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1 Introduction
With the development of mobile communications, reliable data transmission [1, 2] is 
available and network safety is guarded with anomaly detection [3], and thus applica-
tions like APIs recommendation [4] and QoS prediction [5] can be applied in industrial 
systems. However, the textual message, one of the main transmission objects of mobile 
communications, usually contains noise made by people’s errant inputs. Noisy mes-
sages will increase the difficulty of reading comprehension and make applications output 
wrong results. To transmit accurate messages, we investigate grammatical error correc-
tion (GEC) to automatically detect and correct errors in textual messages.

Considering billions of messages are sent in the network every day and a low time 
delay is an essential requirement of mobile communications, the GEC system should 
not only improve messages’ quality but also take efficiency into account. However, cur-
rent works on GEC mainly focus on improving performance and use large deep learn-
ing models (e.g., T5 xxl with 11B parameters [6]), making the GEC system less efficient 
when inference. Although more powerful hardware and parallelization can alleviate this 
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problem, it will increase costs significantly. Therefore, we aim to build an efficient GEC 
system with limited hardware that can correct errors rapidly.

Many works [6–8] consider GEC as a machine translation problem by regarding the 
noisy text as the source language and the error-free text as the target language. Follow-
ing neural machine translation (NMT) approaches, a traditional GEC system is built 
with an attention-based sequence-to-sequence model [9], which contains an encoder 
for the input text’s semantic representation and a decoder for the corrected text’s gen-
eration. Since the decoding stage is auto-regressive, which means the generation of the 
current token relies on the previously generated ones, the inference speed is slow. Our 
experiment shows that the processing time of single text with NMT can reach hundreds 
of milliseconds, making GEC service unacceptable in mobile communications because 
the control plane latency requirement for 5G is only 50ms [10].

Recently, some works [11, 12] consider GEC as a local sequence transduction prob-
lem and GECToR [12] achieves state-of-the-art performance. They use sequence labe-
ling (SL) models to detect and correct errors synchronously by predicting labels to each 
token in the text. Each label is usually composed of an edit tag (e.g., keep, delete, append, 
and replace) and one token. For example, ‘Thanks you’ can be corrected into ‘Thank you’ 
by assigning label ‘replace‖Thank’ to token ‘Thanks’ and label ‘keep’ to token ‘you.’ Since 
the labeling stage can be parallel, SL-based approaches are more efficient than NMT.

However, there still exist some limitations to SL-based approaches. As the vocabu-
lary of labels is built with the statistic of most common corrections from corpora, the 
model will suffer from the out-of-vocabulary (OOV) problem [13], which means the 
model is unable to correct the error when the requisite label is not in the pre-set vocab-
ulary. Besides, SL-based approaches need multiple iterations of correction to correct 
some errors because these errors need more than one label. For example, in first itera-
tion, ‘Thank your help.’ is corrected into ‘Thanks your help.’ with label ‘replace‖Thanks’ 
to token ‘Thank,’ and then ‘Thanks your help.’ is corrected into ‘Thanks for your help.’ 
with label ‘append‖for’ to token ‘Thanks’ in second iteration. In GECToR, a text could be 
corrected up to 5 iterations, which means to serially process 5 individual texts. It could 
be more efficient if all requisite tokens to an error are gained in one iteration. Last but 
not least, current SL-based approaches do not consider the correctness of the whole text 
and just label all text in token-level. In general, apart from encoding the text, the com-
putational cost of token-level labeling is L (L is the length of the text) times higher than 
classifying a text. Apparently, the correct text should be free from token-level computa-
tion if it is previously classified as containing no errors. Considering that the correct text 
usually takes the majority part in the real scenario, SL-based approaches can be more 
efficient by checking text’s correctness first.

To further improve the efficiency of GEC, we get inspiration from how people correct 
text and divide the task into three steps. Usually, given a text, we will first scan it and give 
a preliminary judgment of its correctness. If we consider the text incorrect, we will care-
fully check each token and find errors. Finally, we will generate corrections with the con-
text of each error. To implement such progress, we build a multi-task learning framework 
and integrate three tasks into one model: sentence error discrimination (SED), grammati-
cal error detection (GED), and GEC. SED and GED are two auxiliary tasks for error detec-
tions, and thus we only need to correct detected errors in GEC. We apply SpanBERT [14] 
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as the encoder to extract sentence-level and token-level features from the source sentence. 
For SED, a discriminator is designed to classify the sentence and it will output a probability 
of correctness. The sentence is considered to be correct if the probability is higher than our 
pre-set threshold. Then we use a detector to handle GED, which detects errors in token-
level. Each token will be classified as a correct token or one of our defined error types. Next, 
we record each detected error’s start and end positions in the source sentence and use a 
corrector to generate corrections with each error’s context information. We represent each 
error with three features as the hidden state of the error itself and the information before 
and after the error. Then we send error features with position embeddings into a feed-for-
ward network to concurrently generate all tokens in a correction, which avoids the require-
ment of multiple iterations of correction. Finally, we can modify the source sentence by 
replacing incorrect tokens with generated corrections, thus getting the corrected sentence.

Following our previous work [15], we complete the implementation details of our model 
and conduct more experimental analysis in this paper. We make three new improvements 
in this paper: changing words’ representation, assigning loss weights to the tasks of our 
model, and changing the training strategy. Besides, we notice that text error detection is 
important but achieves little attention in recent research, so we make an empirical study 
on error detection. With the improvements in this paper, the F0.5 score of our approach has 
changed from 50.4 to 53.0 in CoNLL-14 dataset [16] and from 52.1 to 56.1 in BEA-19 test 
dataset [17]. Despite that our approach’s performance cannot reach the current state-of-
the-art performance, our approach shows advantages in processing speed. Our contribu-
tions in this paper are as follows:

1. We propose a novel multi-task learning approach to GEC, and our approach is also 
suitable for both sentence and token-level error detection. Our approach can detect 
and correct partial errors in messages, thus improving the performance of textual 
applications in mobile communications.

