
A multi‑task learning framework for efficient
grammatical error correction of textual
messages in mobile communications
Fayu Pan*, Bin Cao and Jing Fan

1 Introduction
With the development of mobile communications, reliable data transmission [1, 2] is
available and network safety is guarded with anomaly detection [3], and thus applica-
tions like APIs recommendation [4] and QoS prediction [5] can be applied in industrial
systems. However, the textual message, one of the main transmission objects of mobile
communications, usually contains noise made by people’s errant inputs. Noisy mes-
sages will increase the difficulty of reading comprehension and make applications output
wrong results. To transmit accurate messages, we investigate grammatical error correc-
tion (GEC) to automatically detect and correct errors in textual messages.

Considering billions of messages are sent in the network every day and a low time
delay is an essential requirement of mobile communications, the GEC system should
not only improve messages’ quality but also take efficiency into account. However, cur-
rent works on GEC mainly focus on improving performance and use large deep learn-
ing models (e.g., T5 xxl with 11B parameters [6]), making the GEC system less efficient
when inference. Although more powerful hardware and parallelization can alleviate this

Abstract

In mobile communications, plenty of textual messages need to be transmitted and
processed rapidly. However, messages usually contain noise, which will affect the
performance of related applications. Thus, we investigate grammatical error correction
(GEC) to correct errors in messages. Unlike recent works, we focus on improving the
efficiency of GEC because low time delay is significant in mobile communications. We
propose a novel multi-task learning approach to GEC by detecting errors first and then
making corrections. Two classifiers are used to serially detect sentence-level and token-
level errors, so the correct content can be free from correction operations. We adapt a
non-autoregressive decoder to parallelly generate corrected tokens, making the cor-
rection stage efficient. Experiments show that our approach is ten times faster than the
traditional approach and can achieve a comparable GEC performance.

Keywords: Error detection, Grammatical error correction, Multi-task learning,
Denoising, Efficient application

Open Access

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creat iveco mmons. org/ licen ses/ by/4. 0/.

RESEARCH

Pan et al. J Wireless Com Network (2022) 2022:99
https://doi.org/10.1186/s13638‑022‑02182‑8

EURASIP Journal on Wireless
Communications and Networking

*Correspondence:
panfayu@zjut.edu.cn

Department of Computer
Science and Technology,
Zhejiang University
of Technology, Hangzhou, China

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13638-022-02182-8&domain=pdf

Page 2 of 21Pan et al. J Wireless Com Network (2022) 2022:99

problem, it will increase costs significantly. Therefore, we aim to build an efficient GEC
system with limited hardware that can correct errors rapidly.

Many works [6–8] consider GEC as a machine translation problem by regarding the
noisy text as the source language and the error-free text as the target language. Follow-
ing neural machine translation (NMT) approaches, a traditional GEC system is built
with an attention-based sequence-to-sequence model [9], which contains an encoder
for the input text’s semantic representation and a decoder for the corrected text’s gen-
eration. Since the decoding stage is auto-regressive, which means the generation of the
current token relies on the previously generated ones, the inference speed is slow. Our
experiment shows that the processing time of single text with NMT can reach hundreds
of milliseconds, making GEC service unacceptable in mobile communications because
the control plane latency requirement for 5G is only 50ms [10].

Recently, some works [11, 12] consider GEC as a local sequence transduction prob-
lem and GECToR [12] achieves state-of-the-art performance. They use sequence labe-
ling (SL) models to detect and correct errors synchronously by predicting labels to each
token in the text. Each label is usually composed of an edit tag (e.g., keep, delete, append,
and replace) and one token. For example, ‘Thanks you’ can be corrected into ‘Thank you’
by assigning label ‘replace‖Thank’ to token ‘Thanks’ and label ‘keep’ to token ‘you.’ Since
the labeling stage can be parallel, SL-based approaches are more efficient than NMT.

However, there still exist some limitations to SL-based approaches. As the vocabu-
lary of labels is built with the statistic of most common corrections from corpora, the
model will suffer from the out-of-vocabulary (OOV) problem [13], which means the
model is unable to correct the error when the requisite label is not in the pre-set vocab-
ulary. Besides, SL-based approaches need multiple iterations of correction to correct
some errors because these errors need more than one label. For example, in first itera-
tion, ‘Thank your help.’ is corrected into ‘Thanks your help.’ with label ‘replace‖Thanks’
to token ‘Thank,’ and then ‘Thanks your help.’ is corrected into ‘Thanks for your help.’
with label ‘append‖for’ to token ‘Thanks’ in second iteration. In GECToR, a text could be
corrected up to 5 iterations, which means to serially process 5 individual texts. It could
be more efficient if all requisite tokens to an error are gained in one iteration. Last but
not least, current SL-based approaches do not consider the correctness of the whole text
and just label all text in token-level. In general, apart from encoding the text, the com-
putational cost of token-level labeling is L (L is the length of the text) times higher than
classifying a text. Apparently, the correct text should be free from token-level computa-
tion if it is previously classified as containing no errors. Considering that the correct text
usually takes the majority part in the real scenario, SL-based approaches can be more
efficient by checking text’s correctness first.

To further improve the efficiency of GEC, we get inspiration from how people correct
text and divide the task into three steps. Usually, given a text, we will first scan it and give
a preliminary judgment of its correctness. If we consider the text incorrect, we will care-
fully check each token and find errors. Finally, we will generate corrections with the con-
text of each error. To implement such progress, we build a multi-task learning framework
and integrate three tasks into one model: sentence error discrimination (SED), grammati-
cal error detection (GED), and GEC. SED and GED are two auxiliary tasks for error detec-
tions, and thus we only need to correct detected errors in GEC. We apply SpanBERT [14]

Page 3 of 21Pan et al. J Wireless Com Network (2022) 2022:99

as the encoder to extract sentence-level and token-level features from the source sentence.
For SED, a discriminator is designed to classify the sentence and it will output a probability
of correctness. The sentence is considered to be correct if the probability is higher than our
pre-set threshold. Then we use a detector to handle GED, which detects errors in token-
level. Each token will be classified as a correct token or one of our defined error types. Next,
we record each detected error’s start and end positions in the source sentence and use a
corrector to generate corrections with each error’s context information. We represent each
error with three features as the hidden state of the error itself and the information before
and after the error. Then we send error features with position embeddings into a feed-for-
ward network to concurrently generate all tokens in a correction, which avoids the require-
ment of multiple iterations of correction. Finally, we can modify the source sentence by
replacing incorrect tokens with generated corrections, thus getting the corrected sentence.

Following our previous work [15], we complete the implementation details of our model
and conduct more experimental analysis in this paper. We make three new improvements
in this paper: changing words’ representation, assigning loss weights to the tasks of our
model, and changing the training strategy. Besides, we notice that text error detection is
important but achieves little attention in recent research, so we make an empirical study
on error detection. With the improvements in this paper, the F0.5 score of our approach has
changed from 50.4 to 53.0 in CoNLL-14 dataset [16] and from 52.1 to 56.1 in BEA-19 test
dataset [17]. Despite that our approach’s performance cannot reach the current state-of-
the-art performance, our approach shows advantages in processing speed. Our contribu-
tions in this paper are as follows:

1. We propose a novel multi-task learning approach to GEC, and our approach is also
suitable for both sentence and token-level error detection. Our approach can detect
and correct partial errors in messages, thus improving the performance of textual
applications in mobile communications.

2. Our model is efficient in correcting messages and can satisfy mobile communica-
tions’ low time delay requirement. Our model is at least ten times faster than the tra-
ditional NMT approach and nearly 30% faster than GECToR, a SL-based approach,
in processing single text.

3. We make an empirical study on pre-trained language models’ performance in the
task of SED and show the power of grid search in improving its performance. More-
over, we show more research should be done to improve SED.

The organization of this paper is as follows. Section 2 introduces the definition of our
problem and our approach to hierarchically solving GEC. Section 3 reports our modifica-
tions to previous work and the experimental results of our method in terms of performance
and efficiency. Besides, current methods’ performance in SED is explored in Sect. 3. Sec-
tion 4 introduces related works and Sect. 5 concludes the paper.

