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1  Introduction
Next-generation cellular systems are likely to set forth a lot of advancements in mobile 
communications such as more capacity, higher rates, ultra-low latency, massive con-
nectivity, and lower energy consumption. Ultra-dense architectures are supposed to 
be one of the major features of these improvements. In this regard, for better network 
maintenance, Third-Generation Partnership Project (3GPP) has already come up with 
the concept of self-organizing networks (SON) which involves self-configuration, self-
optimization, and self-healing [1]. In modern large-scale cellular network architectures, 
management of SONs containing tremendous number of network nodes becomes very 
complicated under the existence of anomalies which have the potential to degrade the 
user’s quality of experience (QoE). Anomalies may arise from various factors such as 
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unusual traffic conditions, illegitimate intrusions, misconfiguration, security threats as 
well as outages and cell degradation [2–4]. Therefore, efficient detection of anomalies is 
critical for sustainability and maintenance in modern cellular networks.

This study focuses on anomalies arising from cell outage and cell degradation among 
the types of mentioned anomalous conditions in cellular networks. Cell outage is 
defined as a state of the base station where all or most of the user equipment (UE) in the 
cell are unable to establish or keep its radio connectivity with the result of degradation 
in capacity and coverage gaps [1, 5]. Cell outage detection (COD) is considered as the 
first primary step for self-healing capability of the modern SONs. Hardware, software, 
or external failures such as power cut or network disconnection are the main causes for 
outages.

COD is basically a classification problem about detecting the non-healthy cell among 
healthy ones by making use of some statistics generated by UEs, base stations, and 
other network components. Traditionally, besides user complaints, detection of outages 
may involve site visits, drive tests, and manual analysis of the alarms generated on the 
operations support systems (OSS), which make outage detection costly. Future mobile 
networks are supposed to handle COD autonomously, such that detection algorithms 
employed on the OSS should continuously keep track of UE statistics and process the 
data generated on the UEs as suggested by 3GPP releases. Especially in the existence of 
multi-tiered dense deployments, outages regarding small cells may not be detected for 
a long time. Unlike macro-cells, small cells such as femtocells, picocells, and microcells 
introduce extra challenges and complexities to the system. Therefore, outage detection 
on small cells is regarded as a much harder task due to sparse user statistics and vertical 
handovers [6–9], thus justifying the consideration of more advanced methods.

Cell outage detection studies mainly focus on macro-cell anomalies. Within this scope, 
handover statistics based on KPI measures are employed on COD analysis in [10]. In 
[11], COD is handled with the help of neighbor cell list reports by detecting outage cells 
according to the changes in the topology generated by visibility graphs. In [12], channel 
quality indicator (CQI) is used within a composite hypothesis for outage detection by 
means of a discriminant function. Machine learning methods are also popular in outage 
detection of macro-cells. In [13] and [14], clustering algorithms and Bayesian networks 
are conducted for COD, respectively. In [15], alternative to machine learning proce-
dures, an anomaly detection method based on statistical processing of big data emerged 
from KPI measures is introduced.

Some researchers propose approaches on detecting cell outages regardless of the type 
of the anomalous base stations in multi-tiered architectures containing macro, micro, 
femto or pico base stations. Within this context, K-nearest neighbors method is con-
ducted for COD in multi-tiered networks [7]. Hidden Markov model (HMM), another 
well-known maximum likelihood classifier, is also studied on COD by training KPI 
parameters regarding healthy cells and outage cells for predicting the outage status of 
the base stations [5]. A method, based on the analysis of time evolution metrics, is pro-
posed in [16] for detecting faulty patterns arising from degraded cells. In another study, 
researchers make use of cell traces along with big data analytic techniques and apply 
aggregation at the cell levels for identifying any problematic cases in cellular networks 
[17]. Besides, a classification tree-based method along with cell-level aggregation for 
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identification of faulty cells is proposed in [18]. On the other hand, some researchers 
present studies about COD in only small cells so as to focus on its difficulties when com-
pared to relatively easier detection of macro-cell anomalies. In this context, Wang et al. 
propose a cooperative COD scheme for femto cells in a conventional heterogeneous net-
work by means of spatial correlations among users [6].

The 5G literature regarding anomaly detection studies recently gets attention from 
many researchers. Intrusions, abnormal traffic loads, security threats, and malicious net-
work traffic on the 5G networks are discussed in the latest outstanding studies. In this 
respect, in [19], researchers propose a deep learning-based 5G-oriented cyberdefence 
architecture. In [2], an unsupervised learning scheme is proposed for anomaly detection 
in mobile networks using real CDR data. In another study, authors employ a learning-
based anomaly detection framework using service logs and query traces [20]. In [21], 
researchers present detection of phishing attacks in the network by making use of a 
triple-stage privacy-aware classification framework. In [3], the authors study identifica-
tion of traffic types with different machine learning tools by analyzing network traffic 
data and they identify malicious network patterns. In another study, researchers propose 
an auto-encoder-based anomaly detection method for Internet of things (IoT) networks 
such that the proposed architecture is deployed in both IoT devices and mobile core net-
work facility [22]. The authors also propose a deep semi-supervised anomaly detection 
scheme for identifying legitimate activities that may yield abnormal traffic like concerts 
and football games [4]. In this study, they use mobile networks as a supplementary sens-
ing platform for detecting urban anomalies.