2. Our model is efficient in correcting messages and can satisfy mobile communica-
tions’ low time delay requirement. Our model is at least ten times faster than the tra-
ditional NMT approach and nearly 30% faster than GECToR, a SL-based approach, 
in processing single text.

3. We make an empirical study on pre-trained language models’ performance in the 
task of SED and show the power of grid search in improving its performance. More-
over, we show more research should be done to improve SED.

The organization of this paper is as follows. Section 2 introduces the definition of our 
problem and our approach to hierarchically solving GEC. Section 3 reports our modifica-
tions to previous work and the experimental results of our method in terms of performance 
and efficiency. Besides, current methods’ performance in SED is explored in Sect. 3. Sec-
tion 4 introduces related works and Sect. 5 concludes the paper.

2  Method
2.1  Problem definition

GEC can be defined as converting an input text sequence X = (x1, . . . , xn) into the target 
sequence Y = (y1, . . . , ym) . X equals Y when the input is correct. Instead of generating 
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Y from scratch, our goal is to directly modify X and eliminate the differences between 
X and Y since their similarity is over 80% [7]. In order to only correct the errors in the 
incorrect sentences, we introduce two auxiliary tasks named SED and GED for sentence-
level and token-level error detection, respectively. Thus our approach to GEC can be 
divided into three steps: checking sentence’s correctness, finding errors’ positions, and 
generating corrections. As a result, correct sentences will not be modified and incorrect 
sentences can be corrected by replacing errors with corrections.

For the SED task, we have to predict whether the sentence is correct or not and it is 
a binary classification problem. A bool type value Y tf is defined as the label of the sen-
tence’s correctness, and 1 represents correct.

GED is originally used for finding incorrect tokens in the sentence, but we can get 
each error’s position by post-processing its results. Note that the error mentioned here 
is defined in span level, which means one error contains all continuous incorrect tokens. 
Instead of a correct or incorrect label, we assign each token with an error type to define 
incorrect tokens because error types are more specific. According to the ERRANT 
toolkit for GEC [18], which classifies edits for corrections as unnecessary, missing, and 
replacement edits, we define three error types as redundancy (R), missing (M), and 
word selection (WS) errors. We apply BIO tags [19] to label the start and the inner of an 
error because one error can contain more than one token. The target of GED is to get a 
sequence of labels Y et , in which yeti  represents the label for token xi . Once we get Y et , we 
can know which token is incorrect and simply find errors’ positions.

The last task is to generate corrections for those detected errors in GED, and we con-
struct a structure called patch to describe the correction. Each patch is operated on X 
and is a triple patch = (s, e,Y ′) , which means the content between xs and xe (not include 
xs and xe ) should be corrected into Y ′ = (yi, ..., yj) . Since we can obtain the positions s 
and e from the previous task, we only need to generate Y ′ in this step. Then we can cor-
rect incorrect sentences according to the modifications of patches.

2.2  Preprocessing

According to our definition of GEC, three target training labels need to be exacted from 
the parallel training corpus. Initially, the training data should be formatted into source 
sentence X and target sentence Y pairs. Suppose more than one target sentence is anno-
tated. In that case, we will choose the target sentence with minimal Levenshtein dis-
tance, which means minimal modifications need to be applied to the source sentence to 
make it correct. Besides, A special token ‘[CLS]’ is added to the front of each sentence 
for the SED task, and ‘[SEP]’ is appended to the back of each sentence as the symbol of 
end.

By checking whether X is equal to Y, we can get the sentence-level label Y tf  . Then we 
need to find errors in the incorrect sentence and get target corrections by comparing X 
with Y. We apply SequenceMatcher1 to get the transductive operations of converting X 
to Y. Each operation is a quintuple (tag, sX , eX , sY , eY ) where tag represents the trans-
ductive relationship from (xsX , ..., xeX−1) to (ysY , ..., yeY−1) . The progress of getting target 

1 https:// docs. python. org/3/ libra ry/ diffl ib. html# diffl ib. Seque nceMa tcher

https://docs.python.org/3/library/difflib.html#difflib.SequenceMatcher
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labels of incorrect sentences is shown in Algorithm 1, and Table 1 shows two conversion 
examples.

We use BIO tags to label errors, in which ‘B’ represents the beginning of an error, ‘I’ 
represents the inner of an error, and ‘O’ represents not an error. Usually, we need two 
plus one types of tags to label one kind of error. Taking the first example in Table 2 as an 
example, we use ‘B-R’ and ‘I-R’ to label a redundancy error and other correct tokens are 
labeled with ‘O.’ Although there are three kinds of errors, only 6 tags (‘B-R,’‘I-R,’‘B-M,’‘B-
WS,’‘B-WS,’‘O’) are defined in our approach and the ‘I-M’ label is not existing because 
the missing error only occurs between two words and we just label ‘B-M’ on the second 
word. The added token ‘[SEP]’ at the end of X and Y can handle the situation of miss-
ing words at the end of a sentence. Compared with previous works on token-level error 
detection [20, 21], which label correct tokens with 0 and incorrect tokens with 1, our 
approach can not only find incorrect tokens but also detect error types. Previous works 
also label missing errors by labeling 1 to the first token after the missing error, but this 
will cause a problem that we cannot know whether the token is incorrect or a missing 
error occurs before the token. On the contrary, our approach can avoid this problem.

