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1  Introduction
Over the last years, the interest on the integration of unmanned aerial vehicles (UAVs) to 
cellular networks as new aerial nodes has exponentially increased  [1, 2]. The advance-
ments on cellular technologies with the fifth generation of wireless networks (5G) and 
the expected almost ubiquitous accessibility to these networks make UAVs to be consid-
ered as a crucial component of the sixth generation of wireless networks (6G). UAVs are 
expected to be deployed as aerial base stations (ABSs), access points (APs), or relays to 
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assist terrestrial communications within the so-called UAV-assisted communications. In 
this way, the advantageous characteristics of UAV-assisted communications, such as on-
demand deployment, low-cost, flexibility in network reconfiguration, and high chance 
of line-of-sight (LoS) links, promote the emerging of a number of novel use cases and 
applications in different contexts such as disaster areas, smart agriculture, traffic control, 
search and rescue, package delivery, among others  [3, 4].

Nonetheless, with all the expected technological and architectural progress for 6G, 
especially with the integration of artificial intelligence (AI) into the network operation 
and management and the advancements of quantum computing with its potential to 
break pre-quantum cryptographic methods, security becomes a highly critical aspect in 
order to guarantee the levels of resilience and reliability planned for 6G   [1]. Physical 
layer security (PLS) has attracted increased attention as a mechanism to provide more 
robust and quantum-resistant protection to wireless networks by relying on the unique 
physical properties of the random and noisy wireless channels to enhance confidentiality 
in a flexible and adaptive manner. Thus, PLS can find a new horizon in the 6G era, espe-
cially for the constrained scenarios of Internet of things (IoT) applications  [5, 6].

Under these circumstances, UAVs can also be exploited for the design of secure solu-
tions in UAV-assisted communications via PLS; thus, the challenges and opportunities 
for preventing passive and active attacks in wireless networks have been recently dis-
cussed in  [7]. On the one hand, UAV-assisted communications are more vulnerable to 
eavesdropping and jamming attacks due to their strong LoS links compared to commu-
nication between ground nodes; on the other hand, UAVs can also be used to launch 
more effective attacks   [7]. Therefore, there is a vast research area to be exploited for 
providing secure wireless communications in the UAV era, and some have been already 
reported in the literature  [8–16].

Particularly, the introduction of UAV nodes acting as friendly jammers in order to 
improve the secrecy performance of wireless networks has recently risen special atten-
tion. For instance, in  [8], an optimal three-dimensional (3D) deployment and jamming 
power of UAV-based jammer was proposed to improve the secrecy performance of a 
legitimate transmission between a pair of nodes for unknown eavesdropper location. 
In   [9], the secrecy outage probability (SOP) of a UAV-based mmWave relay network 
in the presence of multiple eavesdroppers is investigated. Two scenarios are considered, 
with and without cooperative jamming, which is introduced via the destination and an 
external UAV. In  [10], the authors studied the secrecy performance of a non-orthogonal 
multiple access (NOMA)-based scheme in a mmWave UAV-assisted wireless network by 
considering a protected-zone approach. In  [11], the existence of an optimal UAV jam-
mer location on a network with multiple eavesdroppers was proved, and the impact of 
the density of eavesdroppers, the transmission power of the UAV jammer and the den-
sity of UAV jammers on the optimal location was investigated.

Moreover, the joint optimisation of the transmit power and the trajectory of a UAV-
based friendly jammer in a three-dimensional space was investigated in   [12]. Therein, 
the problem of average achievable secrecy rate maximisation of the secondary system 
was investigated for a cognitive relay network by considering the imperfect location 
information of ground nodes, that is the eavesdropper, secondary receiver and primary 
receiver. Also in  [13], the secrecy rate maximisation problem of a mobile user over all 
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time slots is studied by considering a dual UAV-enabled secure communication system, 
where one UAV sends confidential information, while the other serves as friendly jam-
mer. Both UAVs are considered to be energy-constrained devices, and the location infor-
mation of eavesdroppers is imperfect. Therein, the optimisation problem is solved by 
jointly designing the 3D trajectory of UAVs and the time allocated for recharging and 
jamming sending under constraints such as the maximum UAV speed, UAV collision 
avoidance, UAV positioning error and UAV energy harvesting.

More recently, machine learning (ML) approaches have been considered in order to 
tackle the intricacy of the optimisation problems related to UAV-assisted scenarios, 
where there are a number of coupled variables and the complexity on the characteristics 
of the problems would lead to exhaustive searches or complex operations. Particularly, 
in  [14], a deep reinforcement learning (RL) algorithm is proposed to jointly optimise the 
active beamforming of the UAV, the coefficients of a reflective intelligent surface (RIS) 
elements, and the UAV trajectory to maximise the sum secrecy rate of the legitimate 
users in the presence of multiple eavesdroppers of a mmWave UAV communication 
assisted by a RIS under imperfect channel state information (CSI). Besides, in   [15], a 
deep learning method is employed to optimise a 3D beamformer for the transmission 
of confidential signal and friendly jamming in order to maximise the average secrecy 
rate by considering partial CSI of the legitimate UAV and eavesdropping UAV. Also, the 
authors in  [16] considered UAV jammers assisting a legitimate transmission between a 
UAV and ground nodes in the presence of ground eavesdroppers. Therein, a multi-agent 
deep RL approach was used to maximise the secure capacity by jointly optimising the 
trajectory of UAVs, the transmit power of the UAV transmitter and the jamming power 
of the UAV jammers.