2 Method
2.1 Problem definition

GEC can be defined as converting an input text sequence X = (x1, . . . , xn) into the target
sequence Y = (y1, . . . , ym) . X equals Y when the input is correct. Instead of generating

Page 4 of 21Pan et al. J Wireless Com Network (2022) 2022:99

Y from scratch, our goal is to directly modify X and eliminate the differences between
X and Y since their similarity is over 80% [7]. In order to only correct the errors in the
incorrect sentences, we introduce two auxiliary tasks named SED and GED for sentence-
level and token-level error detection, respectively. Thus our approach to GEC can be
divided into three steps: checking sentence’s correctness, finding errors’ positions, and
generating corrections. As a result, correct sentences will not be modified and incorrect
sentences can be corrected by replacing errors with corrections.

For the SED task, we have to predict whether the sentence is correct or not and it is
a binary classification problem. A bool type value Y tf is defined as the label of the sen-
tence’s correctness, and 1 represents correct.

GED is originally used for finding incorrect tokens in the sentence, but we can get
each error’s position by post-processing its results. Note that the error mentioned here
is defined in span level, which means one error contains all continuous incorrect tokens.
Instead of a correct or incorrect label, we assign each token with an error type to define
incorrect tokens because error types are more specific. According to the ERRANT
toolkit for GEC [18], which classifies edits for corrections as unnecessary, missing, and
replacement edits, we define three error types as redundancy (R), missing (M), and
word selection (WS) errors. We apply BIO tags [19] to label the start and the inner of an
error because one error can contain more than one token. The target of GED is to get a
sequence of labels Y et , in which yeti represents the label for token xi . Once we get Y et , we
can know which token is incorrect and simply find errors’ positions.

The last task is to generate corrections for those detected errors in GED, and we con-
struct a structure called patch to describe the correction. Each patch is operated on X
and is a triple patch = (s, e,Y ′) , which means the content between xs and xe (not include
xs and xe) should be corrected into Y ′ = (yi, ..., yj) . Since we can obtain the positions s
and e from the previous task, we only need to generate Y ′ in this step. Then we can cor-
rect incorrect sentences according to the modifications of patches.

2.2 Preprocessing

According to our definition of GEC, three target training labels need to be exacted from
the parallel training corpus. Initially, the training data should be formatted into source
sentence X and target sentence Y pairs. Suppose more than one target sentence is anno-
tated. In that case, we will choose the target sentence with minimal Levenshtein dis-
tance, which means minimal modifications need to be applied to the source sentence to
make it correct. Besides, A special token ‘[CLS]’ is added to the front of each sentence
for the SED task, and ‘[SEP]’ is appended to the back of each sentence as the symbol of
end.

By checking whether X is equal to Y, we can get the sentence-level label Y tf . Then we
need to find errors in the incorrect sentence and get target corrections by comparing X
with Y. We apply SequenceMatcher1 to get the transductive operations of converting X
to Y. Each operation is a quintuple (tag, sX , eX , sY , eY) where tag represents the trans-
ductive relationship from (xsX , ..., xeX−1) to (ysY , ..., yeY−1) . The progress of getting target

1 https:// docs. python. org/3/ libra ry/ diffl ib. html# diffl ib. Seque nceMa tcher

https://docs.python.org/3/library/difflib.html#difflib.SequenceMatcher

Page 5 of 21Pan et al. J Wireless Com Network (2022) 2022:99

labels of incorrect sentences is shown in Algorithm 1, and Table 1 shows two conversion
examples.

We use BIO tags to label errors, in which ‘B’ represents the beginning of an error, ‘I’
represents the inner of an error, and ‘O’ represents not an error. Usually, we need two
plus one types of tags to label one kind of error. Taking the first example in Table 2 as an
example, we use ‘B-R’ and ‘I-R’ to label a redundancy error and other correct tokens are
labeled with ‘O.’ Although there are three kinds of errors, only 6 tags (‘B-R,’‘I-R,’‘B-M,’‘B-
WS,’‘B-WS,’‘O’) are defined in our approach and the ‘I-M’ label is not existing because
the missing error only occurs between two words and we just label ‘B-M’ on the second
word. The added token ‘[SEP]’ at the end of X and Y can handle the situation of miss-
ing words at the end of a sentence. Compared with previous works on token-level error
detection [20, 21], which label correct tokens with 0 and incorrect tokens with 1, our
approach can not only find incorrect tokens but also detect error types. Previous works
also label missing errors by labeling 1 to the first token after the missing error, but this
will cause a problem that we cannot know whether the token is incorrect or a missing
error occurs before the token. On the contrary, our approach can avoid this problem.

Table 1 Examples of data conversion

X and Y are inputs. Yet and patches are outputs

X [CLS] He is the first of all in the list . [SEP]

Y
et [O O O O O B-R I-R O O O O O]

Y [CLS] He is the first in the list . [SEP]

Operations (‘delete’, 5, 7, 5, 5)

Patches [(4, 7, (‘[SEP]’))]

X [CLS] This car is more faster than that [SEP]

Y
et [O O O O B-WS O O O B-M]

Y [CLS] This car is much faster than that one . [SEP]

Operations (’replace’, 4, 5, 4, 4) (’insert’, 8, 8, 8, 10)

Patches [(3, 5, (‘much’,‘[SEP]’)), (7, 8, (‘one’, ‘.’, ‘[SEP]’))]

Page 6 of 21Pan et al. J Wireless Com Network (2022) 2022:99

In addition to the error type labels Y et , the patches for error corrections are also col-
lected from the transductions. To control the correction’s length, the special token
‘[SEP],’ which is ‘[EOP]’ in our previous work, is added to the end of each patch. We
change ‘[EOP]’ to ‘[SEP]’ because ‘[SEP]’ is originally designed as a symbol of end in
SpanBERT, while ‘[EOP]’ is designed by us and its embedding vector is not pre-trained.
The start position s in the patch is one position in front of the first incorrect token of
the error and e is one position behind the last incorrect token for easier access to the
error’s surrounding context and it can describe the missing error’s position. Different
from our previous work, tokens in the patch for the missing error are changed from
(‘[NONE],’‘[EOP]’) to (‘[SEP]’) for concision.

2.3 Architecture

It can be less efficient if we use three separate models to handle our tasks, so we design a
multi-task learning framework to integrate three tasks because they all need to semanti-
cally represent the source sentence first. The architecture of our model is shown in Fig. 1.
Three headers, named Discriminator, Detector, and Corrector, are involved in process-
ing the corresponding tasks by sharing one powerful encoder.

2.3.1 Encoder

SpanBERT [14], instead of the widely used pre-trained language model BERT [22], is
applied as the encoder in our model because SpanBERT can achieve better perfor-
mance in downstream NLP tasks than BERT[14] and the pre-training task of SpanBERT
is similar to our error correction task. The architecture of SpanBERT is the same as
BERT, which is a stack of several transformer encoder [9] layers, but SpanBERT does
not involve the next sentence prediction task during pre-training. Moreover, SpanBERT
enhances the masked language model in pre-training by masking a random span length
of words and predicting the masked words with span boundary objective.

Since SpanBERT is self-supervised pre-trained with a large number of corpora, it can
provide a reliable encoding of text and we only need to fine-tune it with our tasks. Given
a text, the first step is tokenization which breaks down the text into the smallest unit
(token). Then we embed each token to represent each token with a vector. Finally, we

Fig. 1 The architecture of our model. The input sentence is first checked to be incorrect by the Discriminator,
then located errors’ positions by the Detector, and finally corrected by the Corrector. Two errors are detected
and the maximum correction length M is set to 3 in this example. N/A refers to any token as it occurs after
token ‘[EOP]’

Page 7 of 21Pan et al. J Wireless Com Network (2022) 2022:99

send all tokens’ vectors into the encoder. After encoding, each input token xi will be con-
verted to a vector hi which can represent its semantic information in the text.

2.3.2 Discriminator

The discriminator is used to check whether the input sentence is correct. We follow the
general usage of BERT or SpanBERT for sentence classification, which is to pool the hid-
den state of token ‘[CLS]’ and feed it into the classifier to get the sentence’s probability of
correctness Ptf(X):

where h0 is the hidden state of token ‘[CLS]’ and the output c can represent the embed-
ding of the whole sentence. We manually set a threshold Ptf

thres ∈ (0, 1) here to control
the boundary of classification, and the sentence is regarded as correct if Ptf (X) is higher
than Ptf

thres . According to the target domain, a referenced threshold can be obtained by
grid search in the development set with the highest accuracy. If the sentence is detected
to be correct, we will early stop the whole procedure and output the source sentence as
the GEC result.