Table 1 Examples of data conversion

X and Y are inputs. Yet and patches are outputs

X [CLS] He is the first of all in the list . [SEP]

Y
et [ O O O O O B-R I-R O O O O O ]

Y [CLS] He is the first in the list . [SEP]

Operations (‘delete’, 5, 7, 5, 5)

Patches [(4, 7, (‘[SEP]’))]

X [CLS] This car is more faster than that        [SEP]

Y
et [ O    O    O O B-WS O    O    O          B-M]

Y [CLS] This car is much faster than that one . [SEP]

Operations (’replace’, 4, 5, 4, 4) (’insert’, 8, 8, 8, 10)

Patches [(3, 5, (‘much’,‘[SEP]’)), (7, 8, (‘one’, ‘.’, ‘[SEP]’))]
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In addition to the error type labels Y et , the patches for error corrections are also col-
lected from the transductions. To control the correction’s length, the special token 
‘[SEP],’ which is ‘[EOP]’ in our previous work, is added to the end of each patch. We 
change ‘[EOP]’ to ‘[SEP]’ because ‘[SEP]’ is originally designed as a symbol of end in 
SpanBERT, while ‘[EOP]’ is designed by us and its embedding vector is not pre-trained. 
The start position s in the patch is one position in front of the first incorrect token of 
the error and e is one position behind the last incorrect token for easier access to the 
error’s surrounding context and it can describe the missing error’s position. Different 
from our previous work, tokens in the patch for the missing error are changed from 
(‘[NONE],’‘[EOP]’) to (‘[SEP]’) for concision.

2.3  Architecture

It can be less efficient if we use three separate models to handle our tasks, so we design a 
multi-task learning framework to integrate three tasks because they all need to semanti-
cally represent the source sentence first. The architecture of our model is shown in Fig. 1. 
Three headers, named Discriminator, Detector, and Corrector, are involved in process-
ing the corresponding tasks by sharing one powerful encoder.

2.3.1  Encoder

SpanBERT [14], instead of the widely used pre-trained language model BERT [22], is 
applied as the encoder in our model because SpanBERT can achieve better perfor-
mance in downstream NLP tasks than BERT[14] and the pre-training task of SpanBERT 
is similar to our error correction task. The architecture of SpanBERT is the same as 
BERT, which is a stack of several transformer encoder [9] layers, but SpanBERT does 
not involve the next sentence prediction task during pre-training. Moreover, SpanBERT 
enhances the masked language model in pre-training by masking a random span length 
of words and predicting the masked words with span boundary objective.

Since SpanBERT is self-supervised pre-trained with a large number of corpora, it can 
provide a reliable encoding of text and we only need to fine-tune it with our tasks. Given 
a text, the first step is tokenization which breaks down the text into the smallest unit 
(token). Then we embed each token to represent each token with a vector. Finally, we 

Fig. 1 The architecture of our model. The input sentence is first checked to be incorrect by the Discriminator, 
then located errors’ positions by the Detector, and finally corrected by the Corrector. Two errors are detected 
and the maximum correction length M is set to 3 in this example. N/A refers to any token as it occurs after 
token ‘[EOP]’
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send all tokens’ vectors into the encoder. After encoding, each input token xi will be con-
verted to a vector hi which can represent its semantic information in the text.

2.3.2  Discriminator

The discriminator is used to check whether the input sentence is correct. We follow the 
general usage of BERT or SpanBERT for sentence classification, which is to pool the hid-
den state of token ‘[CLS]’ and feed it into the classifier to get the sentence’s probability of 
correctness Ptf(X):

where h0 is the hidden state of token ‘[CLS]’ and the output c can represent the embed-
ding of the whole sentence. We manually set a threshold Ptf

thres ∈ (0, 1) here to control 
the boundary of classification, and the sentence is regarded as correct if Ptf (X) is higher 
than Ptf

thres . According to the target domain, a referenced threshold can be obtained by 
grid search in the development set with the highest accuracy. If the sentence is detected 
to be correct, we will early stop the whole procedure and output the source sentence as 
the GEC result.

2.3.3  Detector

To find errors in the incorrect sentence, we apply a sequence labeling layer to do token-
level error detection, which is to classify each token based on the hidden states hi . Con-
ditional Random Field (CRF) [23] is applied to add constraints to the final output. Thus, 
an unreasonable output sequence (e.g., label ‘I-R’ appears after ‘O’) will be less likely to 
occur. The progress of detecting each token’s error type Pet(xi) can be described as:

The index i does not start from 0 here as the target label of the first token ‘[CLS]’ is 
always ‘O.’

The post-processing step after error detection is to locate each error’s start and end 
position, which is similar to the conversion from Y et to patches’ positions in Table  1. 
For a redundancy error, if xi is labeled ‘B-R’ and (xi+1, ..., xj) are labeled ‘I-R’, then we set 
one patch’s start position s = (i − 1) and end position e = (j + 1) ( j = i when ‘O’ is after 
‘B-R’). The process is the same for word selection errors, but the end position should not 
move one place back for each detected missing error because it is at the right position. 
Besides, all predicted labels can be ‘O’ if the discriminator wrongly classifies a correct 
sentence or the detector fails to find errors in the incorrect sentence. In such cases, we 
will consider the sentence correct.

2.3.4  Corrector

Our corrector is inspired by the pre-training task of SpanBERT and can use detected 
errors’ surrounding context to generate corrections. Through error detection, we can 
locate each error with the start position s and the end position e in the sentence. There-
fore, hs can represent the context before the error, and he can represent the context after 

(1)c = tanh(W poolh0 + bpool)Ptf(X) = sigmoid(W clsc + bcls)

(2)Pet(xi) = CRF(W ethi + bet), i ∈ [1, n+ 1]
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the error, while the average hidden states between hs and he represent the error itself. In 
brief, we can represent a span-level error r with:

in which hemp is a learnable vector. It is used for missing errors because the encoder can-
not represent the missing tokens.

Our main innovation compared with SpanBERT is that we additionally involved the 
middle state herr for the representation of a span. Following SpanBERT, we use position 
embeddings and two layers of feed-forward network with layer normalization to gener-
ate the target correction Y ′ = (y′1, ..., y

′
p):

where p is the length of target tokens in a patch and Epos(i) represents the position 
embedding for the ith token to generate. The correcting stage is non-autoregressive and 
could run in parallel to improve efficiency.

