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China cles to expand the scope of target detection technology with hyperspectral imagery.

As imaging spectroscopy technology gradually matures, the spectral resolution of
captured hyperspectral images is increasing. At the same time, the volume of data is
also increasing. As a result, the reliability of loV applications is challenged. In this paper,
an intelligent hyperspectral target detection method based on deep learning network
is proposed. It is based on the residual network structure with the addition of an atten-
tion mechanism. The trained network model requires few computational resources and
can provide the results in a short time. Our method improves the value of mMAP50 by an
average of 3.57% for all categories and by up to 5% for a single category on the public
dataset.
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1 Introduction

As we all know, the accuracy of the object detection result is very important for the relia-
bility of IoV applications. However, road conditions change rapidly, and the diversity and
complexity of pedestrians and obstacles increase the difficulty of target detection. The
traditional images have been unable to meet the requirements of target detection tasks.
Sometimes it can easily lead to the intelligent driving system getting the wrong environ-
mental information. Therefore, hyperspectral images have been introduced into IoV in
recent years. However, object recognition from hyperspectral images is computationally
complex. Traditional hyperspectral target recognition algorithms are not only slow and
less robust, but also cannot be applied to hyperspectral target recognition systems.

To solve the above problems, one of these research areas is to optimize the communi-
cation mechanism and a dynamic task offloading mechanism that can handle the mas-
sive amount of data that flows among vehicles and edge servers, to meet the real-time
requirements in IoV [1, 2]. Another research area is to optimize the detection algo-
rithms. The feature compression algorithm which is based on the traditional method

is proposed to process large dimensionality of hyperspectral image data, such as the
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projection method. The dimensionality of hyperspectral image data is reduced through
feature compression to reduce the computational difficulty. But feature compression
method is much more difficult to process, it is complex to solve the feature projection,
and the spectral information of the target is reduced after data compression.

Nowadays, with the rapid development of neural network technology, it has been
widely used in the field of deep learning [3—5]. Neural networks can simulate the mecha-
nism of feature extraction at the level of the human brain. The more layers the neural
network has, the larger its parameters and the stronger its feature extraction capability.
Therefore, more and more excellent neural networks have been proposed, achieving bet-
ter results and less processing time than traditional methods. Meanwhile, their power-
ful feature extraction capabilities have attracted the attention of scholars in the field of
hyperspectral, resulting in the creation of many methods for the classification and detec-
tion of targets based on neural networks to extract the spectral properties of hyperspec-
tral images [6, 7].

Therefore, in order to achieve target detection in hyperspectral images, it is of great
interest to use neural networks for hyperspectral target detection. So in this paper, a
neural network-based model for hyperspectral target detection (Sequeeze and Excita-
tion for Hyperspectral Target Detection: SEHyp) is proposed by analyzing the feature of
hyperspectral images. The model adopts the first-order target detection YOLO model
structure and proposes a new feature extraction module with an attention mechanism
for the spectral features of hyperspectral images. The attention mechanism adaptively
weights the feature information to highlight the important feature information in the
channel and attenuate the irrelevant feature information, thus improving the network
accuracy. In addition, the model output module is modified to adopt a dual output, with
separate outputs for target coordinates and categories, to achieve prediction of target
coordinates and categories. After the experimental verification, a good detection result
is obtained. The trained network model can achieve high accuracy and robustness, it can
provide the results in a short time, which is crucial and can meet the reliable require-
ment of intelligent applications of IoV.

2 Related word

Imaging spectroscopy is an important detection method for acquiring spatial and spec-
tral information from materials, which can be used to obtain hyperspectral images and
plays a crucial role in the field of visual perception, such as target identification, classifi-
cation, and recognition. Imaging spectroscopy is a detection technique that can acquire
both spatial and spectral information about a target by extracting the spectral features of
a feature at an early stage. The following is the current state of research in hyperspectral
target detection technology [8, 9].

JX Yu and others propose a novel workflow performance prediction model (DAG-
transformer) that fully exploits the sequential and graphical relationships between work-
flows to improve the embedding representation and perceptual ability of the deep neural
network. Their study provides a new way to facilitate workflow planning [10].