2.3.3 Detector

To find errors in the incorrect sentence, we apply a sequence labeling layer to do token-
level error detection, which is to classify each token based on the hidden states hi . Con-
ditional Random Field (CRF) [23] is applied to add constraints to the final output. Thus,
an unreasonable output sequence (e.g., label ‘I-R’ appears after ‘O’) will be less likely to
occur. The progress of detecting each token’s error type Pet(xi) can be described as:

The index i does not start from 0 here as the target label of the first token ‘[CLS]’ is
always ‘O.’

The post-processing step after error detection is to locate each error’s start and end
position, which is similar to the conversion from Y et to patches’ positions in Table 1.
For a redundancy error, if xi is labeled ‘B-R’ and (xi+1, ..., xj) are labeled ‘I-R’, then we set
one patch’s start position s = (i − 1) and end position e = (j + 1) (j = i when ‘O’ is after
‘B-R’). The process is the same for word selection errors, but the end position should not
move one place back for each detected missing error because it is at the right position.
Besides, all predicted labels can be ‘O’ if the discriminator wrongly classifies a correct
sentence or the detector fails to find errors in the incorrect sentence. In such cases, we
will consider the sentence correct.

2.3.4 Corrector

Our corrector is inspired by the pre-training task of SpanBERT and can use detected
errors’ surrounding context to generate corrections. Through error detection, we can
locate each error with the start position s and the end position e in the sentence. There-
fore, hs can represent the context before the error, and he can represent the context after

(1)c = tanh(W poolh0 + bpool)Ptf(X) = sigmoid(W clsc + bcls)

(2)Pet(xi) = CRF(W ethi + bet), i ∈ [1, n+ 1]

Page 8 of 21Pan et al. J Wireless Com Network (2022) 2022:99

the error, while the average hidden states between hs and he represent the error itself. In
brief, we can represent a span-level error r with:

in which hemp is a learnable vector. It is used for missing errors because the encoder can-
not represent the missing tokens.

Our main innovation compared with SpanBERT is that we additionally involved the
middle state herr for the representation of a span. Following SpanBERT, we use position
embeddings and two layers of feed-forward network with layer normalization to gener-
ate the target correction Y ′ = (y′1, ..., y

′
p):

where p is the length of target tokens in a patch and Epos(i) represents the position
embedding for the ith token to generate. The correcting stage is non-autoregressive and
could run in parallel to improve efficiency.

However, unlike SpanBERT, which can control the output’s length with each masked
span’s length, we do not know the real length of each correction when inference. Thus
we manually set a constant M and let p equal M when inference, which limits all correc-
tions’ maximum length to M. Besides, with the special token ‘[SEP]’ at the end of each
patch, we can control the output length when inference by clipping tokens before ‘[SEP].’

Finally, we construct the patch for each error with positions s and e from the detector
and correct tokens Y ′ from the corrector. Then we only need to replace incorrect tokens
according to the patch, and the source sentence X can be corrected to the target sen-
tence Y.

2.4 Multi‑task learning

There are three tasks in our approach, and each task has a corresponding loss function.
We use the discriminator to do SED and the loss lossdis is defined with binary cross-
entropy loss since we output the probability to a binary classification problem. The
detector handles GED and its loss lossdet is calculated with the path search score of
the CRF layer. Cross-entropy loss losscor is used for the corrector by comparing target
tokens and predicted logits. We integrate three tasks into one multi-task learning model,
and the overall loss function is defined as:

where hyperparameters α , β , and γ are the weights for the corresponding tasks. Besides,
we limit the sum of all weights to the number of tasks, which is 3 in our model. To those
correct inputs during training, only lossdis is calculated.

In addition to manually setting weights, we also design a strategy to automatically cal-
culate each loss’s weight when training. As we know, the higher the loss, the worse the
performance. Since all three tasks are important to our final results and the difficulty
of each task is different, we expect that the task with higher loss can have a higher loss

(3)
r = [hs, herr, he] where

herr =
mean([hs+1, ..., he−1]); , se+ 1

hemp, s = e + 1

(4)P(y′i) = MLP([r,Epos(i)]), i ∈ [1, p]

(5)loss = αlossdis + βlossdet + γ losscor

Page 9 of 21Pan et al. J Wireless Com Network (2022) 2022:99

weight so that the loss can drop faster. Thus, the strategy to calculate weights is defined
as:

where 3 is the number of tasks. With this strategy, the losses’ weights can be dynamically
upgraded during training.

The training stage of three tasks can be parallel as we know which inputs are incorrect
and where the incorrect tokens are located. Differently, the inference stage is sequential
and we process sentences in the order of the encoder, discriminator, detector, and cor-
rector, but we can filter those inputs which are detected to be correct by the discrimina-
tor to save time.

3 Experiments
3.1 Datasets

Following the restricted track of BEA-2019 shared task for GEC [17], we use FCE [25],
NUCLE [26], Lang-8 [27], and W &I+LOCNESS (W+L) [17] corpora as our training
sets. The development sets are composed of CoNLL-2013 [24] test set and BEA-2019
development set because we want our model can generalize to different kinds of errors.
Same as recent works, we evaluate our model’s GEC performance on CoNLL-2014 test
set [16] with MaxMatch (M2) scorer[28] and BEA-2019 test set with ERRANT scorer.
Two annotators annotate CoNLL-2014 and the M2 scorer will compare each sentence
from the model’s output with two annotations and record the result with better perfor-
mance. The evaluation of BEA-2019 is operated on CodaLab2. We use CoNLL-2014 test

(6)

total_loss = lossdis + lossdet + losscor

α = 3× lossdis/total_loss

β = 3× lossdet/total_loss

γ = 3× losscor/total_loss

Table 2 A Statistic of Used Corpora

Corpus Sentence number Avg. token
number

Avg. error ratio Error number Avg.
patch
length

Training sets

FCE 28,350 16.0 62.47 2.20 2.17

Lang-8 1,037,561 11.4 47.98 1.94 2.36

NUCLE 57,151 20.3 37.87 1.97 2.12

W+L 34,308 18.3 66.26 2.46 2.20

Development sets

CoNLL-13[24] 1381 21.1 81.4 2.60 2.13

BEA-19 (dev) 4384 19.8 64.3 2.38 2.21

Evaluation Sets

CoNLL-14 A1 1312 23.0 72.2 2.21 2.11

CoNLL-14 A2 1312 23.0 86.1 2.68 2.14

BEA-19 (test) 4477 19.1 – – –

2 https:// compe titio ns. codal ab. org/ compe titio ns/ 20228

https://competitions.codalab.org/competitions/20228

Page 10 of 21Pan et al. J Wireless Com Network (2022) 2022:99

set to evaluate the performance in the SED task. The statistic of used datasets is shown
in Table 2. Error Ratio means the percentage of incorrect sentences. Error Number
means the average error number in an incorrect sentence. Patch Length means the aver-
age token number in patches (with ‘[SEP]’).

3.2 Implementation details

We implement our model with Transformers3. Words in the text are tokenized into
WordPiece format [29], and the vocabulary for embedding and generating contains
28,996 tokens. With WordPiece and a large vocabulary, our approach is less likely to suf-
fer from OOV problem in correction generation stage because almost all words can be
obtained with WordPieces (e.g., word ‘Advantage,’ which is not in the vocabulary, can
be generated with WordPieces ‘Ad,’ ‘##vant,’ and ‘##age,’ in which ‘##’ means the content
after it should connect to previous WordPiece.).

We apply AdamW [30] optimizer and use warm-up for the first 5% of total training
steps. We set the maximum length M of each correction to 4 according to the average
length of patches as shown in Table 2. As the sentence-level error ratio can be quite dif-
ferent according to the corpus, we apply grid search in the corresponding development
set to determine threshold Ptf

thres and then use it for evaluation.
Different from our previous work [15], we re-implement the code of our model and

make three main improvements as follows:
1. We change the representation of words. As mentioned above, words will be

tokenized into WordPieces and then sent to the encoder. In our previous work, we
represent each word with corresponding WordPieces’ hidden states, which means the
operation objects of the detector and the corrector are WordPieces instead of words. For
example, we should assign three labels to the word ‘Advantage,’ which is tokenized into
three WordPieces, in error detection. In this paper, we represent each word with its first
WordPiece’s hidden state, which is inspired by GECToR. We implement it by a selection
operation after encoding and the input of the encoder is the same as the previous. Such
an improvement can reduce the difficulty of our tasks because previously, we needed to
correctly label all WordPieces of a word to find an error, but we only need to label one
currently.