All in all, the employment of friendly jamming has been widely accepted as an effective 
manner to enable confidential transmissions in wireless networks. However, the effec-
tiveness of friendly jamming schemes is in most cases harnessed to the perfect or partial 
knowledge of the CSI of the legitimate and eavesdropping links, which is hard to obtain 
in practice. To dive into the characterisation of the effectiveness of friendly jamming in 
wireless networks, the authors in  [17] proposed two novel area-based metrics, the jam-
ming coverage and the jamming efficiency, in order to provide insights into the design of 
optimal jamming configurations by considering different levels of CSI knowledge. Later, 
in  [18], we considered a UAV-assisted friendly jamming scheme in a wireless network 
in the presence of eavesdroppers. Based on the area-based metrics in  [17], a novel met-
ric, the weighted secrecy coverage (WSC), was proposed to give a better insight into 
the impact of friendly jamming. Thus, the optimal positioning of two UAV jammers was 
tackled in order to maximise the WSC. Further in  [19], we proposed a zero-forcing pre-
coding scheme for the two friendly UAV jammers in order to enhance the efficiency of 
the friendly jamming, thus enhancing the WSC.

Inspired by  [17] and based on  [18], we will advance on the state-of-the-art by study-
ing a UAV-assisted wireless network, where a number of UAVs assist a legitimate ground 
communication between a pair of ground nodes in a confined region on a fading envi-
ronment, and the 3D positioning of the UAVs is optimised in order to maximise the 
WSC metric. For that purpose, we model our optimisation problem as a multi-armed 
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bandit (MAB) problem and provide a RL-based solution.1 Thus, the contributions of the 
paper are the following:

•	 We derive an expression for the SOP of the proposed system, with Rayleigh fading 
ground channels and air-to-ground (A2G) channels with a Rician fading LoS compo-
nent and a Rayleigh fading NLoS component, for a wireless wiretap channel with N 
friendly UAV jammers.

•	 We propose a time frame-based algorithm to optimise the WSC of the system as 
three independent multi-armed bandit problems, one for each positioning variable 
of the UAVs.

•	 Monte Carlo simulations are performed to validate our theoretical expressions and 
to evaluate the performance of the algorithm in terms of the WSC and the energy 
consumption of the system, which show a steady convergence to an optimal result.

The remainder of the paper is organised as follows. In Sect. 2.1, the investigated system 
model is presented. In Sect. 2.2, the considered secrecy metrics are introduced, namely 
the secrecy capacity, SOP, secrecy impact of jamming metric, and the WSC metric. In 
Sect. 2.3, the formulation of the WSC maximisation problem is shown. In Sect. 3,  the 
numerical results are presented. Finally, in Sect.  4, the conclusions of this work are 
presented.

Notation Throughout this paper, and unless stated otherwise, | · | denotes the absolute 
value, Ex[·] denotes the expectation over random variable x, if x is missing the argument 
is considered the random variable, N (x, σ 2) denotes a normal distribution of mean x 
and variance σ 2 , Pr [·] denotes probability, Fx(·) is the cumulative density function (CDF) 
of random variable x, while fx(·) is its probability density function (PDF) and S is a 
double integral over surface S.

Fig. 1  System model

1  This is an extended version of the paper presented at the 2021 Joint EuCNC and 6G Summit, thus part of this paper 
was published in  [18].
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2 � Methods
2.1 � System model

Consider the system illustrated in Fig. 1, comprised of a legitimate pair of ground nodes, 
the transmitter Alice (A) and the receiver Bob (B), who establish an open wireless link 
to send private information from A to B. They are confined on a circular area S of radius 
RA around A. Within S, the presence of an illegitimate node Eve (E) is established, try-
ing to leak the information from the legitimate transmission shared through the wireless 
medium. It is assumed that E is a passive eavesdropper located within the region S, but 
its exact position and available resources are unknown. A is located at the origin of coor-
dinates (0, 0, 0) and B is located along the x-axis at (dAB, 0, 0) , without losing generality. 
To improve the secrecy performance of the system, N UAVs, {Ji}i∈{1,...,N } are deployed to 
act as friendly jammers by emitting pseudorandom noise isotropically in order to pre-
vent E from leaking information. The jammers are positioned at a common height zJ and 
within a circular orbit of radius RJ around A, at angular positions θJi with i ∈ {1, . . . ,N } . 
We assume that the estimate of the radial position of B with respect to A is unreliable; 
thus, we model the distance between A and B as a random Gaussian variable with the 
actual distance dAB being the mean of the estimate (unbiased), and a given uncertainty 
σAB , d̂AB ∼ N (dAB, σ

2
AB), where d̂AB is the estimate of the distance between A and B.

2.1.1 � Ground channels

There are two ground channels to consider between ground nodes, one between A and 
B and the other between A and E. Both channels are considered to undergo Rayleigh 
fading and are subject to additive white Gaussian noise (AWGN) with mean power N0 . 
Then, the corresponding channel coefficients are hAB and hAE , and the respective chan-
nel gains are |hAB|2 and |hAE|2 . For a node U ∈ {B, E} , the channel coefficient hAU is an 
independent complex circularly symmetric Gaussian random variable with a channel 
gain of gAU = |hAU|

2 with a scale parameter of �AU = E
[
|hAU|

2
]
= γAd

−αG
AU  , where dAU 

is the distance between A and node U, αG is the path loss exponent for the ground links 
and γA is the transmit SNR of A given by γA = PA/N0 with PA as the transmit power of 
A.