Harsanyi invented the detection method of constrained energy minimization (CEM)
[11]. The main idea of CEM method is to extract information in a certain area by reduc-
ing the information interference in other areas, and CEM has achieved good results in
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small target detection and is widely used. However, the CEM method requires prior
knowledge of ideal targets for hyperspectral images, so CEM algorithms can only be
used to detect ideal targets.

Jimenenz applied genetic algorithms and projection methods to the extraction and cat-
egorization of hyperspectral image features [12]. A data processing method of projection
tracking proposed by Prof. Friedman [13] was specifically designed for linear dimen-
sionality reduction of high-dimensional data, and the projection method reduces the
dimensionality of data to reduce the difficulty of subsequent data processing. However,
as mentioned in the background of the study, the feature compression method is difficult
to handle and the projection method is complicated to find the eigenprojections, so this
method is only suitable for the target detection of pure point image elements.

Li Wang proposed the SSSERN algorithm [14]. The attention mechanism is mainly
introduced by adding the SE module to the residual network. The accuracy of the net-
work is improved.

There are also detection algorithms based on sparse representation [15, 16], which
represent the image background as a more representative basis vector or spectrum and
use the product of spectral prior knowledge and related parameters to represent the
original hyperspectral data. Li et al. proposed the BJSR (background joint sparse rep-
resentation) algorithm [17], an anomaly detection algorithm for hyperspectral images
using background joint sparse representation by estimating an adaptive orthogonal
background complementary subspace by BJSR, which adaptively selects the most rep-
resentative background basis vectors for local regions, and then proposed an unsuper-
vised adaptive subspace detection method to suppress the background and highlight the
anomalous components at the same time. Although the sparse representation method
can detect anomalous pixel points, it may receive the influence of sensor noise and mul-
tiple reflections of electromagnetic waves during hyperspectral acquisition, which leads
to the spectral variation of the substance, resulting in poor detection of the algorithm,
and the method can only identify the anomalous targets and cannot classify the targets.

3 Problem analysis
3.1 Hyperspectral image detection
Hyperspectral images, which are composed of tens to hundreds of wavelength images,
are three-dimensional structured images with both spatial and spectral information. The
features extracted from hyperspectral images can be roughly divided into two categories:
spatial features and spectral features, which are essentially two very different kinds of
features. Spatial features are a reflection of the target’s position, shape, size, and other
information in two-dimensional space, while spectral features are a reflection of the tar-
get’s ability to reflect light at different wavelengths, which is known as the “spectral fin-
gerprint” and is one of the important optical properties of matter [18—22].
Hyperspectral images are always used as input data for target detection IoV appli-
cations. Hyperspectral images are the product of a combination of imaging and spec-
troscopic techniques. It can store both spatial and spectral information in the range
photographed in a kind of data cube. This data cube can detect and identify objects with
similar appearance but different materials. Hyperspectral images are not RGB images
that only simply integrate the R, G, and B bands. The higher the spectral resolution of
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the hyperspectral image, the higher the number of spectral channels. For different tar-
gets with different representation capabilities, objects with different morphology have
rich spatial information, while the spectral information may be weak, when using spa-
tial features to identify and classify the targets can achieve higher accuracy. When the
objects are similar in shape, their spatial information is weak, but the spectral informa-
tion is rich, so the objects can be distinguished by the spectral information of a certain
wavelength to obtain higher accuracy.

Figure 1 shows the spectral image of the hyperspectral image. Each spectral image is
represented as a grayscale image.

Although hyperspectral stores a large amount of information, it also brings problems
such as large amount of data and redundancy. The target detection application of the
IoV needs to get target feature information from these data. Then, the specified target
and its coordinates and categories are detected from the feature information. Most of
the traditional hyperspectral target detection algorithms only consider the difference of
spectra between different objects and utilize the spectral information of hyperspectral
images, while the spatial information of objects is less used. And their spectral informa-
tion extraction methods generally use feature compression methods to reduce the com-
putational effort, or manually extract the feature spectral bands for difference analysis.
The design of feature compression methods is difficult, such as the complicated feature
projection in the projection method. The manual extraction of the feature spectrum
is designed only for a single target, which is less adaptable to other targets. With the
rapid development of computer hardware, deep learning technology has been improved
unprecedentedly. Neural networks, as the most widely used theory in deep learning,
has demonstrated powerful high-level (more abstract and semantic) feature representa-
tion and learning capabilities. It is able to extract nonlinear correlation features between
data. This makes a qualitative leap in the detection accuracy and speed of target detec-
tion technology [23].