2. We change the training strategy of our model. In our previous work, we train the
model with all training datasets for 3 epochs with a learning rate of 3× 10−5 . In this
paper, we divide the training procedure into two stages. In the first stage, we train our
model with dataset Lang-8 for 5 epochs with a learning rate of 3× 10−5 and choose the
checkpoint which has the highest F0.5 in merged two development datasets as the mod-
el’s parameters. In the second stage, we use the other three training datasets to further
train our model for 5 epochs with a learning rate of 1× 10−5 and choose the best check-
point as our final model’s parameters. The first stage is for coarse training because all
parameters except the encoder are randomly initialized, so we use a large learning rate
and the largest dataset Lang-8. The second stage is for further fine-tuning, so we use a
small learning rate and the rest training datasets.

3 https:// huggi ngface. co/ trans forme rs/ index. html

https://huggingface.co/transformers/index.html

Page 11 of 21Pan et al. J Wireless Com Network (2022) 2022:99

3. We assign loss weights to three tasks in our model when training. We test the effect
of loss weights and try to manually or automatically set weights, which is introduced in
sect. 2.4. We find manually setting weights works better and the values of α,β , γ are set
to 0.5, 1, and 1.5 respectively in our final model. We will discuss more about loss weights
in sect. 3.5.

3.3 Grammatical error correction results

The GEC performance of our model is shown in Table 3. Bold values in the table rep-
resent the best performance in each column. All results listed here are the best non-
ensemble results from each work and pseudo data is not used. We compare our results
with recent works without using pseudo data for further pre-training because the
amount of used pseudo data among different works can vary greatly (from 9M to 260M).
There are two main categories of methods for comparison, which are based on NMT or
SL. We classify our approach as a SL-based method as we apply SL model for token-level
error detection, and we do not use the auto-regressive decoder (e.g., LSTM) for error
correction.

As shown in Table 3, GECToR has the best performance and our approach can only
achieve a medium performance in both CoNLL-2014 and BEA-2019 test sets. However,
our approach achieves great improvement in both precision and recall compared with
our previous work because of the changes mentioned in sect. 3.2. The gap between our
approach and GECToR is reduced. Our approach shows weakness in precision but is
outstanding in recall, which means our approach prefers to regard the sentence as wrong
and make corrections. We also compare BERT and SpanBERT’s fine-tuning perfor-
mance in our approach. SpanBERT can achieve apparent improvement in both precision
and recall, which shows that the pre-training task of SpanBERT is more suitable for our
approach.

In Table 4, we further compare our approach’s performance with GECToR in BEA-
2019 test set, which is calculated online with the ERRANT toolkit. Our approach out-
performs GECToR in both token-level and span-level detection but shows a huge drop
in the final span-level correction aspect, which can indicate that our detector performs
well, but the corrector fails to correct all detected errors. One reason for this can be

Table 3 Experimental results on GEC

* The result is implemented by Chen et al. [32]

** The result is implemented by us with official released code with BERT

Work Method CoNLL‑14 BEA‑19

P R F0.5 P R F0.5

Zhao et al. [7] NMT 65.5 33.2 54.9 - - -

LaserTagger [31]* SL 50.9 26.9 43.2 53.4 38.5 49.6

GECToR [12]** SL 66.8 33.7 55.8 64.2 47.0 59.8
Chen et al. [32] SL+NMT 66.0 24.7 49.5 62.7 38.6 55.7

Previous (BERT)[15] SL 55.1 32.3 48.3 50.6 40.5 48.2

Previous (SpanBERT)[15] SL 57.2 34.1 50.4 54.5 44.3 52.1

Our approach (BERT) SL 56.3 35.0 50.2 54.8 48.2 53.4

Our approach (SpanBERT) SL 59.8 36.5 53.0 57.8 50.4 56.1

Page 12 of 21Pan et al. J Wireless Com Network (2022) 2022:99

that the released SpanBERT-base model does not include the weight of the pre-training
task, and we cannot transfer its obtained knowledge of text generation. Therefore, the
problem of generating corrections under a certain context is difficult to our model and
should be further improved.

Before error correction, the discriminator and the detector are applied for hierarchi-
cal error detections in our approach. The discriminator is related to the task of SED, and
its accuracy in CoNLL-2014 test set with SpanBERT is 94.05%. For the detailed result in
SED, we will discuss it in sect. 3.6. Since the error type label is only defined in our work
and the discriminator will filter some correct sentences, which means not all sentences
in the test set are processed by the detector, it is hard to compare the detector’s perfor-
mance with other works. Besides, the detector serves as the function of providing error
positions to the corrector, so we only report the detector’s results on finding error posi-
tions, which is shown in Table 5. The results are not decisive to the final performance of
GEC because the corrector may fix errors made by the detector (e.g., the detector regard
a correct token as an error and the corrector fix the mistake by generating the original
correct token).

3.4 Inference time analysis

Efficiency is significant to mobile communications where time delay must be controlled
to an acceptable level. Since GEC serves as an intermediate procedure in communica-
tions, its inference speed must be as fast as possible. We analyze the inference time of
our approach on CoNLL-2014 test set and make comparisons with other approaches to
explore whether our approach is efficient. All experiments are done with one NVIDIA
V100 GPU in CUDA 10.2 environment4 and we run three times with each setting of
batch size to reduce error.

Table 4 Detailed results on BEA-19

Work Evaluation aspect P R F0.5

Our approach(SpanBERT) Span-level correction 57.8 50.4 56.1

Span-level detection 78.2 63.6 74.8
Token-level detection 88.0 66.7 82.7

GECToR[12] Span-level correction 64.2 47.0 59.8
Span-level detection 75.2 52.4 69.2

Token-level detection 84.4 54.2 76.0

Table 5 Detector’s results on finding error positions

CoNLL‑14 A1 CoNLL‑14 A2

P R F0.5 P R F0.5

BERT 43.4 31.6 40.4 59.2 29.8 49.5

SpanBERT 43.4 32.1 40.6 59.4 30.4 49.9

4 We conduct the experiment with the instance type ecs.gn6e-c12g1.3xlarge in Alibaba Cloud.

Page 13 of 21Pan et al. J Wireless Com Network (2022) 2022:99

We first analyze the time cost of each module in our model and the results are shown
in Table 6. The encoder takes the major part of total inference time because the Span-
BERT we applied takes up the whole model’s majority of parameters. The discriminator
takes the least time in our model, and it can save the whole model’s inference time by fil-
tering correct sentences. Actually, 160 sentences are discriminated to be correct, which
means nearly 12% of the test set can be free from running token-level error detection
and error correction. Considering the error ratio in this test set is high, more sentences
can be early output by our model in less noisy scenarios, which can further improve our
approach’s efficiency. The cost of the detector is high as we use the CRF layer to optimize
the output sequence. The corrector does not take much time because it is non-autore-
gressive and it only needs to generate corrections for detected errors instead of generat-
ing a whole sentence like NMT. Besides, the total inference time is not equal to the sum
of four modules’ times, and the difference value is made by post-processing and data
transmission between GPU and CPU.