2.1.2 � Air‑to‑ground channels

There are two air-to-ground channels for each UAV jammer, one between the UAV and 
B and the other between the UAV and E. The channel coefficients for those links are 
given by hJiU , with U ∈ {B, E} and i ∈ {1, . . . ,N }.

The propagation path loss for the A2G channels presents a contribution from a LoS 
component and a non-LoS (NLoS) component, where the contribution of each compo-
nent to the overall path loss is determined by the probabilities PLoS and PNLoS , respec-
tively   [20]. These probabilities are functions of the UAV position with respect to the 
ground node of interest U and are given by  [20]

(1)PLoS =
1

1+ ψ exp
(
−ω

[
180
π

tan−1
(

zJ
rJiU

)
− ψ

]) ,
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where ψ and ω are environmental constants  [21, 22] and rJiU is the distance from node U 
and the projection on the plane of the ith UAV.

The path loss of each component is given by

where αJ is the path loss exponent for the A2G links and ξLoS and ξNLoS are the attenua-
tion factors for the LoS and the NLoS links, respectively. It is also assumed that the LoS 
channel undergoes Rician fading with channel coefficient hLoS

JiU
 and channel gain given 

by gLoSJiU
= |hLoSJiU

|2 , with a scale parameter of �LoS
JiU

= E[|hLoSJiU
|2] = γJi PLoS(L

LoS
JiU

)−1 and 
shape parameter of KJiU , where γJi is the transmit SNR of UAV Ji , γJi = PJi/N0 and PJi 
is the transmit power, with a total jamming SNR of γT =

∑
i γJi . The NLoS component 

undergoes Rayleigh fading with channel gain gNLoS
JiU

= |hNLoS
JiU

|2 , with a scale parameter 
of �NLoS

JiU
= E[|hNLoS

JiU
|2] = γJiPNLoS(L

NLoS
JiU

)−1 . Considering that, the average channel gain 
can be expressed as

2.1.3 � Signal analysis

For the communication process, A sends a symbol x with mean power E
[
|x|2

]
= 1, 

while the UAVs send pseudorandom symbols si with mean power E
[
|si|

2
]
= 1 , with 

i ∈ {1, . . . ,N } . We consider a common noise level with power E
[
|w|2

]
= N0 at every 

node in the system. Thus, the received signal at both B and E is, respectively, given by

with U ∈ {B, E} . Then, the instantaneous received signal-to-interference-plus-noise ratio 
(SINR) at node U can be expressed as

For the particular case with no UAV jammers, the SINR values at B and E are, respec-
tively, given by γB = γAgAB and γE = γAgAE.

2.2 � Performance analysis

As previously mentioned, E is located within a circular area S around A, but no further 
knowledge on the exact position of E is assumed, i.e. E can be in whichever point inside 
S. Therefore, to evaluate the secrecy performance of the proposed system, we consider 
the area-based secrecy metrics proposed in   [17], namely jamming coverage (JC) and 
jamming efficiency (JE), and a new hybrid metric, the WSC, introduced in  [18]. These 

(2)PNLoS = 1− PLoS,

(3)LLoSJiU
= ξLoSd

αJ
JiU

(4)LNLoS
JiU

= ξNLoSd
αJ
JiU

(5)gJiU = gLoSJiU
+ gNLoS

JiU
.

(5)yU = hAUx +

N∑

i=1

hJiUsi + w,

(6)γU =
gAU

1+
∑N

i=1 gJiU
,
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metrics’ definition is based on the SOP, which is derived for the proposed system as 
described below.

2.2.1 � Secrecy outage probability

For the definition of the area-based secrecy metrics, we consider first the SOP   [6] 
defined as

where RS is the chosen rate for a secrecy code and CS is the secrecy capacity, which for 
our system is given by

where CB and CE are the capacities of the channels between A and B and between A 
and E, respectively, with [X]+ = max[X , 0] , which tells us that if the capacity of the ille-
gitimate channel is greater than the capacity of the legitimate channel, no secrecy can be 
achieved.

2.2.2 � Secrecy improvement metric

This metric measures the improvement on the secrecy performance of the proposed sys-
tem, which is measured by the SOP, attained by the introduction of the friendly jamming 
sent by the UAV jammers. Thus, this metric is given by  [17]

where the SOP subscript identifies if the SOP is computed with (J) or without (NJ) the 
presence of friendly jamming. Then, � > 1 values imply a reduction on the SOP by the 
presence of the UAV jammers, while � < 1 is the opposite.

For mathematical tractability purposes, in   [18] we proposed an analogous secrecy 
improvement metric that provides the same general idea with the criteria of secrecy 
achievement ( 1− SOP ) instead of SOP, thus given by

The SOP without jamming term, SOPNJ, is obtained in closed form in [18] as

while, the SOP including jamming, SOPJ is obtained as in Proposition 1.

Proposition 1  The SOP in the presence of N UAV jammers SOPJ for the proposed sys-
tem is given by

(7)SOP = Pr [CS < RS],

(8)CS = [CB − CE]
+ =

[
log2

(
1+ γB

1+ γE

)]+
,

(9)� =
SOPNJ

SOPJ
,

(10)� =
1− SOPJ

1− SOPNJ
.