However, models for target detection on hyperspectral images are relatively rare, and
most of them are color images or grayscale images, which lack spectral information

Fig. 1 Hyperspectral image display map
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compared to hyperspectral images. Therefore, the feature extraction module of the tra-
ditional neural network target detection model pays less attention to the spectral infor-
mation and lacks feature extraction for feature extraction between channels.

3.2 Target detection network analysis

The target detection task can be divided into two operations, which are target localiza-
tion and target classification. Target localization is to detect the location of the target in
the image and output the coordinates of the target box, which are continuous data and
belong to the regression task. Target classification is to classify the targets in the target
frame, and the predicted values belong to discrete data, and only a specified number of
categories are predicted for the targets. However, in the neural network target detection
model, the target coordinate frame and the target category prediction values are often
output only in the last convolution operation at the same time, and the two different
task operations increase the difficulty of convolution prediction, so it is also necessary
to improve the output module of the target detection model by using two convolution
operations, respectively.

Deep learning-based algorithms for target detection can be broadly divided into two-
stage and single-stage methods. They have similar frameworks, and both the two-stage
and single-stage algorithms can be divided into the structure shown in Fig. 2. Only
for different types of detection models, the designed improvements focus on different
aspects. The first-order model is an end-to-end model, where the input data is passed
through the neural network and the prediction results are directly output.

The backbone module is used to extract features from the input data. Common back-
bone networks include VGG16, ResNet50, CSPResNeXt50, and CSPDarknet53-[24—27].
Usually, some functional layers are inserted in the middle of the backbone and head
modules, which are used to collect feature mappings from different stages for fusion.
These functional layers are called neck modules. For single-stage algorithms, the Den-
sePrediction module completes the regression prediction of the prediction frame and
categories, while for two-stage algorithms, further regression operations are required on
the preselected frame [28]. As Sparse Prediction is shown in Fig. 2, the detection time
of the second-order model therefore increases. However, all these models only process
target detection on color images, which have only three channels, while hyperspectral
images have tens or even hundreds of channels, and a complete and continuous spectral
curve can be extracted from each pixel point of hyperspectral images. In order to extract

Two—Stage Detector

One-Stage Detector

Input Backbone Neck Dense Prediction Sparse Prediction

—2 [y

S| 5

Fig. 2 Target detection architecture
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hyperspectral image features effectively, it is necessary to improve the structure of tradi-
tional target detection models.

In the target detection model structure, the backbone module is used to obtain the fea-
ture map by convolution operation on the input data with convolution kernels. However,
the convolution operation only performs feature extraction on the image space dimen-
sion. For hyperspectral images, the spectral information of matter is also an important
basis for judging the target, so it is necessary to operate on the data channel dimension
in the feature extraction module of the model.

In the hybrid-CNN network model [29], a joint null-spectrum operation is used for
feature extraction of the spatial dimension and spectral segment dimension in the clas-
sification operation of the target. It employs an attention mechanism that allows the
network to adaptively weight the feature information to highlight a certain important
channel feature information. Meanwhile, attenuating irrelevant channel characteristic
information. The network accuracy improves a lot. Although what we do in this paper is
target detection, its method can also be borrowed by introducing the attention mecha-
nism in the feature extraction module of target detection to improve the feature extrac-
tion capability for the channel dimension of the input data.

In summary, in order to solve the problems of complex feature compression and poor
adaptability of traditional target detection, this paper will research on how to adopt neu-
ral network methods for target detection of hyperspectral images. For the neural net-
work method, most of the target detection models are for color images. In order to be
able to utilize the unique spectral features of hyperspectral images, we consider intro-
ducing an attention mechanism in the feature extraction stage to improve the feature
extraction ability of the network between channels. We also decouple the target localiza-
tion task and the target classification task in target detection and try to use two convolu-
tional operations in the output module to predict the two tasks separately.