Next, we compare our approach’s inference time with three typical GEC systems in
Table 7. The time on the left of the slash is the average milliseconds of processing one
batch and the right one is the total seconds of processing all sentences. The work of Zhao
et al. [7] is based on NMT, and it uses 6 transformer layers for both encoder and decoder.
GECToR [12] is based on SL method with BERT as encoder. The work of Chen et al.
[32] is a hybrid model with one SL model (based on Roberta [33]) for token-level error
detection and one NMT model (based on Transformer (big)[9]) for error correction.
Our experiment on inference time can compare with the results in [32] because we use

Table 6 Modules’ inference time on CoNLL-14

1/8/16/32 refers to the setting of batch size

Module Inference time (s)

1 8 16 32

Encoder 14.26 2.03 1.00 0.53

Discriminator 0.56 0.08 0.05 0.03

Detector 2.84 0.98 0.76 0.63

Corrector 1.49 0.32 0.18 0.11

Total 20.76 3.96 2.75 2.47

Table 7 Inference time and performance on CoNLL-14

1/8/16/32 refers to the setting of batch size

* Trained and evaluated with official released code. Pre‑training and ensemble are not applied

Work Parameter Setting Inference time (ms/s) Performance

Number 1 8 16 32 P R F0.5

Zhao et al.[7]* 97M Beam 1 245/321 317/52 353/29 415/17 63.3 33.7 53.9

Beam 4 431/566 646/106 743/61 878/36 64.4 33.3 54.3

Chen et al.[32] 334M Beam 5 104/137 207/34 256/21 390/16 66.0 24.7 49.5

GECToR[12]* 112M 4 iters 20.65/27.09 41.59/6.82 60.37/4.98 101.95/4.18 66.8 33.7 55.8
Previous[15] 133M – 14.89/19.53 24.09/3.95 37.56/3.08 70.24/2.88 57.2 34.1 50.4

Our approach 133M – 15.82/20.76 24.15/3.96 33.54/2.75 60.24/2.47 59.8 36.5 53.0

Page 14 of 21Pan et al. J Wireless Com Network (2022) 2022:99

the same type of GPU with same CUDA setting to test and all models are implemented
with Pytorch. Besides, our approach’s inference time is different from our previous work
because we re-implement our code and our current performance is significantly changed
compared to the previous.

As shown in Table 7, our approach and GECToR are much faster than Zhao et al. [7]
and Chen et al. [32]. Although beam search is widely applied for improving the perfor-
mance of NMT models, the cost of time can increase multiply compared with greed
search (beam size equals one). Besides, the NMT model’s inference speed in processing
a single sentence is up to several hundreds of milliseconds, which can limit the GEC
model’s application in mobile combinations. Although a larger batch size can reduce
the total running time, the inference time of each batch increases, so we cannot get the
result of a single text faster than one sentence per batch. The hybrid model by Chen et al.
[32] is proposed to improve the efficiency of GEC and it does show improvement to the
NMT-based model, but its inference speed is much slower than ours. Finally, we com-
pare our approach with GECToR to show if our approach is more efficient in SL-based
approaches. Since GECToR can only correct each incorrect token with one token in one
iteration, it needs multiple iterations to maximize performance, which is to re-correct
those sentences detected as incorrect. Considering the numbers of corrections made by
GECToR are 740, 944, 993, 1004, and 1005 from 1 iteration to 5 iterations respectively,
we choose the setting of 4 iterations for comparison. However, our approach can correct
an error with a maximum of (M − 1) tokens in one turn, which is more efficient. We can
see our approach is nearly 30% faster than GECToR and the inference time per sentence
is only 15.82 milliseconds when batch size is set to 1, which indicates that our approach
is more suitable for improving the text quality in real-time communication scenarios.

To further explore the efficiency of our approach, we compare our approach with
GECToR in processing sentences of different lengths. We test the inference time for sen-
tences of lengths 5, 10, 15, 20, 25, and 30. For each length, we randomly sample 2000
samples of that length from Lang-8 dataset for testing. The results are shown in Table 8.
Our approach shows a significant advantage in inference time compared to GECToR.
Besides, our approach’s time increases for every 5 increases in length, which is less than
GECToR. Thus the time difference increases with the increase in length. This experi-
ment shows that our approach is efficient in correcting sentences with different lengths.

3.5 Ablation study

In order to evaluate the influence of different strategies and settings on our approach, we
perform an ablation study to our approach on the CoNLL-2014 test set and the results
are presented in Table 9. Each setting in this table is based on the previous one.

Table 8 Inference time (second) with different sentence lengths

The batch size is set to 32

5 10 15 20 25 30

GECToR 3.59 4.20 5.00 5.68 6.48 7.27

Our approach 1.22 1.57 2.07 2.47 2.83 3.32

Page 15 of 21Pan et al. J Wireless Com Network (2022) 2022:99

The first line in Table 9 is our final approach, which sets loss weights 0.5, 1, 1.5
to α,β , γ and uses two stages training strategy. After removing loss weights, which
is to set all loss weights to 1, there is a slight decrease in performance. Then we
further remove the two stages training strategy. This is to train the model with all
training datasets for 5 epochs and select the checkpoint with the highest score on
development datasets. We can see there is a 2.0 points decrease in F0.5 , which proves
that the two stages training strategy can help improve GEC performance. Compared
with our previous work, which uses all training datasets to train the model for 3
epochs and achieves a F0.5 score of 50.4, we can see a longer training time with a
selection strategy on parameters can help improve performance. Next, we evaluate
the influence of the CRF layer, which is involved in ruling the output of the detec-
tor. We can see the recall drops a lot without the CRF layer, leading to the decrease
in F0.5 . This proves that the CRF layer is significant for our model in finding errors.
Then we directly remove the discriminator to see its impact. We can see the preci-
sion increases, but the recall drops a lot, making the F0.5 score decrease 8.6 points. It
happens because about half of the sentences in training datasets are correct, which
means the target labels of the detector are all tag ‘O.’ Thus the detector is less likely
to detect errors. However, when we use the discriminator, the detector only pro-
cesses incorrect sentences when training, so the recall value is higher. This can be
proved with the last row in Table 9, in which correct sentences are not used in train-
ing and the recall is higher than the row above it.

We study the impact of loss weights and the results are shown in Table 10. Because
the three tasks are performed serially in our approach, we manually set three combi-
nations of loss weights with ratios of 1:2:3, 1:1:1, and 3:2:1. We can see the automatic
strategy with Eq. 6 does not perform well and the manually set weights can affect the
final performance. Despite that the setting of 0.5, 1, 1.5 does not show a significant

Table 9 Ablation study results on CoNLL-14

P R F0.5

Our approach 59.8 36.5 53.0
w/o loss weights 59.7 36.4 53.0

w/o two stages training 58.0 34.4 51.0

w/o CRF layer 58.1 29.6 48.7

w/o discriminator 62.5 16.5 40.1

w/o correct sentences 56.4 26.4 46.0

Table 10 Impact of loss weights

Type α β γ P R F0.5

Automatic – – – 57.1 35.1 50.7

Manual 0.5 1 1.5 59.8 36.5 53.0
Manual 1 1 1 59.7 36.4 53.0

Manual 1.5 1 0.5 57.4 35.3 51.0

Page 16 of 21Pan et al. J Wireless Com Network (2022) 2022:99

difference from the setting of 1, 1, 1, we use the previous one in our final model
because the result in Table 4 shows that our corrector needs improvement.

3.6 Empirical results on sentence error detection

We additionally study current pre-training models’ performance on the task of SED
because error detection is more important in communications. Once the message
is detected with errors, we can withdraw it to avoid unnecessary operations with the
wrong message. Besides, SED can be practical in improving the efficiency of GEC. If sen-
tences are previously well distinguished with SED, there is no necessity to correct those
correct sentences and thus this can reduce the work of error correction and save time.

We fine-tune pre-trained models and test BERT, RoBERTa[33], and SpanBERT’s per-
formance in CoNLL-2014 test set. We also build a baseline model with Bi-LSTM and
300d pre-trained word vectors5 for comparison. The training data is all training sets in
Table 2. Since the test set has two annotations, one sentence can be considered correct
by one annotator and incorrect by another. Thus we not only evaluate the performance
according to each annotation but also evaluate with the two merged annotations, which
regards a prediction right if it matches any annotation.

The results are shown in Table 11, and all pre-training models outperform the base-
line model in accuracy. By comparing the bottom two groups in Table 11, we can see
applying grid search on the development set to determine the threshold can significantly
increase the recall of incorrect sentences and can improve accuracy. However, the preci-
sion drops, which means many correct sentences are predicted with high correctness.
The top group’s results come from our multi-task learning models and the thresholds
are precise to three decimals as the predicted logits in the development set are extremely
low. This can indicate the multi-task learning approach does not provide a good correct-
ness distribution for the development set, but grid search helps to find a boundary and
makes the final results comparable to single models.’ Despite that the merged accuracy is
over 90%, the performance of all pre-trained models is not satisfying when considering
the incorrect sentences’ percentage in the test set.