(11)SOPNJ = 1− e
− 1

�AB

�
2RS−1

�


 1

2RS
�
�AE
�AB

�
+ 1



,
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where FγB(·) is the CDF of the SINR at B, γB, and fγE(·) is the PDF of the SINR at E, γE , 
which are, respectively, expressed as

with U ∈ {B, E} , x̂ = x
�AU

 and

The SOP in (12) can be extended for the channel in (5), with both LoS and NLoS 
components, by considering gJiU = gLoSJiU

+ gNLoS
JiU

 , which implies doubling the amount 
of terms in the sums and products in (13) and (14). The Rayleigh NLoS parameters are 
adapted from Rician channels by setting the shape parameters to zero, KNLOS

JiU
= 0 , mak-

ing ηNLoS
i = (�JiU)

−1.

Proof  Let us consider first the case with 2 UAVs and LoS connection between the 
UAVs and the ground nodes. Under these conditions, gJiU = gLoSJiU

 and �JiU = �LoS
JiU

 . For 
that case, the PDF and CDF of the effective A2G channel gains gJiU are given by  [23]

where I0(·) is the zero-order modified Bessel function of first kind and Q1[·] is the Mar-
cum-Q function of order 1. Additionally, the PDF and CDF of the ground channels gAU 
are given by

Therefore, the CDF of γU is obtained as

(12)SOPJ =

∫ ∞

0
FγB(2

RS (1+ x)− 1)fγE(x)dx.

(13)FγU (x) = 1− e−x̂e

∑N
i=1

(
ηi

ηi+x̂
−1

)
KJiU

N∏

i=1

(
ηi

ηi + x̂

)

(14)

fγU (x) =
1

�AU
e−x̂e

∑N
i=1

(
ηi

ηi+x̂
−1

)
KJiU

(
1+

N∑

i=1

1

ηi + x̂

(
1+

ηiKJiU

ηi + x̂

))
·

N∏

i=1

(
ηi

ηi + x̂

)
,

(15)ηi =
1+ KJiU

�JiU
.

(16)fgJiU (x) =
1+ KJiU

�JiU
e
−KJiU

−
1+KJiU
�JiU

x
I0

(√
4KJiU(KJiU + 1)

�JiU
x

)

(17)FgJiU (x) = 1− Q1

[
√
2KJiU,

√
2(KJiU + 1)

�JiU
x

]

(18)fgAU (x) =
1

�AU
e
− 1

�AU
x

(19)FgAU (x) = 1− e
− 1

�AU
x
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while the PDF is derived from the CDF as

To simplify the notation, in the following steps gAU is used for gA , gJiU for gi , KJiU for Ki 
and �JiU for �i . Thus, by considering  [24, 8.445], the term I0(·) in (16) can be rewritten 
as its series representation as

then, by defining ηi
�
=

1+Ki
�i

 , (16) can be rewritten as

Then, by replacing (24) and (23) into (20) leads to

Then, by plugging (24) and (23) into (20) we obtain

where I1 and I2 are given by

and

(20)

FγU = Pr

[
gAU

1+ gJ1U + gJ2U
< x

]

= Pr
[
gAU < x(1+ gJ1U + gJ2U)

]

=

∫ ∞

0

∫ ∞

0
FgAU

(
x(1+ y+ z)

)
fgJ1U (y)fgJ2U (z)dydz,

(21)

fγU (x) =
d

dx
FγU (x)

=

∫ ∞

0

∫ ∞

0

d

dx
FgAU

(
x(1+ y+ z)

)
fgJ1U (y)fgJ2U (z)dydz

=

∫ ∞

0

∫ ∞

0
(1+ y+ z)fgAU

(
x(1+ y+ z)

)
fgJ1U (y)fgJ2U (z)dydz.

(22)

I0

(√
4Ki(Ki + 1)

�i
x

)
=

∞∑

n=0

1

n!Ŵ(n+ 1)22n

((
4Ki(1+ Ki)

�i
x

)1/2
)2n

=

∞∑

n=0

1

n!2

(
Ki(1+ Ki)

�i

)n

xn,

(23)fgi(x) = e−Ki

∞∑

n=0

Kn
i

n!2
ηn+1
i e−ηixxn.

(24)FgA(x(1+ y+ z)) = 1− e−x̂e−x̂ye−x̂z .

(25)FγU = e−K1−K2(I1 − I2),

(26)I1 =

∫ ∞

0

∫ ∞

0

(
∞∑

n=0

Kn
1

n!2
ηn+1
1 e−η1yyn

)(
∞∑

m=0

Km
2

m!2
ηm+1
2 e−η2zzm

)
dydz,

(27)

I2 = e−x̂

∫ ∞

0

∫ ∞

0

( ∞∑

n=0

Kn
1

n!2
ηn+1
1 e−(η1+x̂)yyn

)
·

(
∞∑

m=0

Km
2

m!2
ηm+1
2 e−(η2+x̂)zzm

)
dydz.
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By considering  [24, 3.326.2], each individual integral in I1 can be solved as

and the same reasoning is applied for each individual integral in I2 , which can be solved 
as

Then, by replacing (28) in (26) and (29) in (27), I1 and I2 can be, respectively, expressed 
as

Finally, (25) can be expressed as

To compute the PDF in (16), it is followed a similar process for the CDF calculation, by 
considering that

and

(28)

∫ ∞

0

(
∞∑

n=0

Kn
i

n!2
ηn+1
i e−ηiyyn

)
dy =

∞∑

n=0

Kn
i

n!2
ηn+1
i

∫ ∞

0
e−ηiyyndy

=

∞∑

n=0

Kn
i

n!2
ηn+1
i

n!