4 Proposed methodology

In this paper, we propose a neural network-based hyperspectral target detection model,
whose network structure is shown in Fig. 3. The overall network structure of SEHyp con-
sists of a convolutional neural network with a first-order target detection framework,
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which contains three major network modules: backbone module, neck module, and
head module. The backbone module consists of six ResSEblock blocks to extract the
feature information from the input data. The neck module consists of SPP blocks and
a pyramidal convolutional structure, which uses different stages of feature information
output from the feature extraction module as input, then performs fusion of different
feature information to achieve detection of targets of different sizes. Finally, the head
module is the output module of the network model, which is used to output the pre-
diction value, including the coordinates of the target frame, the target category and the
confidence level, which is used to determine whether there is a target in the target frame.

4.1 SEHyp backbone

As mentioned in the introduction part for the spectral characteristics of hyperspec-
tral images, modifications are needed in the feature extraction module, so the atten-
tion residual module (ReSEblock) is proposed in this paper, and its network structure is
shown in Fig. 4. The overall structure of the network consists of a residual network, and
an attention mechanism is added to the final output link in order to be able to extract
feature information between channels.

ResSEblock contains N Resblocks. N is the number multiplied by Resblock in Fig. 4.
The number of channels is halved by the convolution of the input feature map, and then
fused on both sides. This not only reduces parameters, but also reduces computation,
while the number of channels remains the same. Finally, the output of the ResSEblock
also goes through the SE block. It selectively emphasizes informative features through
an attention mechanism. Nonlinear features between spectral bands are effectively
extracted by selectively emphasizing informative features.

Resblock mainly consists of 1x1 and 3x3 convolution kernels. It uses 1x1 convolu-
tion kernels to compress the number of channels. This not only reduces the number of
parameters of the model, but also reduces the number of computations of the model.
The residual structure can effectively prevent gradient explosion and gradient disappear-
ance as the number of network layers is added. It operates by jumping connections, add-
ing the input feature map data to the output feature map data, and then transferring the
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result to the next layer. Finally, nonlinearity is introduced with the Mish activation func-
tion. The Mish formula is shown in formula (1)

Mish = x x tanh(In(1 + €*)) (1)

The SE block (Sequeeze-and-Excitation Block) was proposed by Jiehu et al [30]. It is an
implementation of the attention mechanism which can improve the response of channel
features. The SE module adaptively recalibrates the representation of feature channels. It
learns to use global information to selectively enhance channel feature representations
and suppress useless parts.

The structure of the SE module is shown in Fig. 5. The whole SE module can be divided
into three steps. First, global average pooling is performed on U, outputs channel eigen-
values of 1 x 1 x C size. The data were then subjected to two 1 x 1 convolution opera-
tions. The first convolution compressed C channels into C/r channels and used the ReLU
activation function to add nonlinearity to the data, where r is the compression ratio; the
second convolution uses the sigmoid activation function to restore the channel to the C
channel again. The obtained 1 x 1 x C weight data are multiplied with the input feature
map of the corresponding channels as the next level input feature map. The mathemati-
cal formula is as follows:

Out = X  Sigmoid (F» (ReLU (Fy (Fsy(X), W1)), W2)) 2)

W, and W, are parameters in the convolution operation, and F1(:, -) and F2(, *) are
convolution operations. The SE module selectively emphasizes informative features to
enhance important channels and weakens non-important channels to improve the rep-
resentation of features by learning and adaptively weighted features. Therefore, adding
an attention mechanism to the feature extraction network allows the network to adap-
tively weight the feature information to highlight important features. The accuracy of the
network can then be improved.

4.2 SEHyp neck

The neck of SEHyp model consists of SPP module and pyramid structured convolutional
layers. The feature information is fused by different pooling operations and upsampling
or downsampling and finally outputs the fused feature Si. The SSP module uses 1 x 1, 3
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Fig. 5 SE module structure
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x 3,5 x 5and 13 x 13 pooling kernels for max pooling. The feature values get different
perceptual field by pooling of different sizes. This allows different feature information to
be obtained, therefore improving the detection capability of the network for small tar-
gets and the localization accuracy.