Table 11 SED results on CoNLL-14

P and R represent the precision and recall of incorrect sentences

* Threshold is determined by grid search in development set, except the last two rows

Method Thres* CoNLL‑14 A1 CoNLL‑14 A2 Merge

P R Acc P R Acc Acc

BERT 0.79 80.2 94.9 79.4 93.3 92.6 87.9 94.13
SpanBERT 0.89 79.2 96.3 79.0 92.3 94.1 88.1 94.05

BERT 0.89 76.7 96.6 76.4 90.5 95.6 87.6 92.0

RoBERTa 0.89 79.4 95.7 79.0 92.6 93.5 87.9 92.9

SpanBERT 0.90 75.6 98.1 75.8 89.9 97.8 88.6 92.5

LSTM 0.73 72.7 99.0 72.4 86.6 98.9 85.9 89.3

BERT 0.50 86.0 79.7 76.0 96.7 75.1 76.4 77.3

LSTM 0.50 76.2 85.0 70.0 89.4 83.6 77.4 78.2

5 http:// nlp. stanf ord. edu/ data/ glove. 6B. zip

http://nlp.stanford.edu/data/glove.6B.zip

Page 17 of 21Pan et al. J Wireless Com Network (2022) 2022:99

We further visualize the output logits of the BERT model (third row in Table 11) in
Fig. 2 to analyze the distribution of CoNLL-2014 test set. RoBERTa and SpanBERT show
similar distributions as BERT. In theory, for binary classification, there should be a clear
boundary that can unambiguously divide the correct sentences and incorrect ones.
However, the boundary does not exist in Fig. 2. Despite the threshold Ptf

thres obtained
by grid search can provide a fair boundary, it cannot improve the discriminant ability of
the model. Besides, the distribution of incorrect sentences shows a long tail with a high
probability of correctness, which indicates that there are a considerable number of sen-
tences that cannot be well distinguished.

In a brief summary for the SED task, the threshold found by grid search can make
the discriminator adaptive to the target dataset and improve performance, but current
pre-trained language representation models still lack discriminant ability. Thus sentence
error detection remains a research problem to be solved.

4 Related work
Many works have been taken to improve GEC since the CoNLL-2014 [16] and BEA-
2019[17] share tasks were organized. The current main methods of handling GEC can be
classified as machine translation and sequence labeling.

Machine translation methods are first widely applied for GEC because the task can be
considered as translating an incorrect sentence to a correct one. To improve the perfor-
mance of GEC, the structure of encoder and decoder in NMT has changed from RNN
[34] to Transformer [7]. As a result, the model’s parameter number increases a lot. Cur-
rent well-performed NMT-based systems [8, 35] are mainly based on the Transformer
(big) [9] architecture, which has nearly twice parameters than the base version of BERT.
However, machine translation approaches are considered a low-resource problem [36]
even if the current public training dataset has over one million examples. Thus there are
many works on data augmentation for GEC. Ge et al. [37] proposed three strategies for
data augmentation with fluency boost learning. Zhao et al. [7] generated pseudo data by
directly deleting, inserting, replacing, and shuffling words in the correct sentence with
a certain probability. Since current works on NMT-based systems are mainly focused
on higher performance, efficiency becomes a problem to them, which can prevent their
application in mobile communications.

Recently, local sequence transduction [11] becomes a breakthrough for GEC and
it aims at only correcting the errors in the sentence instead of generating a new sen-
tence. As local sequence transduction can be regarded as a sequence labeling prob-
lem [38], the calculation cost can be extremely reduced, thus improving the efficiency
of GEC. LaserTagger [31] and PIE [11] were proposed for GEC contemporaneously,

Fig. 2 A statistic of BERT’s outputs for SED on CoNLL-14

Page 18 of 21Pan et al. J Wireless Com Network (2022) 2022:99

and they are both based on SL method. LaserTagger tries to assign an operation to
each token and each operation is a basic tag (keep or delete) combined with a phrase.
Thus correction can be made by deleting and adding a phrase to the source sentence
according to each token’s operation. PIE shares a similar idea with LaserTagger, but
it uses copy, delete, append, and replace as the basic tag for each token and it addi-
tionally involves format transformations for certain grammatical errors. GECToR [12]
integrates advantages from LaserTagger and PIE and achieves current state-of-the-art
performance. GECToR builds a more comprehensive vocabulary of format transfor-
mations and limits the number of tokens in each label to one. Iterative correction and
ensemble learning are applied by GECToR to further improve performance. Despite
these methods are more efficient than NMT, they can only correct limited kinds of
errors and they all do not consider the sentence-level error.

Most recently, Chen et al. [32] proposed a span-level error detection and correction
model to improve the efficiency of NMT-based GEC models, which involved one SL
model for token-level error detection and one NMT model for correction. We share
the same idea of correcting errors based on the detected errors’ positions, but they use
two separate models to achieve this, which means they need to encode one sentence
twice. Moreover, they do not consider the correctness of sentences, and the correction
generation stage is still auto-regressive. Thus their approach is less efficient than ours.

Researches on GEC are not only limited to English, and Chinese Grammatical Error
Diagnosis (CGED) [39] is one similar task for Chinese. CGED is focused on detecting
and identifying errors in Chinese corpus, and it also includes a sub-task of generating
corrections, but the current performance on correction is far from satisfying. CGED
additionally defines word ordering errors compared with our three types and has four
types of errors. Since the word ordering error can be more flexible than other types
(e.g., swapping two neighboring tokens or moving one phrase from back to front), we
consider it as a redundancy error and a missing error.

SED and GED are two auxiliary tasks of GEC and aim at detecting sentence-level
errors and token-level errors. SED is less concerned in recent years may because it is
just a binary classification problem, but SED is not solved perfectly as shown in our
experiment. To the best of our knowledge, only Asano et al. [40] involved SED for GEC
in recent years. They build a proficiency prediction model to enhance the performance
of SED, but it requires the category information of writers. GED is currently regarded
as a sequence labeling problem and many works follow the label definition of Rei and
Yannakoudakis [20], which classifies each token into a correct or incorrect one and
label incorrect to the token after the missing error’s gap. However, the incorrect label
cannot tell if the token is incorrect or a missing error occurs before the token. Mean-
while, our approach solves the problem with BIO tags and error types. GECToR [12]
also introduces a GED task and it defines a token as incorrect if the label assigned
for correction is not ‘keep,’ which is reasonable to their approach. Features of each
token are quite important to the performance of GED and Kaneko et al. [41] prove that
the quality of word embeddings can affect results. Bell et al. [21] involve contextual
embeddings from BERT to a Bi-LSTM model for GED and prove contextual embed-
dings can help to improve the performance. Despite we combine these two tasks in our
approach to improve efficiency, the power of error detection is not fully explored.

Page 19 of 21Pan et al. J Wireless Com Network (2022) 2022:99

5 Conclusion
To efficiently detect and correct noisy messages in mobile communications, this
paper investigates GEC and proposes a novel hierarchical approach by checking both
sentence-level and token-level errors and generating corrections for detected errors.
Error detections and correction are integrated into one multi-task learning model,
each module is designed for a specific task and is efficient, and thus our approach
shows an outstanding inference speed with general performance in GEC. We addi-
tionally analyze current pre-training models’ performance in SED and find they can-
not provide a clear boundary to correct and incorrect sentences.

Abbreviations
GEC Grammatical error detection
SED Sentence error detection
GED Grammatical error detection
NMT Neural machine translation
SL Sequence labeling

Acknowledgements
This research was partially supported by National Natural Science Foundation of China (No. 62276233) and Key Research
Project of Zhejiang Province (2022C01145).

Author Contributions
FP and BC conceived and designed the study. JF suggested the extra study in error detection. FP performed the experi-
ments. FP and BC wrote the paper. BC and JF reviewed and edited the manuscript. All authors read and approved the
final manuscript.

Availability of data and materials
The datasets used in this paper are available in https://www.cl.cam.ac.uk/research/nl/bea2019st/#data. Our code and
trained model are published at https://github.com/AnticPan/Hierarchical-GEC/tree/v2.

Declarations

Competing interests
The authors declare that there is no conflict of interest.