However, unlike SpanBERT, which can control the output’s length with each masked 
span’s length, we do not know the real length of each correction when inference. Thus 
we manually set a constant M and let p equal M when inference, which limits all correc-
tions’ maximum length to M. Besides, with the special token ‘[SEP]’ at the end of each 
patch, we can control the output length when inference by clipping tokens before ‘[SEP].’

Finally, we construct the patch for each error with positions s and e from the detector 
and correct tokens Y ′ from the corrector. Then we only need to replace incorrect tokens 
according to the patch, and the source sentence X can be corrected to the target sen-
tence Y.

2.4  Multi‑task learning

There are three tasks in our approach, and each task has a corresponding loss function. 
We use the discriminator to do SED and the loss lossdis is defined with binary cross-
entropy loss since we output the probability to a binary classification problem. The 
detector handles GED and its loss lossdet is calculated with the path search score of 
the CRF layer. Cross-entropy loss losscor is used for the corrector by comparing target 
tokens and predicted logits. We integrate three tasks into one multi-task learning model, 
and the overall loss function is defined as:

where hyperparameters α , β , and γ are the weights for the corresponding tasks. Besides, 
we limit the sum of all weights to the number of tasks, which is 3 in our model. To those 
correct inputs during training, only lossdis is calculated.

In addition to manually setting weights, we also design a strategy to automatically cal-
culate each loss’s weight when training. As we know, the higher the loss, the worse the 
performance. Since all three tasks are important to our final results and the difficulty 
of each task is different, we expect that the task with higher loss can have a higher loss 

(3)
r = [hs, herr, he] where

herr =
mean([hs+1, ..., he−1]); , se+ 1

hemp, s = e + 1

(4)P(y′i) = MLP([r,Epos(i)]), i ∈ [1, p]

(5)loss = αlossdis + βlossdet + γ losscor
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weight so that the loss can drop faster. Thus, the strategy to calculate weights is defined 
as:

where 3 is the number of tasks. With this strategy, the losses’ weights can be dynamically 
upgraded during training.

The training stage of three tasks can be parallel as we know which inputs are incorrect 
and where the incorrect tokens are located. Differently, the inference stage is sequential 
and we process sentences in the order of the encoder, discriminator, detector, and cor-
rector, but we can filter those inputs which are detected to be correct by the discrimina-
tor to save time.

3  Experiments
3.1  Datasets

Following the restricted track of BEA-2019 shared task for GEC [17], we use FCE [25], 
NUCLE [26], Lang-8 [27], and W &I+LOCNESS (W+L) [17] corpora as our training 
sets. The development sets are composed of CoNLL-2013 [24] test set and BEA-2019 
development set because we want our model can generalize to different kinds of errors. 
Same as recent works, we evaluate our model’s GEC performance on CoNLL-2014 test 
set [16] with MaxMatch ( M2 ) scorer[28] and BEA-2019 test set with ERRANT scorer. 
Two annotators annotate CoNLL-2014 and the M2 scorer will compare each sentence 
from the model’s output with two annotations and record the result with better perfor-
mance. The evaluation of BEA-2019 is operated on CodaLab2. We use CoNLL-2014 test 

(6)

total_loss = lossdis + lossdet + losscor

α = 3× lossdis/total_loss

β = 3× lossdet/total_loss

γ = 3× losscor/total_loss

Table 2 A Statistic of Used Corpora

Corpus Sentence number Avg. token 
number

Avg. error ratio Error number Avg. 
patch 
length

Training sets

FCE 28,350 16.0 62.47 2.20 2.17

Lang-8 1,037,561 11.4 47.98 1.94 2.36

NUCLE 57,151 20.3 37.87 1.97 2.12

W+L 34,308 18.3 66.26 2.46 2.20

Development sets

CoNLL-13[24] 1381 21.1 81.4 2.60 2.13

BEA-19 (dev) 4384 19.8 64.3 2.38 2.21

Evaluation Sets

CoNLL-14 A1 1312 23.0 72.2 2.21 2.11

CoNLL-14 A2 1312 23.0 86.1 2.68 2.14

BEA-19 (test) 4477 19.1 – – –

2 https:// compe titio ns. codal ab. org/ compe titio ns/ 20228

https://competitions.codalab.org/competitions/20228


Page 10 of 21Pan et al. J Wireless Com Network         (2022) 2022:99 

set to evaluate the performance in the SED task. The statistic of used datasets is shown 
in Table  2. Error Ratio means the percentage of incorrect sentences. Error Number 
means the average error number in an incorrect sentence. Patch Length means the aver-
age token number in patches (with ‘[SEP]’).

3.2  Implementation details

We implement our model with Transformers3. Words in the text are tokenized into 
WordPiece format [29], and the vocabulary for embedding and generating contains 
28,996 tokens. With WordPiece and a large vocabulary, our approach is less likely to suf-
fer from OOV problem in correction generation stage because almost all words can be 
obtained with WordPieces (e.g., word ‘Advantage,’ which is not in the vocabulary, can 
be generated with WordPieces ‘Ad,’ ‘##vant,’ and ‘##age,’ in which ‘##’ means the content 
after it should connect to previous WordPiece.).

We apply AdamW [30] optimizer and use warm-up for the first 5% of total training 
steps. We set the maximum length M of each correction to 4 according to the average 
length of patches as shown in Table 2. As the sentence-level error ratio can be quite dif-
ferent according to the corpus, we apply grid search in the corresponding development 
set to determine threshold Ptf

thres and then use it for evaluation.
Different from our previous work [15], we re-implement the code of our model and 

make three main improvements as follows:
1. We change the representation of words. As mentioned above, words will be 

tokenized into WordPieces and then sent to the encoder. In our previous work, we 
represent each word with corresponding WordPieces’ hidden states, which means the 
operation objects of the detector and the corrector are WordPieces instead of words. For 
example, we should assign three labels to the word ‘Advantage,’ which is tokenized into 
three WordPieces, in error detection. In this paper, we represent each word with its first 
WordPiece’s hidden state, which is inspired by GECToR. We implement it by a selection 
operation after encoding and the input of the encoder is the same as the previous. Such 
an improvement can reduce the difficulty of our tasks because previously, we needed to 
correctly label all WordPieces of a word to find an error, but we only need to label one 
currently.