The role of the neck module of the SEHyp model is to fuse different feature informa-
tion, enabling the network to improve the detection of targets of different sizes. The
main work of this module is to fuse the feature information extracted from the back-
bone module. As shown in Fig. 6, the ith ReSEblock block in the backbone module is
represented by ui(xi|wi), where xi denotes the input data of the ith block and wi denotes
the network parameters of the block. Use Q(a|wQ) for the neck module, where a is the
input data of the neck module and wQ is its network parameters. The output feature
values pi(x5|w5), pi(x6|w6) and pi(x7|w7) of the backbone module are used as the input
of the neck module parameter 4, the different stages of the convolution layer obtain dif-
ferent feature information, the perceptual field of each pixel point is different, and the
perceptual field obtained at different depth network structures will increase accordingly,
so inputting feature information with different perceptual fields to improve the feature
fusion efficiency can enhance the accuracy of different size target detection.

4.3 SEHyp head

The SEHyp head module is an output module of the model. For the model output mod-
ule coupling problem, as shown in Fig. 7, the two branches are used to predict the target
class and coordinates.

Object classification determination is a classification problem, while object location
prediction is a regression problem. If both types of predictions use a convolution opera-
tion, the information is combined. This can make regression more difficult. Moreover,
the spectral information unique to the hyperspectral map plays a crucial role in the
detection, so two convolutional branches are used here for classification and coordinate
prediction respectively. Two parallel branches are used to do the prediction of two tasks
separately, so that different head modules can do their respective tasks and reduce the
difficulty of prediction regression.
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Fig. 6 SEHyp neck module structure
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Class,

Box, + Prediction,

Fig. 7 SEHyp head module structure

The head module is denoted by H(Si|wHi), Si is input data of the head module, which
is the feature information output by the neck module. The results Classi, Boxi and Predi-
cioni output finally, where Classi is the probability of each category, Boxi is the coordi-
nate of the center point of the target box with the box length and width values, Predicioni
is the confidence level, which is used to determine whether the target exists in the box.
The output of the head module, the target classification prediction output sizes are (52,
52, ClassNum x 3), (26, 26, ClassNum x 3) and (13, 13, ClassNum x 3). Here, ClassNum
is the number of models that can be classified, and 3 is the three prediction frames that
the model predicts for each pixel. The target coordinates lose the predicted output sizes
for (52, 52, 15), (26, 26, 15) and (13, 13, 15). 15 is calculated from the coordinate point
and confidence from the three boxes, whereas the confidence level is used to determine
if there is a target in the box.

4.4 Loss function

In order for the model to perform the inverse process, a loss function is also required to
calculate the difference between the predicted and true values. The size of the final pre-
dicted output value is K x K x ((ClassNum + 5) x 3), where the side length of the grid
is K. Therefore, the grid has a total of K x K grids. Each grid predicts three prediction
frames. And each predicted frame requires the predicted class, the vertex coordinates of
the frame, and the confidence. The loss function is shown in formula (3).

KxK M
loss (object) = Acoord Z Z[;}bj 2 —w; x h)[1 — CIOU]
i=0 j=0
KK M
-3 3 {ci log (C)) + (1 — Cp)log(1 — c,«)}
i=0 j=0
KxK M il A R
~ Jnookj D 15[ Cilog (C) + (1= i )log(1 = G|
i=0 j=0
Kxk M
=D >0 Y [Pi©logpi() + (1 —pile))log(1 — pi(e))]

i=0 j=0 ceclasses
3)
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The loss function ;obj is used to determine whether there is a target in the jth predic-
g
tion box of the ith grid. When it is 1, there is a target. When it is 0, there is not. There-