Received: 25 May 2022 Accepted: 21 September 2022

References
 1. H. Gao, C. Liu, Y. Yin, Y. Xu, Y. Li, A hybrid approach to trust node assessment and management for vanets coop-

erative data communication: Historical interaction perspective. IEEE Trans. Intell. Transp. Syst. (2021). https:// doi.
org/ 10. 1109/ TITS. 2021. 31294 58

 2. H. Gao, W. Huang, T. Liu, Y. Yin, Y. Li, Ppo2: location privacy-oriented task offloading to edge computing using
reinforcement learning for intelligent autonomous transport systems. IEEE Trans. Intell. Transp. Syst. (2022).
https:// doi. org/ 10. 1109/ TITS. 2022. 31694 21

 3. H. Gao, B. Qiu, R.J. Duran Barroso, W. Hussain, Y. Xu, X. Wang, Tsmae: a novel anomaly detection approach for
internet of things time series data using memory-augmented autoencoder. IEEE Trans. Netw. Sci. Eng. (2020).
https:// doi. org/ 10. 1109/ TNSE. 2022. 31631 44

 4. Y. Yin, Q. Huang, H. Gao, Y. Xu, Personalized apis recommendation with cognitive knowledge mining for indus-
trial systems. IEEE Trans. Ind. Inform. 17(9), 6153–6161 (2021). https:// doi. org/ 10. 1109/ TII. 2020. 30395 00

 5. Y. Yin, Z. Cao, Y. Xu, H. Gao, R. Li, Z. Mai, Qos prediction for service recommendation with features learning in
mobile edge computing environment. IEEE Trans. Cognit. Commun. Network. 6(4), 1136–1145 (2020). https://
doi. org/ 10. 1109/ TCCN. 2020. 30276 81

 6. S. Rothe, J. Mallinson, E. Malmi, S. Krause, A. Severyn, A simple recipe for multilingual grammatical error cor-
rection, in Proceedings of the 59th annual meeting of the association for computational linguistics and the 11th
international joint conference on natural language processing, vol. 2: Short Papers, (Association for Computational
Linguistics, 2021), pp. 702–707. https:// doi. org/ 10. 18653/ v1/ 2021. acl- short. 89. https:// aclan tholo gy. org/ 2021.
acl- short. 89

 7. W. Zhao, L. Wang, K. Shen, R. Jia, J. Liu, Improving grammatical error correction via pre-training a copy-aug-
mented architecture with unlabeled data, in Proceedings of the 2019 conference of the North, (Association for
Computational Linguistics, Minneapolis, Minnesota, 2019), pp. 156–165. https:// doi. org/ 10. 18653/ v1/ N19- 1014

https://doi.org/10.1109/TITS.2021.3129458
https://doi.org/10.1109/TITS.2021.3129458
https://doi.org/10.1109/TITS.2022.3169421
https://doi.org/10.1109/TNSE.2022.3163144
https://doi.org/10.1109/TII.2020.3039500
https://doi.org/10.1109/TCCN.2020.3027681
https://doi.org/10.1109/TCCN.2020.3027681
https://doi.org/10.18653/v1/2021.acl-short.89
https://aclanthology.org/2021.acl-short.89
https://aclanthology.org/2021.acl-short.89
https://doi.org/10.18653/v1/N19-1014

Page 20 of 21Pan et al. J Wireless Com Network (2022) 2022:99

 8. M. Kaneko, M. Mita, S. Kiyono, J. Suzuki, K. Inui, Encoder-decoder models can benefit from pre-trained masked
language models in grammatical error correction, in Proceedings of the 58th annual meeting of the association for
computational linguistics, (2020), pp. 4248–4254. https:// doi. org/ 10. 18653/ v1/ 2020. acl- main. 391

 9. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, u. Kaiser, I. Polosukhin, Attention is all you need,
in Proceedings of the 31st international conference on neural information processing systems. NIPS’17, (Curran Associates
Inc., Red Hook, NY, USA, 2017), pp. 6000–6010

 10. Y. Park, 5g vision and requirements of 5g forum, korea, in ITU-R WP5D Workshop (2014)
 11. A. Awasthi, S. Sarawagi, R. Goyal, S. Ghosh, V. Piratla, Parallel iterative edit models for local sequence transduction. in

Proceedings of the 2019 conference on empirical methods in natural language processing and the 9th international joint
conference on natural language processing (EMNLP-IJCNLP), (Association for Computational Linguistics, Hong Kong,
China, 2019), pp. 4260–4270. https:// doi. org/ 10. 18653/ v1/ D19- 1435

 12. K. Omelianchuk, V. Atrasevych, A. Chernodub, O. Skurzhanskyi, GECToR – grammatical error correction: tag, not
rewrite. in Proceedings of the Fifteenth Workshop on Innovative Use of NLP for building educational applications, (Asso-
ciation for Computational Linguistics, Seattle, WA, USA → , 2020), pp. 163–170. https:// doi. org/ 10. 18653/ v1/ 2020.
bea-1. 16

 13. Tsvetkov, Y., Dyer, C.: Lexicon stratification for translating out-of-vocabulary words, in Proceedings of the 53rd annual
meeting of the association for computational linguistics and the 7th international joint conference on natural language
processing, vol. 2: Short Papers. (Association for Computational Linguistics, Beijing, China, 2015), pp. 125–131. https://
doi. org/ 10. 3115/ v1/ P15- 2021. https:// aclan tholo gy. org/ P15- 2021

 14. M. Joshi, D. Chen, Y. Liu, D.S. Weld, L. Zettlemoyer, O. Levy, SpanBERT: improving pre-training by representing and
predicting spans. Trans. Assoc. Comput. Linguist. 8, 64–77 (2020)

 15. F. Pan, B. Cao, Efficient grammatical error correction with hierarchical error detections and correction, in 2021 IEEE
international conference on web services (ICWS) (2021), pp. 525–530. https:// doi. org/ 10. 1109/ ICWS5 3863. 2021. 00073

 16. H.T. Ng, S.M. Wu, T. Briscoe, C. Hadiwinoto, R.H. Susanto, C. Bryant, The CoNLL-2014 shared task on grammatical error
correction, in Proceedings of the eighteenth conference on computational natural language learning: shared task, (Asso-
ciation for Computational Linguistics, Baltimore, Maryland, 2014), pp. 1–14. https:// doi. org/ 10. 3115/ v1/ W14- 1701

 17. C. Bryant, M. Felice, E. Andersen, Ø, T. Briscoe, The BEA-2019 shared task on grammatical error correction, in Proceed-
ings of the fourteenth workshop on innovative use of NLP for building educational applications, (Association for Compu-
tational Linguistics, Florence, Italy, 2019), pp. 52–75. https:// doi. org/ 10. 18653/ v1/ W19- 4406

 18. C. Bryant, M. Felice, T. Briscoe, Automatic annotation and evaluation of error types for grammatical error correction,
in Proceedings of the 55th annual meeting of the association for computational linguistics, vol. 1: Long Papers, (Associa-
tion for Computational Linguistics, Vancouver, Canada, 2017), pp. 793–805. https:// doi. org/ 10. 18653/ v1/ P17- 1074.
https:// aclan tholo gy. org/ P17- 1074

 19. L. Ramshaw, M. Marcus, Text chunking using transformation-based learning, in Third Workshop on Very Large Corpora
(1995). https:// aclan tholo gy. org/ W95- 0107

 20. M. Rei, H. Yannakoudakis, Compositional sequence labeling models for error detection in learner writing, in Proceed-
ings of the 54th annual meeting of the association for computational linguistics, vol. 1: Long Papers, (Association for
Computational Linguistics, Berlin, Germany, 2016), pp. 1181–1191. https:// doi. org/ 10. 18653/ v1/ P16- 1112

 21. S. Bell, H. Yannakoudakis, M. Rei, Context is key: grammatical error detection with contextual word representations,
in Proceedings of the fourteenth workshop on innovative use of NLP for building educational applications, (Association
for Computational Linguistics, Florence, Italy, 2019), pp. 103–115. https:// doi. org/ 10. 18653/ v1/ W19- 4410

 22. J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, BERT: pre-training of deep bidirectional transformers for language
understanding, in Proceedings of the 2019 conference of the North American chapter of the association for computa-
tional linguistics: human language technologies, vol. 1 Long and Short Papers, (Association for Computational Linguis-
tics, Minneapolis, Minnesota, 2019), pp. 4171–4186. https:// doi. org/ 10. 18653/ v1/ N19- 1423

 23. C. Sutton, A. McCallum, An introduction to conditional random fields. arXiv (2010). https:// doi. org/ 10. 48550/ ARXIV.
1011. 4088. https:// arxiv. org/ abs/ 1011. 4088