ηn+1
i

dy

=

∞∑

n=0

Kn
i

n!

= eKi ,

(29)

∫ ∞

0

(
∞∑

n=0
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∫ ∞

0
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(n+ 1)!
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=
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ηi + x̂

)
n!

(ηi + x̂)n+1
,
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Thus, the PDF can be obtained as

It is worthwhile to note that the integrals in (26) and (27) can be separated into inde-
pendent terms for each UAV. Therefore, the CDF and PDF for the general case of N 
UAVs can be obtained as in (13) and (14), respectively.

Then, the SOP is calculated as

�

2.2.3 � Weighted secrecy coverage

As mentioned before, we assume no knowledge on the position of E, other than it is 
located inside the circular region S within a radius RA from A, so we analyse the secrecy 
performance of the proposed system in terms of the area-based metrics in  [17], the jam-
ming coverage (JC) and the jamming efficiency (JE). Both of these metrics give us the 
notion on the effect over the secrecy performance inside S by the presence of the UAV 
jammers.

For the JC, consider that E is located at a single point within the area S, where a certain 
� value can be calculated, and we are interested in such points that lead into a � > 1 
value. Then, the jamming secrecy coverage is the integral over the area where � > 1 , 
expressed as

where the dSE term indicates an integral over the positions of E over the whole area S. To 
illustrate this concept, Fig. 2 shows a simplified overview of the system as a heatmap of 
� over the whole area S. The JC would be the total area where � > 1 , which is enclosed 
by the yellow line surrounding the UAVs and A.

On the other hand, JE measures the average improvement in the secrecy over the 
whole area S:

(34)
∞∑
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)
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=
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)
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(35)
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e
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·
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.

(36)

SOP = Pr[CS < RS]

= Pr

[
1+ γB

1+ γE
< 2RS

]

= Pr
[
γB < 2RS (1+ γE)− 1

]

=

∫ ∞

0
FγB(2

RS (1+ x)− 1)fγE(x)dx.

(37)JC =

∫∫

�>1
dSE,
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where |S| is the area of the region S.
Note that JC gives a measure of the area within S where an improvement on the 

secrecy performance of the system is obtained due to the UAV jammers, while JE gives 
a measure of the average improvement in the secrecy performance over the area S, if E 
were located at a random point.

To get further insights on the jamming effective coverage, in   [18] we proposed a 
hybrid metric, the WSC, to account for both, the area over which secrecy is improved 
and the average secrecy improvement over the whole area S. The WSC is given by

2.3 � Positioning optimisation

In this section, we consider joint optimisation of the 3D positioning of the UAVs (com-
mon height, common orbit radius and angles around A) and the power allocation 
between the UAVs in order to maximise the WSC, given a relative position of B with 
respect to A, which is characterised by dAB . Thus, the optimisation problem is formu-
lated as 

(38)JE =
1

|S|

∫∫

S
�dSE,

(39)WSC =

(∫∫

�>1
dSE

)(
1

|S|

∫∫

S
�dSE

)
.

(40a)max
�={{θJi }i∈{1,...,N },{γJi }i∈{1,...,N },zJ,RJ}

WSC(�, dAB)

(40b)subject to 0 ≤ θJi ≤ 2π , ∀i ∈ {1, . . . ,N }

Fig. 2  Heatmap for � values due to the presence of UAV jammers on a circular region around Alice
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 where zMIN is the minimum flying height, zMAX is the maximum allowed flying height 
for the UAVs, RMAX is the limit of the orbit radius around A, which is the radius of S, and 
γT is the maximum jamming transmit SNR from all UAVs.

To simplify the optimisation problem in  (40), some trends are considered regarding 
the angular positioning and the allocated jamming power for the case of two UAVs pro-
vided as observed in [18]. In that work, it was found locating both UAVs symmetrically 
behind the line between A and B leads to the optimal performance; thus, this trend is 
generalised to the N UAVs case by considering a single opening angle θJ between any pair 
of adjacent UAVs symmetrically located, as shown in Fig. 1. Then, it was proved that the 
WSC is maximised by having an equal power allocation for the friendly jammers, which 
is also generalised to the N UAV case.

Under these observations, the optimisation problem in (40) can be reformulated as 

 where only three optimisation variables are considered, namely the opening angle θJ , the 
UAV common height zJ and the UAV surveillance orbit radius RJ.