2. We change the training strategy of our model. In our previous work, we train the 
model with all training datasets for 3 epochs with a learning rate of 3× 10−5 . In this 
paper, we divide the training procedure into two stages. In the first stage, we train our 
model with dataset Lang-8 for 5 epochs with a learning rate of 3× 10−5 and choose the 
checkpoint which has the highest F0.5 in merged two development datasets as the mod-
el’s parameters. In the second stage, we use the other three training datasets to further 
train our model for 5 epochs with a learning rate of 1× 10−5 and choose the best check-
point as our final model’s parameters. The first stage is for coarse training because all 
parameters except the encoder are randomly initialized, so we use a large learning rate 
and the largest dataset Lang-8. The second stage is for further fine-tuning, so we use a 
small learning rate and the rest training datasets.

3 https:// huggi ngface. co/ trans forme rs/ index. html

https://huggingface.co/transformers/index.html
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3. We assign loss weights to three tasks in our model when training. We test the effect 
of loss weights and try to manually or automatically set weights, which is introduced in 
sect. 2.4. We find manually setting weights works better and the values of α,β , γ are set 
to 0.5, 1, and 1.5 respectively in our final model. We will discuss more about loss weights 
in sect. 3.5.

3.3  Grammatical error correction results

The GEC performance of our model is shown in Table 3. Bold values in the table rep-
resent the best performance in each column.  All results listed here are the best non-
ensemble results from each work and pseudo data is not used. We compare our results 
with recent works without using pseudo data for further pre-training because the 
amount of used pseudo data among different works can vary greatly (from 9M to 260M). 
There are two main categories of methods for comparison, which are based on NMT or 
SL. We classify our approach as a SL-based method as we apply SL model for token-level 
error detection, and we do not use the auto-regressive decoder (e.g., LSTM) for error 
correction.

As shown in Table 3, GECToR has the best performance and our approach can only 
achieve a medium performance in both CoNLL-2014 and BEA-2019 test sets. However, 
our approach achieves great improvement in both precision and recall compared with 
our previous work because of the changes mentioned in sect. 3.2. The gap between our 
approach and GECToR is reduced. Our approach shows weakness in precision but is 
outstanding in recall, which means our approach prefers to regard the sentence as wrong 
and make corrections. We also compare BERT and SpanBERT’s fine-tuning perfor-
mance in our approach. SpanBERT can achieve apparent improvement in both precision 
and recall, which shows that the pre-training task of SpanBERT is more suitable for our 
approach.

In Table  4, we further compare our approach’s performance with GECToR in BEA-
2019 test set, which is calculated online with the ERRANT toolkit. Our approach out-
performs GECToR in both token-level and span-level detection but shows a huge drop 
in the final span-level correction aspect, which can indicate that our detector performs 
well, but the corrector fails to correct all detected errors. One reason for this can be 

Table 3 Experimental results on GEC

* The result is implemented by Chen et al. [32]

** The result is implemented by us with official released code with BERT

Work Method CoNLL‑14 BEA‑19

P R F0.5 P R F0.5

Zhao et al. [7] NMT 65.5 33.2 54.9 - - -

LaserTagger [31]* SL 50.9 26.9 43.2 53.4 38.5 49.6

GECToR [12]** SL 66.8 33.7 55.8 64.2 47.0 59.8
Chen et al. [32] SL+NMT 66.0 24.7 49.5 62.7 38.6 55.7

Previous (BERT)[15] SL 55.1 32.3 48.3 50.6 40.5 48.2

Previous (SpanBERT)[15] SL 57.2 34.1 50.4 54.5 44.3 52.1

Our approach (BERT) SL 56.3 35.0 50.2 54.8 48.2 53.4

Our approach (SpanBERT) SL 59.8 36.5 53.0 57.8 50.4 56.1
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that the released SpanBERT-base model does not include the weight of the pre-training 
task, and we cannot transfer its obtained knowledge of text generation. Therefore, the 
problem of generating corrections under a certain context is difficult to our model and 
should be further improved.

Before error correction, the discriminator and the detector are applied for hierarchi-
cal error detections in our approach. The discriminator is related to the task of SED, and 
its accuracy in CoNLL-2014 test set with SpanBERT is 94.05%. For the detailed result in 
SED, we will discuss it in sect. 3.6. Since the error type label is only defined in our work 
and the discriminator will filter some correct sentences, which means not all sentences 
in the test set are processed by the detector, it is hard to compare the detector’s perfor-
mance with other works. Besides, the detector serves as the function of providing error 
positions to the corrector, so we only report the detector’s results on finding error posi-
tions, which is shown in Table 5. The results are not decisive to the final performance of 
GEC because the corrector may fix errors made by the detector (e.g., the detector regard 
a correct token as an error and the corrector fix the mistake by generating the original 
correct token).

3.4  Inference time analysis

Efficiency is significant to mobile communications where time delay must be controlled 
to an acceptable level. Since GEC serves as an intermediate procedure in communica-
tions, its inference speed must be as fast as possible. We analyze the inference time of 
our approach on CoNLL-2014 test set and make comparisons with other approaches to 
explore whether our approach is efficient. All experiments are done with one NVIDIA 
V100 GPU in CUDA 10.2 environment4 and we run three times with each setting of 
batch size to reduce error.