fore, when there is no target in the grid, only the fourth row of the formula is calculated
that means only the confidence loss is calculated. The first two lines of the loss function
are the loss function for the predicted frame. The CIOU algorithm [15, 31] was used.
For the traditional IOU loss function [32], if the two boxes do not intersect, the distance
between the two boxes cannot be reflected, which means the loss is 0. It does not accu-
rately reflect the size of the overlap of the two boxes. The CIOU loss function solves the
problem that the loss is 0 when the two frames do not overlap by calculating the Euclid-
ean distance between the centroids of the two frames. It also increases the scale loss
of the predicted frame. Thus, the regression accuracy is improved. This improves the
accuracy of the regression. 1,4 is the weight coefficient, K is the side length of the grid,
M is the number of predicted frames per grid, w and h are the width and height of the
predicted frame, and x and y are the coordinates of the grid center point of the predicted
frame. The formula for calculating confidence loss is in the third and fourth lines. Confi-
dence loss is calculated using cross-entropy. The loss value is still calculated when there

are no objects in the grid. But its share in loss is controlled by A weights. The last line

noobj
of the equation is the loss function for the class. The cross-entropy loss function is used.
But the class loss is only calculated if there are targets in the grid.

In summary, the learning process of the hyperspectral target detection network model

is as follows.

Data processing is performed on the training data.
Input the data into the network model.
Perform data feature extraction by the backbone module.

L

The feature values extracted from the previous module are fused with the features by

the neck module.

5. Input the fused features into the head module to make the final output data predic-
tion.

6. Calculate the loss function from the corresponding image labels and predicted val-

ues, and update the network parameters.

7. Repeat steps (2)—(6) until the network converges or the training count is completed.

5 Experimental results and analysis
This section describes the training regime and experiments for our models.

5.1 Experimental setting

In this section, we conduct simulation experiments to verify the deep learning-based
hyperspectral target detection algorithm. The data categories used in the experiments
are six different categories of shoes. The object coordinates and category labels in the
images are stored in an XML file which is in the same format as the coco dataset labels.

The data source is divided into two parts. One is the real hyperspectral image acquired
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by the hyperspectral image acquisition system I built in the optical laboratory, and the
other is the hyperspectral image generated by the AWAN algorithm.

The hyperspectral acquisition system is an image acquisition system based on the
principle of single-slit push-broom spectral imaging. The initial model of the system is
shown in Fig. 8. The AWAN algorithm was proposed by Li Yunsong et al. [33]. It per-
forms spectral reconstruction from RGB images based on deep learning. The paper
proposes the AWCA module. This is an adaptive weighted attention mechanism. It can
improve the reconstruction accuracy of the network. Thus, the simulation accuracy of
RGB image to hyperspectral image is improved. The AWAN algorithm is used to convert
the acquired RGB images into hyperspectral images. This expands the training dataset.

There are 10236 hyperspectral images which are divided into 6 categories. The spectral
bands range from 400 to 700 nm, separated by 10 nm. There are a total of 31 spectral
bands, which are stored in mat file format. Eighty percentage of the dataset is used as the
training set, 10% as the validation set, and 10% as the test set. The training set is used to
train the neural network model. The validation set is used to verify the effect of network
training. The test set is used to test the actual learning ability of the network.

5.2 Experimental evaluation index
The evaluation metrics used in this experiment mainly include: Precision, Recall, Aver-
age Accuracy (AP), and Mean Average Precision (mAP).

(1) IOU: The IOU formula is used to determine the similarity of two rectangular boxes,
as shown in formula (4). When calculating AP, it is usually necessary to state at what
IOU value the average correct rate is. For example, AP50 means that when the IOU is
greater than or equal to 0.5, the prediction box has selected the target.