2.3.1 � Reinforcement learning‑based positioning

Given that the estimate of the distance from A to B is unreliable, the optimisation prob-
lem in (41) cannot be reliably solved. To account for the stochastic nature of the estimate 
of the distance to B, dAB , we consider a coordinate-descent-based [25] iterative scheme 
to reliably solve the optimisation problem in (41) by employing an RL approach to ascer-
tain the optimum positioning for the UAVs around A. Particularly, we model this prob-
lem as a multi-armed bandit (MAB) problem, by considering the discrete positioning 
variables values as the arms or actions, and the WSC reading obtained at each step as 

(40c)γJi ≥ 0 , ∀i ∈ {1, . . . ,N }

(40d)
N∑

i=1

γJi ≤ γT,

(40e)zMIN ≤ zJ ≤ zMAX,

(40f )0 ≤ RJ ≤ RMAX,

(41a)max
�={θJ,zJ,RJ}

WSC(�, dAB)

(41b)subject to 0 ≤ θJ ≤
2π

N − 1
,

(41c)zMIN ≤ zJ ≤ zMAX,

(41d)0 ≤ RJ ≤ RMAX,
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the values or rewards. In the following, we briefly introduce the basis of the MAB prob-
lem and some relevant RL concepts to help us explain our approach.2

Multi-Armed Bandit Problem   [26] An MAB problem consists of an agent (bandit) 
which has to choose at each time step among a set of actions (arms) to obtain rewards. 
At each step, each chosen action provides a reward, which is a random variable with a 
given distribution per action. The goal of the agent is to maximise the reward obtained 
over the time, which could be understood as choosing the optimum action, which is the 
action with the highest expected reward, so-called exploitation. This is done by keep-
ing estimates of each of the actions’ expected rewards. Therefore, it is also of interest to 
keep learning more about other actions to refine the estimates for each of them, which 
is called exploration. The action chosen at each step is determined by a policy, which in 
part sets the exploration/exploitation balance to be taken. An illustrative example of this 
learning process is shown in Fig. 3.

Considering the optimisation problem in (41), we have three positioning variables, the 
opening angle of adjacent UAVs behind A ( θJ ), the common height of the UAVs ( zJ ) and 
the orbit radius of the UAVs around A ( RJ ). Each variable is separated into its own RL 
process, independent of the other two. For each positioning variable, we define its pos-
sible actions as a range of values the variable can take, which are given by the constraints 
in (41), and a discretised number of actions per variable ( Nθ , Nz , NR ). Each action of a 
variable has a reward distribution, which corresponds to the distribution of WSC values 
obtained by performing that action. The goal is to be able to estimate with high accuracy 
which of the actions has the greatest expected reward. At each step, one of the actions 
is chosen following a policy and the received WSC reward is processed to contribute for 
the estimation of the expected reward (WSC) for said action.

To simplify the computations, we perform three separated RL processes, one for each 
positional variable with its own action range discretisation. The RL loops for each of the 
variables are to be repeated back to back, alternating between the variables.

Considering that for each RL step of a given positioning variable, an assumption needs 
to be made regarding the other two positioning variables. The natural way of choosing 
which value should be considered for the other two positioning variables is to choose 

Fig. 3  Reinforcement learning process: (1) At time t the agent chooses an action At based on a policy and 
the set of estimates {Qa} , (2) the agent applies action At onto the environment, (3) the agent obtains reward 
Rt from the environment, and (4) the agent updates the estimate for the action chosen QAt

2  We refer interested readers on RL and the MAB problem to  [26].
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them in a greedy fashion, i.e. choose the values for the other two positioning variables 
that are estimated thus far to be the ones that lead to the highest reward. This implies 
that for any of the positioning variables, the RL process being carried out is non-sta-
tionary since the values for the other positioning variables, which are considered as 
part of the environment, change during the process, thus changing the environment. To 
account for the non-stationarity of the RL processes, consider the following generic esti-
mate update rule  [26]:

where Qn is a generic action reward estimate at time n, Rn is the observed reward at 
time n and αn is the so-called step size at time n, which controls the contribution of 
the observed data to the estimate at time n. As we consider that all observed rewards 
will contribute evenly to the estimate, we set αn = 1/n . However, in a non-stationary 
environment, we may want to give a higher weight to the new observations over the 
past observations, so that the RL process would be more sensitive to the environmental 
changes. To accomplish this, we set αn = α for all n values to be a constant, such that 
0 < α < 1  [26].

Regarding the policy to be used, we consider the upper confidence bound (UCB) pol-
icy  [26] that is described next:

Upper Confidence Bound The action chosen at each step is determined by both the 
estimated value of the action thus far (greedy) and by the frequency of chosen that 
action in the past. This rule is determined by  [26]

where Nt(a) is the number of times the action a has been chosen up to time t and c is a 
constant parameter that controls the degree of exploration. Then, with this policy, a con-
tinuous exploration is performed as time goes on in favour of less chosen actions over 
time that is controlled by the c constant, which has to be set depending on the desired 
degree of exploration, and the expected reward values.

2.3.2 � Positioning learning block

RL loops will be employed over the positional variables of the UAVs in order to itera-
tively reach the optimum values in a coordinate descent fashion   [25]. This processing 
is performed at A that has a global understanding of the system, and it transmits the 
positional information to the UAVs for physical adjustment. However, the transmis-
sion frequency of positional information to the UAVs is a concern, since every time this 
information is received, the UAVs are compelled to adjust their position, thus entailing 
energy consumption. If this occurs after each RL step of each variable, the movement of 
the UAVs may be unnecessarily erratic (given the randomness of the estimate and the 
discretisation level of the variable domains), consume a high amount of energy from 
the UAVs over time and introduce a substantial amount of delay, given that A needs to 
receive an acknowledgement (ACK) from the UAVs alerting that the required new posi-
tion has been assumed before starting another RL step.