Table 4 Detailed results on BEA-19

Work Evaluation aspect P R F0.5

Our approach(SpanBERT) Span-level correction 57.8 50.4 56.1

Span-level detection 78.2 63.6 74.8
Token-level detection 88.0 66.7 82.7

GECToR[12] Span-level correction 64.2 47.0 59.8
Span-level detection 75.2 52.4 69.2

Token-level detection 84.4 54.2 76.0

Table 5 Detector’s results on finding error positions

CoNLL‑14 A1 CoNLL‑14 A2

P R F0.5 P R F0.5

BERT 43.4 31.6 40.4 59.2 29.8 49.5

SpanBERT 43.4 32.1 40.6 59.4 30.4 49.9

4 We conduct the experiment with the instance type ecs.gn6e-c12g1.3xlarge in Alibaba Cloud.
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We first analyze the time cost of each module in our model and the results are shown 
in Table 6. The encoder takes the major part of total inference time because the Span-
BERT we applied takes up the whole model’s majority of parameters. The discriminator 
takes the least time in our model, and it can save the whole model’s inference time by fil-
tering correct sentences. Actually, 160 sentences are discriminated to be correct, which 
means nearly 12% of the test set can be free from running token-level error detection 
and error correction. Considering the error ratio in this test set is high, more sentences 
can be early output by our model in less noisy scenarios, which can further improve our 
approach’s efficiency. The cost of the detector is high as we use the CRF layer to optimize 
the output sequence. The corrector does not take much time because it is non-autore-
gressive and it only needs to generate corrections for detected errors instead of generat-
ing a whole sentence like NMT. Besides, the total inference time is not equal to the sum 
of four modules’ times, and the difference value is made by post-processing and data 
transmission between GPU and CPU.

Next, we compare our approach’s inference time with three typical GEC systems in 
Table 7. The time on the left of the slash is the average milliseconds of processing one 
batch and the right one is the total seconds of processing all sentences. The work of Zhao 
et al. [7] is based on NMT, and it uses 6 transformer layers for both encoder and decoder. 
GECToR [12] is based on SL method with BERT as encoder. The work of Chen et  al. 
[32] is a hybrid model with one SL model (based on Roberta [33]) for token-level error 
detection and one NMT model (based on Transformer (big)[9]) for error correction. 
Our experiment on inference time can compare with the results in  [32] because we use 

Table 6 Modules’ inference time on CoNLL-14

1/8/16/32 refers to the setting of batch size

Module Inference time (s)

1 8 16 32

Encoder 14.26 2.03 1.00 0.53

Discriminator 0.56 0.08 0.05 0.03

Detector 2.84 0.98 0.76 0.63

Corrector 1.49 0.32 0.18 0.11

Total 20.76 3.96 2.75 2.47

Table 7 Inference time and performance on CoNLL-14

1/8/16/32 refers to the setting of batch size

* Trained and evaluated with official released code. Pre‑training and ensemble are not applied

Work Parameter Setting Inference time (ms/s) Performance

Number 1 8 16 32 P R F0.5

Zhao et al.[7]* 97M Beam 1 245/321 317/52 353/29 415/17 63.3 33.7 53.9

Beam 4 431/566 646/106 743/61 878/36 64.4 33.3 54.3

Chen et al.[32] 334M Beam 5 104/137 207/34 256/21 390/16 66.0 24.7 49.5

GECToR[12]* 112M 4 iters 20.65/27.09 41.59/6.82 60.37/4.98 101.95/4.18 66.8 33.7 55.8
Previous[15] 133M – 14.89/19.53 24.09/3.95 37.56/3.08 70.24/2.88 57.2 34.1 50.4

Our approach 133M – 15.82/20.76 24.15/3.96 33.54/2.75 60.24/2.47 59.8 36.5 53.0
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the same type of GPU with same CUDA setting to test and all models are implemented 
with Pytorch. Besides, our approach’s inference time is different from our previous work 
because we re-implement our code and our current performance is significantly changed 
compared to the previous.

As shown in Table 7, our approach and GECToR are much faster than Zhao et al. [7] 
and Chen et al. [32]. Although beam search is widely applied for improving the perfor-
mance of NMT models, the cost of time can increase multiply compared with greed 
search (beam size equals one). Besides, the NMT model’s inference speed in processing 
a single sentence is up to several hundreds of milliseconds, which can limit the GEC 
model’s application in mobile combinations. Although a larger batch size can reduce 
the total running time, the inference time of each batch increases, so we cannot get the 
result of a single text faster than one sentence per batch. The hybrid model by Chen et al. 
[32] is proposed to improve the efficiency of GEC and it does show improvement to the 
NMT-based model, but its inference speed is much slower than ours. Finally, we com-
pare our approach with GECToR to show if our approach is more efficient in SL-based 
approaches. Since GECToR can only correct each incorrect token with one token in one 
iteration, it needs multiple iterations to maximize performance, which is to re-correct 
those sentences detected as incorrect. Considering the numbers of corrections made by 
GECToR are 740, 944, 993, 1004, and 1005 from 1 iteration to 5 iterations respectively, 
we choose the setting of 4 iterations for comparison. However, our approach can correct 
an error with a maximum of (M − 1) tokens in one turn, which is more efficient. We can 
see our approach is nearly 30% faster than GECToR and the inference time per sentence 
is only 15.82 milliseconds when batch size is set to 1, which indicates that our approach 
is more suitable for improving the text quality in real-time communication scenarios.

To further explore the efficiency of our approach, we compare our approach with 
GECToR in processing sentences of different lengths. We test the inference time for sen-
tences of lengths 5, 10, 15, 20, 25, and 30. For each length, we randomly sample 2000 
samples of that length from Lang-8 dataset for testing. The results are shown in Table 8. 
Our approach shows a significant advantage in inference time compared to GECToR. 
Besides, our approach’s time increases for every 5 increases in length, which is less than 
GECToR. Thus the time difference increases with the increase in length. This experi-
ment shows that our approach is efficient in correcting sentences with different lengths.

3.5  Ablation study

In order to evaluate the influence of different strategies and settings on our approach, we 
perform an ablation study to our approach on the CoNLL-2014 test set and the results 
are presented in Table 9. Each setting in this table is based on the previous one.