_ Area of intersection of two rectangular boxes

IOU =
Area of two rectangular boxes merged @)

(2) Precision, Recall, and F1: As shown in Fig. 9, the True class is the true value, and
the Hypothesized class is the predicted value. Y is the positive class and N is the negative
class. TP represents the probability that the model predicts that the target exists and the
true target also exists. TN represents the probability that the model predicts that the tar-
get does not exist and the true target does. FP represents the probability that the model
predicts that the target exists and the real target does not. TN represents the probability
that the model predicts that the target exists and the true target does not. Precision is

Fig. 8 The process of building a hyperspectral image acquisition system
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True class

Y N

Y True False
Positives Positives
Hypothesized
class
N False True

Negatives Negatives

Fig. 9 Schematic diagram of evaluation indicators

the probability of the positive class, which is the percentage of true classes among the
positive classes predicted by the model shown in Eq. (5). Recall is the ratio of the positive
class detected by the model to the true class. It is the percentage of true classes detected
by the model which is shown in Eq. (6). F1 score can combine the balance of recall and
precision, which can well distinguish the advantages and disadvantages of algorithms. It
is shown in Eq. (7).

Precisi P 5
recision = ———
TP + FP ®)
Recall P 6
ecall = ——
TP + FN ©)

Precision x Recall
F1=2x — (7)
Precision + Recall

(3) AP and mAP: AP (Average Precision) is the average precision. Precision and Recall
tend to be mutually exclusive. When Precision was little, Recall was large. Precision was
large when Recall was little. AP balances the two well using the surface area under the
Precision and Recall curves. The area under the curve is the AP value for that category.
The larger the area, the more accurate the model is for that class. mAP (mean Aver-
age Precision) is the mean average precision. It is used to measure the performance of
the model in all categories. For object detection systems, usually multiple objects are
detected. AP is an evaluation index for a single category. Therefore, mAP obtained by
calculating the average of APs of all categories can effectively measure the quality of the
model for all categories.

5.3 Experimental environment and procedure

This experiment was performed on Ubuntu 20.4. Pytorch is used to build deep learn-
ing models. The main software components used are: torch version 1.2, torchvision ver-
sion 0.4, tqdm version 4.60, opencv_python version 4.1.2.30, h5py version 2.10, etc. The
server hardware configuration is: Intel Xeon 6226R processor, 256G RAM, 11TB hard
drive capacity, two GeForce RTX3090.
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For model training, the backbone network uses pretrained weights. First, a backbone
network is used for classification training on RGB images. The weights of the backbone
network will not be too random. It is helpful for the training weights of the later target
detection model to converge better. The input size of the hyperspectral object detection
model is 416 x 416 x 31. The training method is freezing training. It is divided into two
stages: freezing period and thawing period. Freeze period freeze the backbone network.
That is, the parameters of the feature extraction network do not change during freezing.
Only the parameters of neck and head are fine-tuned. The epoch number is 50 and the
learning rate is 0.001. The learning rate is changed by the cosine annealing method. Dur-
ing the thawing period, the backbone network is thawed. The entire model parameters
were trained with 50 epochs and a learning rate of 0.0001. It will decrease as the number
of training cycles increases. The optimizer used for model training is adaptive moment
estimation (Adam) with parameters 3; = 0.9, 3, = 0.999, weight_decay = 0.0005.

5.4 Experimental results

In this experiment, the detection performance of three models, YHyp network with only
modified inputs, YSE network with added attention mechanism, and SEHyp network
designed in this chapter is tested.

Figure 10 illustrates the change of loss function values between the training set and
the test set during the training process. It can be seen that the loss function decreases
faster initially, which is due to the fact that during the training process, migration learn-
ing is used. The method first trains the feature extraction module in a classification task
and then migrates it to the model. So the freeze training is performed first to freeze the
parameters of the feature extraction module and train only the parameters of the neck
and head modules, Therefore, after several training sessions, the network can quickly
adapt to the target detection task and the loss function decreases faster. When the train-
ing reaches 50 times, the training will be unfrozen and the parameters of the feature
extraction module will be changed, so it can be found from the figure that the loss has a
large decline after the 50th training.

