References