Table 8 Inference time (second) with different sentence lengths

The batch size is set to 32

5 10 15 20 25 30

GECToR 3.59 4.20 5.00 5.68 6.48 7.27

Our approach 1.22 1.57 2.07 2.47 2.83 3.32
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The first line in Table  9 is our final approach, which sets loss weights 0.5, 1, 1.5 
to α,β , γ  and uses two stages training strategy. After removing loss weights, which 
is to set all loss weights to 1, there is a slight decrease in performance. Then we 
further remove the two stages training strategy. This is to train the model with all 
training datasets for 5 epochs and select the checkpoint with the highest score on 
development datasets. We can see there is a 2.0 points decrease in F0.5 , which proves 
that the two stages training strategy can help improve GEC performance. Compared 
with our previous work, which uses all training datasets to train the model for 3 
epochs and achieves a F0.5 score of 50.4, we can see a longer training time with a 
selection strategy on parameters can help improve performance. Next, we evaluate 
the influence of the CRF layer, which is involved in ruling the output of the detec-
tor. We can see the recall drops a lot without the CRF layer, leading to the decrease 
in F0.5 . This proves that the CRF layer is significant for our model in finding errors. 
Then we directly remove the discriminator to see its impact. We can see the preci-
sion increases, but the recall drops a lot, making the F0.5 score decrease 8.6 points. It 
happens because about half of the sentences in training datasets are correct, which 
means the target labels of the detector are all tag ‘O.’ Thus the detector is less likely 
to detect errors. However, when we use the discriminator, the detector only pro-
cesses incorrect sentences when training, so the recall value is higher. This can be 
proved with the last row in Table 9, in which correct sentences are not used in train-
ing and the recall is higher than the row above it.

We study the impact of loss weights and the results are shown in Table 10. Because 
the three tasks are performed serially in our approach, we manually set three combi-
nations of loss weights with ratios of 1:2:3, 1:1:1, and 3:2:1. We can see the automatic 
strategy with Eq. 6 does not perform well and the manually set weights can affect the 
final performance. Despite that the setting of 0.5, 1, 1.5 does not show a significant 

Table 9 Ablation study results on CoNLL-14

P R F0.5

Our approach 59.8 36.5 53.0
w/o loss weights 59.7 36.4 53.0

w/o two stages training 58.0 34.4 51.0

w/o CRF layer 58.1 29.6 48.7

w/o discriminator 62.5 16.5 40.1

w/o correct sentences 56.4 26.4 46.0

Table 10 Impact of loss weights

Type α β γ P R F0.5

Automatic – – – 57.1 35.1 50.7

Manual 0.5 1 1.5 59.8 36.5 53.0
Manual 1 1 1 59.7 36.4 53.0

Manual 1.5 1 0.5 57.4 35.3 51.0
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difference from the setting of 1, 1, 1, we use the previous one in our final model 
because the result in Table 4 shows that our corrector needs improvement.

3.6  Empirical results on sentence error detection

We additionally study current pre-training models’ performance on the task of SED 
because error detection is more important in communications. Once the message 
is detected with errors, we can withdraw it to avoid unnecessary operations with the 
wrong message. Besides, SED can be practical in improving the efficiency of GEC. If sen-
tences are previously well distinguished with SED, there is no necessity to correct those 
correct sentences and thus this can reduce the work of error correction and save time.

We fine-tune pre-trained models and test BERT, RoBERTa[33], and SpanBERT’s per-
formance in CoNLL-2014 test set. We also build a baseline model with Bi-LSTM and 
300d pre-trained word vectors5 for comparison. The training data is all training sets in 
Table 2. Since the test set has two annotations, one sentence can be considered correct 
by one annotator and incorrect by another. Thus we not only evaluate the performance 
according to each annotation but also evaluate with the two merged annotations, which 
regards a prediction right if it matches any annotation.

The results are shown in Table 11, and all pre-training models outperform the base-
line model in accuracy. By comparing the bottom two groups in Table 11, we can see 
applying grid search on the development set to determine the threshold can significantly 
increase the recall of incorrect sentences and can improve accuracy. However, the preci-
sion drops, which means many correct sentences are predicted with high correctness. 
The top group’s results come from our multi-task learning models and the thresholds 
are precise to three decimals as the predicted logits in the development set are extremely 
low. This can indicate the multi-task learning approach does not provide a good correct-
ness distribution for the development set, but grid search helps to find a boundary and 
makes the final results comparable to single models.’ Despite that the merged accuracy is 
over 90%, the performance of all pre-trained models is not satisfying when considering 
the incorrect sentences’ percentage in the test set.

Table 11 SED results on CoNLL-14

P and R represent the precision and recall of incorrect sentences

* Threshold is determined by grid search in development set, except the last two rows

Method Thres* CoNLL‑14 A1 CoNLL‑14 A2 Merge

P R Acc P R Acc Acc

BERT 0.79 80.2 94.9 79.4 93.3 92.6 87.9 94.13
SpanBERT 0.89 79.2 96.3 79.0 92.3 94.1 88.1 94.05

BERT 0.89 76.7 96.6 76.4 90.5 95.6 87.6 92.0

RoBERTa 0.89 79.4 95.7 79.0 92.6 93.5 87.9 92.9

SpanBERT 0.90 75.6 98.1 75.8 89.9 97.8 88.6 92.5

LSTM 0.73 72.7 99.0 72.4 86.6 98.9 85.9 89.3

BERT 0.50 86.0 79.7 76.0 96.7 75.1 76.4 77.3

LSTM 0.50 76.2 85.0 70.0 89.4 83.6 77.4 78.2

5 http:// nlp. stanf ord. edu/ data/ glove. 6B. zip

http://nlp.stanford.edu/data/glove.6B.zip
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We further visualize the output logits of the BERT model (third row in Table 11) in 
Fig. 2 to analyze the distribution of CoNLL-2014 test set. RoBERTa and SpanBERT show 
similar distributions as BERT. In theory, for binary classification, there should be a clear 
boundary that can unambiguously divide the correct sentences and incorrect ones. 
However, the boundary does not exist in Fig.  2. Despite the threshold Ptf

thres obtained 
by grid search can provide a fair boundary, it cannot improve the discriminant ability of 
the model. Besides, the distribution of incorrect sentences shows a long tail with a high 
probability of correctness, which indicates that there are a considerable number of sen-
tences that cannot be well distinguished.