(42)Qn+1 = Qn + αn[Rn − Qn],

(43)At = arg max
a

[
Qt(a)+ c

√
ln(t)

Nt(a)

]
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Thus, we propose a time frame-based scheme that splits a given time range, which we 
name a positioning learning block (PLB), into individual slots, namely RL slots (RLSs) 
and positioning slots, as shown in Fig. 4. A PLB comprises nRLS consecutive RLSs and 
a single positioning slot at the end of it. At the beginning of an RLS, a d̂AB estimate is 
obtained and used in the rest of the slot, where a single RL step is performed for each 
of the positioning variables ( θJ , zJ , RJ ), one after another. Each RL step assumes a greedy 
positioning from the other variables.

For the duration of the RLSs, A performs internal processing of the RL steps, and at 
the positioning slot, A chooses the greedy actions from the three positioning variables 
and transmits this information to the UAVs. Then, the UAVs assume their new positions 
based on this information and send an ACK signal to A, which, upon reception, starts 
another PLB as shown in Fig.  4. Therefore, we define an off-policy scheme, where we 
employ a greedy policy at the positioning slots, and a UCB policy at the RLSs.

Given this approach, each UAV incurs in energy consumption at each positioning slot 
that is simply given by: the energy needed to receive the positioning instructions from 
A ( ERX ), the energy needed to manoeuvre to its new position ( EMov ) and the energy 
needed to send an ACK back to A ( EACK ). This energy term is given by

(44)E = ERX + EACK + EMov

(45)= ERX + EACK +�tvPMov,

Fig. 4  PLB-based WSC improvement algorithm. a Iterative RL processes on the three positional variables θJ , 
zJ and RJ in A, over the RLSs of the PLB, b signalling from A to the UAVs to adopt new positions, and c UAVs 
sending ACK signalling back to A after adopting their new positions
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where PMov is the power needed by the UAV to manoeuvre and �tv is the time it takes 
the UAV to perform this change in position. Assuming that the UAV changes its position 
by assuming its new angle, height and radius in that order, �tv is given by

where vJ is the manoeuvring speed of the UAV (assumed constant throughout the flight), 
�θJ , �zJ and �RJ are the angle, height and radius variations, and RJ0 is the initial UAV 
radius value.

2.3.3 � MAB‑based WSC improvement UAV positioning algorithm

The concepts defined so far have the main goal of establishing the optimal position for 
the N UAV jammers in order to maximise the WSC, while A sends out information to B 
over the wireless medium. In Algorithm 1, we present the process followed by the pro-
posed algorithm, where the variables in brackets ( [θJ] , [zJ] , [RJ] ) represent the action val-
ues estimates array for each of the variables.

Algorithm 1 provides a description of the processes depicted in Fig. 4 over time. In 
this algorithm, MAB processes are carried out, once for each RLS, for every positioning 
variable sequentially with the UCB action-choosing policy, over a number of PLBs. This 
algorithm refines its action estimates for each of the positioning variables over time in 
each RLS, adapting to the changes in the other positioning variables and allowing the 
UAVs to take positions that increase their WSC at the end of each PLB. Thus, the WSC 
of the system increases closer to the optimum at every PLB.

(46)�tv =
1

vJ

(
|�s| + |�zJ| + |�RJ|

)

(47)=
1

vJ

(
1

2
RJ0 |�θJ| + |�zJ| + |�RJ|

)
,
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3 � Results and discussion
In this section, we evaluate the secrecy performance of the proposed system, in terms of 
the WSC, and the proposed RL algorithm for certain illustrative cases. The parameters 
used for the evaluation, unless stated otherwise, are shown in Table 1, channel-specific 
parameters chosen for the urban environment taken from   [21, 22]. For UAV-specific 
parameters, such as the energy for receiving a data frame ERX , for sending an ACK EACK , 
and the power spent on manoeuvring from one point to another PMov , we refer to values 
based on common transceiver energy consumption values  [27] and manoeuvring power 
values  [28]. Also, we consider a UAV movement speed of vJ and a processing time for 
an RLS of �tRL . The actual practical values of these parameters depend on the specific 
UAVs used, so the values considered here are simplified for comparison purposes.

To validate the expression for the SOP in (12), Fig. 5 shows a comparison of theoretical 
results and results obtained from Monte Carlo simulations for different configurations 
of parameters.

Note that the simulation results perfectly match with the analytical results, thus vali-
dating our expressions. As it is expected, the SOP increases as RS increases, but it con-
verges more rapidly for larger numbers of UAVs. A better performance in terms of SOP 
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is obtained with higher transmit SNR values, tending to a floor in the performance. 
However, as the height of the UAV increases, this floor of the SOP decreases and it is 
reached more slowly.

To evaluate the performance of our algorithm, in the following figures, results from 
Monte Carlo simulations are presented by considering two performance metrics, the 
energy spent over time and the secrecy performance in terms of the WSC obtained over 
time. The energy spent is presented as a cumulative metric over a given time step (PLB). 
The secrecy performance is illustrated as the WSC obtained at each time step and nor-
malised by the secrecy area. These results are also compared to the WSC resulting from 
an exhaustive search over discretised positioning values. Figure 6 presents the normal-
ised WSC and the cumulative energy consumed obtained over time (PLBs) by the pro-
posed algorithm for different values of σAB . Note that the WSC increases until it reaches 
a convergence level, which is higher as σAB decreases, obtaining a better secrecy perfor-
mance. This behaviour occurs because, as σAB decreases, the variance of the estimates 
of the action rewards also decreases; thus, more reliable action reward estimates are 
obtained, and it is more likely to choose the optimal actions from the discretised sets.