 24. H.T. Ng, S.M. Wu, Y. Wu, C. Hadiwinoto, J. Tetreault, The CoNLL-2013 shared task on grammatical error correction, in
Proceedings of the seventeenth conference on computational natural language learning: shared task, (Association for
Computational Linguistics, Sofia, Bulgaria, 2013), pp. 1–12

 25. H. Yannakoudakis, T. Briscoe, B. Medlock, A new dataset and method for automatically grading ESOL texts, in
Proceedings of the 49th annual meeting of the association for computational linguistics: human language technologies,
(Association for Computational Linguistics, Portland, Oregon, USA, 2011), pp. 1–12

 26. D. Dahlmeier, H.T. Ng, S.M. Wu, Building a large annotated corpus of learner English: the NUS corpus of learner Eng-
lish, in Proceedings of the eighth workshop on innovative use of NLP for building educational applications, (Association
for Computational Linguistics, Atlanta, Georgia, 2013), pp. 22–31

 27. T. Mizumoto, M. Komachi, M. Nagata, Y. Matsumoto, Mining revision log of language learning SNS for automated
Japanese error correction of second language learners, in Proceedings of 5th international joint conference on natural
language processing, (Asian Federation of Natural Language Processing, Chiang Mai, Thailand, 2011), pp. 147–155

 28. D. Dahlmeier, H.T. Ng, Better evaluation for grammatical error correction, in Proceedings of the 2012 conference of the
North American chapter of the association for computational linguistics: human language technologies, (Association for
Computational Linguistics, Montréal, Canada, 2012), pp. 568–572

 29. Y. Wu, M. Schuster, Z. Chen, Q.V. Le, M. Norouzi, W. Macherey, M. Krikun, Y. Cao, Q. Gao, K. Macherey, J. Klingner, A.
Shah, M. Johnson, X. Liu, S. Łukasz Kaiser, Gouws, Y. Kato, T. Kudo, H. Kazawa, K. Stevens, G. Kurian, N. Patil, W. Wang,
C.Young, J. Smith, J. Riesa, A. Rudnick, O. Vinyals, G. Corrado, M. Hughes, J. Dean, Google’s neural machine translation
system: bridging the gap between human and machine translation (2016). arXiv: 1609. 08144

 30. I. Loshchilov, F. Hutter, Decoupled weight decay regularization (2019). arXiv: 1711. 05101
 31. E. Malmi, S. Krause, S. Rothe, D. Mirylenka, A. Severyn, Encode, tag, realize: high-precision text editing, in Proceedings

of the 2019 conference on empirical methods in natural language processing and the 9th international joint conference
on natural language processing (EMNLP-IJCNLP), (Association for Computational Linguistics, Hong Kong, China, 2019),
pp. 5054–5065. https:// doi. org/ 10. 18653/ v1/ D19- 1510

https://doi.org/10.18653/v1/2020.acl-main.391
https://doi.org/10.18653/v1/D19-1435
https://doi.org/10.18653/v1/2020.bea-1.16
https://doi.org/10.18653/v1/2020.bea-1.16
https://doi.org/10.3115/v1/P15-2021
https://doi.org/10.3115/v1/P15-2021
https://aclanthology.org/P15-2021
https://doi.org/10.1109/ICWS53863.2021.00073
https://doi.org/10.3115/v1/W14-1701
https://doi.org/10.18653/v1/W19-4406
https://doi.org/10.18653/v1/P17-1074
https://aclanthology.org/P17-1074
https://aclanthology.org/W95-0107
https://doi.org/10.18653/v1/P16-1112
https://doi.org/10.18653/v1/W19-4410
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.48550/ARXIV.1011.4088
https://doi.org/10.48550/ARXIV.1011.4088
https://arxiv.org/abs/1011.4088
http://arxiv.org/abs/1609.08144
http://arxiv.org/abs/1711.05101
https://doi.org/10.18653/v1/D19-1510

Page 21 of 21Pan et al. J Wireless Com Network (2022) 2022:99

 32. M. Chen, T. Ge, X. Zhang, F. Wei, M. Zhou, Improving the efficiency of grammatical error correction with errone-
ous span detection and correction, in Proceedings of the 2020 conference on empirical methods in natural language
processing (EMNLP) (2020), pp. 7162–7169. https:// doi. org/ 10. 18653/ v1/ 2020. emnlp- main. 581

 33. Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer, V. Stoyanov, RoBERTa: a robustly
optimized BERT pretraining approach (2019). arXiv: 1907. 11692

 34. Z. Yuan, T. Briscoe, Grammatical error correction using neural machine translation, in Proceedings of the 2016 confer-
ence of the North American chapter of the association for computational linguistics: human language technologies,
(Association for Computational Linguistics, San Diego, California, 2016), pp. 380–386. https:// doi. org/ 10. 18653/ v1/
N16- 1042

 35. R. Grundkiewicz, M. Junczys-Dowmunt, K. Heafield, Neural grammatical error correction systems with unsupervised
pre-training on synthetic data, in Proceedings of the fourteenth workshop on innovative use of NLP for building educa-
tional applications, (Association for Computational Linguistics, Florence, Italy, 2019), pp. 252–263. https:// doi. org/ 10.
18653/ v1/ W19- 4427

 36. M. Junczys-Dowmunt, R. Grundkiewicz, S. Guha, K. Heafield, Approaching neural grammatical error correction as a
low-resource machine translation task, in Proceedings of the 2018 conference of the North American chapter of the asso-
ciation for computational linguistics: human language technologies, vol. 1 Long Papers, (Association for Computational
Linguistics, New Orleans, Louisiana, 2018), pp. 595–606. https:// doi. org/ 10. 18653/ v1/ N18- 1055

 37. T. Ge, F. Wei, M. Zhou, Fluency boost learning and inference for neural grammatical error correction, in Proceedings of
the 56th annual meeting of the association for computational linguistics, vol. 1: Long Papers, (Association for Computa-
tional Linguistics, Melbourne, Australia, 2018), pp. 1055–1065. https:// doi. org/ 10. 18653/ v1/ P18- 1097

 38. J. Ribeiro, S. Narayan, S.B. Cohen, X. Carreras, Local string transduction as sequence labeling, in Proceedings of the
27th international conference on computational linguistics, (Association for Computational Linguistics, Santa Fe, New
Mexico, USA, 2018), pp. 1360–1371

 39. G. Rao, E. Yang, B. Zhang, Overview of NLPTEA-2020 shared task for chinese grammatical error diagnosis, in Proceed-
ings of the 6th workshop on natural language processing techniques for educational applications, (Association for
Computational Linguistics, Suzhou, China, 2020), pp. 25–35

 40. H. Asano, M. Mita, T. Mizumoto, J. Suzuki, The AIP-tohoku system at the BEA-2019 shared task, in Proceedings of the
fourteenth workshop on innovative use of NLP for building educational applications, (Association for Computational
Linguistics, Florence, Italy, 2019), pp. 176–182. https:// doi. org/ 10. 18653/ v1/ W19- 4418

 41. M. Kaneko, Y. Sakaizawa, M. Komachi, Grammatical error detection using error- and grammaticality-specific word
embeddings, in Proceedings of the eighth international joint conference on natural language processing, vol. 1: Long
Papers, (Asian Federation of Natural Language Processing, Taipei, Taiwan, 2017), pp. 40–48

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.18653/v1/2020.emnlp-main.581
http://arxiv.org/abs/1907.11692
https://doi.org/10.18653/v1/N16-1042
https://doi.org/10.18653/v1/N16-1042
https://doi.org/10.18653/v1/W19-4427
https://doi.org/10.18653/v1/W19-4427
https://doi.org/10.18653/v1/N18-1055
https://doi.org/10.18653/v1/P18-1097
https://doi.org/10.18653/v1/W19-4418

	A multi-task learning framework for efficient grammatical error correction of textual messages in mobile communications
	Abstract
	1 Introduction
	2 Method
	2.1 Problem definition
	2.2 Preprocessing
	2.3 Architecture
	2.3.1 Encoder
	2.3.2 Discriminator
	2.3.3 Detector
	2.3.4 Corrector

	2.4 Multi-task learning

	3 Experiments
	3.1 Datasets
	3.2 Implementation details
	3.3 Grammatical error correction results
	3.4 Inference time analysis
	3.5 Ablation study
	3.6 Empirical results on sentence error detection

	4 Related work
	5 Conclusion
	Acknowledgements
	References