In a brief summary for the SED task, the threshold found by grid search can make 
the discriminator adaptive to the target dataset and improve performance, but current 
pre-trained language representation models still lack discriminant ability. Thus sentence 
error detection remains a research problem to be solved.

4  Related work
Many works have been taken to improve GEC since the CoNLL-2014 [16] and BEA-
2019[17] share tasks were organized. The current main methods of handling GEC can be 
classified as machine translation and sequence labeling.

Machine translation methods are first widely applied for GEC because the task can be 
considered as translating an incorrect sentence to a correct one. To improve the perfor-
mance of GEC, the structure of encoder and decoder in NMT has changed from RNN 
[34] to Transformer [7]. As a result, the model’s parameter number increases a lot. Cur-
rent well-performed NMT-based systems [8, 35] are mainly based on the Transformer 
(big) [9] architecture, which has nearly twice parameters than the base version of BERT. 
However, machine translation approaches are considered a low-resource problem [36] 
even if the current public training dataset has over one million examples. Thus there are 
many works on data augmentation for GEC. Ge et al. [37] proposed three strategies for 
data augmentation with fluency boost learning. Zhao et al. [7] generated pseudo data by 
directly deleting, inserting, replacing, and shuffling words in the correct sentence with 
a certain probability. Since current works on NMT-based systems are mainly focused 
on higher performance, efficiency becomes a problem to them, which can prevent their 
application in mobile communications.

Recently, local sequence transduction [11] becomes a breakthrough for GEC and 
it aims at only correcting the errors in the sentence instead of generating a new sen-
tence. As local sequence transduction can be regarded as a sequence labeling prob-
lem [38], the calculation cost can be extremely reduced, thus improving the efficiency 
of GEC. LaserTagger [31] and PIE [11] were proposed for GEC contemporaneously, 

Fig. 2 A statistic of BERT’s outputs for SED on CoNLL-14
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and they are both based on SL method. LaserTagger tries to assign an operation to 
each token and each operation is a basic tag (keep or delete) combined with a phrase. 
Thus correction can be made by deleting and adding a phrase to the source sentence 
according to each token’s operation. PIE shares a similar idea with LaserTagger, but 
it uses copy, delete, append, and replace as the basic tag for each token and it addi-
tionally involves format transformations for certain grammatical errors. GECToR [12] 
integrates advantages from LaserTagger and PIE and achieves current state-of-the-art 
performance. GECToR builds a more comprehensive vocabulary of format transfor-
mations and limits the number of tokens in each label to one. Iterative correction and 
ensemble learning are applied by GECToR to further improve performance. Despite 
these methods are more efficient than NMT, they can only correct limited kinds of 
errors and they all do not consider the sentence-level error.

Most recently, Chen et al. [32] proposed a span-level error detection and correction 
model to improve the efficiency of NMT-based GEC models, which involved one SL 
model for token-level error detection and one NMT model for correction. We share 
the same idea of correcting errors based on the detected errors’ positions, but they use 
two separate models to achieve this, which means they need to encode one sentence 
twice. Moreover, they do not consider the correctness of sentences, and the correction 
generation stage is still auto-regressive. Thus their approach is less efficient than ours.

Researches on GEC are not only limited to English, and Chinese Grammatical Error 
Diagnosis (CGED) [39] is one similar task for Chinese. CGED is focused on detecting 
and identifying errors in Chinese corpus, and it also includes a sub-task of generating 
corrections, but the current performance on correction is far from satisfying. CGED 
additionally defines word ordering errors compared with our three types and has four 
types of errors. Since the word ordering error can be more flexible than other types 
(e.g., swapping two neighboring tokens or moving one phrase from back to front), we 
consider it as a redundancy error and a missing error.

SED and GED are two auxiliary tasks of GEC and aim at detecting sentence-level 
errors and token-level errors. SED is less concerned in recent years may because it is 
just a binary classification problem, but SED is not solved perfectly as shown in our 
experiment. To the best of our knowledge, only Asano et al. [40] involved SED for GEC 
in recent years. They build a proficiency prediction model to enhance the performance 
of SED, but it requires the category information of writers. GED is currently regarded 
as a sequence labeling problem and many works follow the label definition of Rei and 
Yannakoudakis [20], which classifies each token into a correct or incorrect one and 
label incorrect to the token after the missing error’s gap. However, the incorrect label 
cannot tell if the token is incorrect or a missing error occurs before the token. Mean-
while, our approach solves the problem with BIO tags and error types. GECToR [12] 
also introduces a GED task and it defines a token as incorrect if the label assigned 
for correction is not ‘keep,’ which is reasonable to their approach. Features of each 
token are quite important to the performance of GED and Kaneko et al. [41] prove that 
the quality of word embeddings can affect results. Bell et  al. [21] involve contextual 
embeddings from BERT to a Bi-LSTM model for GED and prove contextual embed-
dings can help to improve the performance. Despite we combine these two tasks in our 
approach to improve efficiency, the power of error detection is not fully explored.
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5  Conclusion
To efficiently detect and correct noisy messages in mobile communications, this 
paper investigates GEC and proposes a novel hierarchical approach by checking both 
sentence-level and token-level errors and generating corrections for detected errors. 
Error detections and correction are integrated into one multi-task learning model, 
each module is designed for a specific task and is efficient, and thus our approach 
shows an outstanding inference speed with general performance in GEC. We addi-
tionally analyze current pre-training models’ performance in SED and find they can-
not provide a clear boundary to correct and incorrect sentences.
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