50 T T T T T T T

— |oss
451 = val loss | 7|

351 7
30 7

25 H q

Loss

20 - q

) . . L . . . . . .
0 10 20 30 40 50 60 70 80 90 100

Epoch

Fig. 10 Network model training process
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Fig. 11 SEHyptarget detection results (19th spectrum)

Fig. 12 Pseudo-RGB images 1(29th, 19th, and 9th spectrum)

The detection results are shown in Figs. 11, 12, 13, and 14, which is part of the results
detected by the SEHyp model. Figures 12, 13, and 14 show the pseudo-color image,
because the hyperspectral image has 31 spectral bands containing visible light from vio-
let to red, which cannot be displayed directly, so the 9th spectral band, the 19th spectral
band, and the 29th spectral band are extracted from the hyperspectral image to form
the RGB triple channel of the color image, so the color image is displayed. In Fig. 11, the
separate results are also presented in the grayscale image of the 19th spectral band. The
detection results are displayed in the 19th spectrum, which has a better light intensity in
the middle, because the appearance of the target is not well displayed in the front of the
visible spectrum in hyperspectral images.
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Fig. 13 Pseudo-RGB images 2(29th, 19th, and 9th spectrum)

Fig. 14 Pseudo-RGB images 3(29th, 19th, and 9th spectrum)

As shown in Figs. 15, 16, and 17, three metrics of target detection effectiveness
are illustrated in the figure, Fig. 15 shows the value of F1 for target detection, Fig. 16
shows the value of Precision for target detection, and Fig. 17 shows the value of recall
rate for target detection. When the IOU threshold value is taken as 0.5, F1 and recall
rate can be found by the figure that the present method has been improved consid-
erably, which indicates that the overall effectiveness of the model with the ability to
detect the presence of targets has been increased. For the precision value, the method
is lower than the detection precision of the YSE model, but its value still reaches
86.71%, and the accuracy of the detected targets is high.

The results of the three network tests are shown in Table 1. APss, mAP50, and
mAP75 are also shown here as evaluation metrics. APss is the value of AP50 in the
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Fig. 15 Value of F1 in each model
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Fig. 16 Value of Precision in each model

Skating and Skiing category of the detection dataset. mAP50 and mAP75 are the aver-
age value of AP when IOU is set to 0.5 and 0.75. We also count the detection time on
the GPU to judge the model performance. As the attention mechanism SE is added
to the backbone network, the value of AP for skating and skiing category is shown
in Fig 18. Compared with YHyp, the overall method has improved, especially in the
Recall value greater than 0.8, the Precision has improved more. Compared with YSE,
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Fig. 17 Value of Recall in each model
Table 1 Model test results
Method Fl1sg Preg, Recalls, AP mAP50 mAP75 detection
times (s)

YHyp 0.64 87.60% 50.00% 70.64 46.64 34.52 0.86

YSE 0.60 96.55% 43.75% 7545 50.21 40.28 0.92

Our 0.75 86.71% 66.37% 76.25 51.10 40.84 0.93

the area of AP decreases when Recall is less than 0.7, but the area of AP is improved.
Overall, the value of APss is increased by 5%, the mAP value is significantly improved.
mAP50 value is increased by 3.57%. But the detection time increases with the increase
of backbone network parameters. The overall time is within 1 second, which can
meet the requirements of the IoV system. In the case of the improved head module
for binary branch prediction, the value of mAP50 is improved. But the time did not
add much. Because the number of channels is reduced by using a 1 x 1 convolution
operation before entering branch prediction. And the subsequent computations are
also reduced. It can be seen that the hyperspectral target detection model designed in
this paper can effectively perform the hyperspectral target detection task of IoV appli-
cations. Although the time-consuming has increased, it is still within the acceptable
range for the IoV system.

6 Conclusion

It can be seen that the hyperspectral target recognition model based on deep learning
developed in this paper can effectively perform the task of hyperspectral target recogni-
tion. Compared with other traditional detection algorithms, the algorithm not only can

be processed for the collected hyperspectral images, thus greatly improving the detection
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accuracy in the process of IoV applications. The introduction of the attention mechanism
makes the cost of time small, which is crucial and can meet the reliable requirement of
intelligent applications of IoV.

A two-order target detection architecture model can be added in the future. Although
the two-order target detection architecture model is computationally time-consuming, the
detection accuracy is generally higher than that of the first-order target detection model.

Abbreviations

loV Internet of vehicle

RGB Red, green, and blue

SE Sequeeze-and-excitation

SEHyp Sequeeze and excitation for hyperspectral target detection
mAP Mean average precision

AP Average accuracy
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