The energy consumption of the UAVs remains the same over the first time steps, but 
increases more rapidly for lower values of σAB . This is expected as at lower σAB values, 
the estimates of the action rewards are more reliably found earlier, and any new sample 
taken to adjust the estimates will not cause a big deviation from its current value (low 
variance). As the same actions are more reliable chosen, UAVs move less between PLBs, 
thus consuming less energy. In general, a smaller uncertainty of the distance between A 
and B will achieve greater secrecy performance and, at the same time, reduce the power 
consumption of the UAVs.

Figure 7 shows the impact of the shape parameter K of the A2G channels on the nor-
malised WSC and the cumulative energy consumed obtained over time (PLBs) for dif-
ferent values of K. Note that a strong LoS component, higher K, leads to a significant 
loss on the WSC. However, the convergence for lower K values is slower, thus involving 
more movement between actions that may be further apart, which increases the energy 
consumption.

Fig. 5  a SOP over Rs values varying the number of UAVs (nUAV), b SOP over γA values varying the common 
UAV height zJ
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Figure 8 shows the impact of the number of UAVs in the system over the normalised 
WSC and the cumulative energy consumed obtained over time (PLBs) for different 
numbers of nUAV. The transmit SNR at each UAV is considered as γJ = γT/nUAV  . The 
results obtained by exhaustive search are also illustrated.

Note that as more UAVs are introduced in the system, while maintaining the total jam-
ming power constant, the secrecy performance decreases. It can mean that having more 
UAVs affect more the legitimate node B than the illegitimate node E, as it is considered 
that E can be anywhere in the region S. It is also observed that a good level of conver-
gence is reached up to 3 UAVs within 10 PLBs; thus, the energy consumption over time 
is maintained low. However, the energy consumption increases drastically for four UAVs. 
This can be explained due to the late convergence of the case with four UAVs, suggest-
ing a more erratic, less stable movement as the number of UAVs increases. This result 
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Fig. 6  a Normalised WSC mean values obtained over time, and b cumulative energy consumed in kilo-Joules 
by all the UAVs over time. Both measured over PLBs with varying uncertainty of the distance between A and 
B σAB , compared to the exhaustive search results
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Fig. 7  a Normalised WSC mean values obtained over time, and b cumulative energy consumed in kilo-Joules 
by all the UAVs over time. Both measured over PLBs with varying number of shape parameter K of the A2G 
links, compared to the exhaustive search (ES) results
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suggests that the inclusion of two UAVs may be enough and efficient to provide secret 
transmissions to a single legitimate pair.

Finally, to analyse the convergence of the algorithm, Fig. 9 shows the normalised mini-
mum squared error (MSE) of the WSC, which is obtained by comparing to the exhaus-
tive search results over time and then normalised to the exhaustive search value. The 
results are shown for different values of σAB . Note that the algorithm quickly converges 
to low values of MSE as it reaches a steady low level within 10 PLBs. As σAB increases, 
the MSE converges to a higher level, which occurs because a higher uncertainty intro-
duces a larger variance in the action estimates, allowing for the optimal actions to be 
chosen less reliably, thus increasing the MSE.

It is also worth noting that simulations with nRLS = 10 within 10 PLBs (100 RLSs 
in total), where the UCB algorithm has been applied to the three positioning variables 
100 times each, proved to be enough to reach a good level of convergence with very low 
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Fig. 8  a Normalised WSC mean values obtained over time, and b cumulative energy consumed in kilo-Joules 
by all the UAVs over time. Both measured over PLBs with varying number of UAVs maintaining the total 
jamming power constant and compared to the exhaustive search (ES) results
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MSE. This convergence speed is possible because the number of actions for each of the 
positioning variables is kept relatively low. Importantly, the treatment of the three MAB 
processes as independent favours the convergence speed, compared to a joint action 
space or state-action pairs that would greatly increase the amount of actions or state-
action values to be considered.

4 � Conclusions
This paper investigated the secrecy performance of a legitimate transmission between a 
pair of ground nodes aided by N friendly UAV-based jammers , in terms of the secrecy 
metric WSC, that measures the efficiency of friendly jamming over an area and is 
obtained from the SOP; thus, the exact position of the eavesdropper is not assumed. For 
that purpose, we first derived an integral-form expression for the SOP of the proposed 
system, which was validated via Monte Carlo simulations. Additionally, we proposed an 
RL-based algorithm to optimise the 3D positioning of the UAVs in order to maximise 
the WSC. The time frame-based algorithm periodically updates the positioning informa-
tion of the UAVs and allows a control of energy consumption for UAV positioning.

Extensive simulations showed that the proposed algorithm improved the secrecy of 
the system over time and converged to the exhaustive search upper bound, as the uncer-
tainty of the position of B decreases. The proposed time frame structure of the algo-
rithm proved to be efficient to lead to optimal values of WSC while being flexible with 
the trade-off between secrecy and energy consumption. Furthermore, the algorithm 
can be explored for solving different problems in novel wireless communications net-
works that require periodic parameter updates to be learnt over time in a non-stationary 
environment.
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