Anomaly detection in terms of cell outage and cell degradation, which is the main goal 
of this study, is also recently covered in the 5G literature. Within this context, in [23] the 
researchers study outage detection on ultra-dense heterogeneous networks for different 
shadowing conditions by making use of entropy field decomposition method. Another 
study focuses on an unsupervised learning for anomaly detection in mobile networks 
using call detail records (CDR) data and distinct traffic patterns [24]. Recently, deep 
learning approaches have started to gain interest among researchers in the area of COD. 
In [25], recurrent neural networks are comparatively analyzed along with traditional 
support vector machines in terms of COD performance. Another study is introduced 
in [26] where anomaly detection in cellular networks is studied by using convolutional 
neural networks (CNN).

This study aims to develop a foresight for cell outage management in existing cellu-
lar systems and forthcoming next-generation networks within multi-tiered ultra-dense 
deployments. Inspired by the advancements of deep learning methods on time sequence 
analysis, we propose using long short-term memory and one-dimensional CNN, con-
comitantly with aggregation decision methods, for detection of femtocell outages which 
pose extra challenges. In the proposed scheme, we suggest not only detecting femtocell 
outages but also adroitly classifying the type of anomalies into three outage subclasses 
according to the severity of the degradation of the femto access point functionality.

As a variant of recurrent neural networks (RNNs), LSTM modules have been used 
with time sequence labeling tasks on many areas so far. Similarly, 1D CNN struc-
tures have also been used for extracting features from fixed-length data like audio 
recordings and various other time series of sensor data. Thereby, in this framework, 
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we separately employ LSTM and 1D CNN for the investigation of outage patterns by 
using time sequences of metrics measured on UEs placed around the femtocell sites. 
Signal-to-interference plus noise ratio (SINR) and CQI are utilized as input feature 
time series data within the aforementioned deep learning structures for training and 
testing phases.

The outstanding contributions of this study can be summarized as follows: 

(1)	 This study demonstrates two deep network approaches, namely LSTM and 1D 
CNN, for detection and identification of anomalous states of densely deployed fem-
tocells to inspire outage management in existing and upcoming cellular networks.

(2)	 This study introduces aggregation decision methods integrated with LSTM and 1D 
CNN for boosting the cell outage detection performance.

(3)	 This study shows that proposed 1D CNN and LSTM approaches outperform exist-
ing feed-forward neural networks (FFNN) on cell outage detection in ultra-dense 
cellular networks.

The rest of the paper is organized as follows. Section  2 presents employed radio 
access network (RAN) structure and the deep learning methods. Section 3 introduces 
the details of the outage detection, classification algorithms, training procedures, and 
aggregation. Section  4 shows results and includes essential hermeneutic discussion 
issues. Finally, Sect. 5 concludes the paper.

2 � Methods/experimental
This study investigates the detection of anomalous states of FAPs in ultra-dense 
deployments for providing an insight into the management of self-organizing next-
generation cellular networks. In this study, femtocells of a cellular system are consid-
ered to be in one of the four states as healthy, degraded, crippled, and catatonic states 
such that the service quality of FAPs falls into a reduction in non-healthy states [6].

Degraded FAPs have a slightly lower performance than healthy ones and can 
resume normal operation after the environmental effects causing the anomaly disap-
pear. Crippled FAPs have serious problems and may carry very little traffic. On the 
other hand, catatonic FAPs are generally out of service due to catastrophic failures 
like serious power cuts [5]. When there is a reduction in FAP’s output power due to 
hardware or software failures such as implementation failures in channel processing, 
external power supply problems or even misconfiguration, FAPs undergo anomalous 
states from the healthy state. However, service providers generally may not realize 
these types of state changes very quickly and efficiently. Making use of the measured 
UE data related to received signal strength, which are also reported to base stations, 
the anomalous states might be detected by the use of deep network applications like 
LSTM and 1D CNN which have been employed in many fields so far. LSTM is utilized 
in this study for its ability to learn time interactions on UEs’ time series data to detect 
anomalies regarding outages. On the other hand, another deep learning method, 1D 
CNN structure, is also employed for its powerful extraction capability of spatiotem-
poral anomaly patterns that might be generated in outage events.
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2.1 � Key performance indicators

KPIs are generally utilized for monitoring and optimizing cellular network perfor-
mance. Therefore, KPIs may also be well suited to anomaly detection tasks. KPI met-
rics such as CQI, reference signal received power (RSRP), reference signal received 
quality (RSRQ), CQI, and SINR are all candidates that may supply clues and informa-
tion intended for detection of anomalies and monitoring the healthiness of the net-
work. Among these, our detection algorithms are confined to two metrics, CQI and 
SINR, for their relatively lower computation cost. CQI carries information about the 
channel quality of the communication link, and SINR is basically the signal-to-inter-
ference plus noise ratio measured on a UE.

KPI metrics of every UE are reported to OSS via base stations. In the OSS, CQI and 
SINR values of every UE are to be monitored for a certain time interval of T for our 
proposed detection schemes. Two featured KPI data structure of UEs time sequence 
employed in our study, for any user (e.g., UEn ), is shown in Eq. (1):

2.2 � Radio access network

In this study, we build radio access network structure with the help of a well-known 
downlink system level simulator for cellular networks [27]. In order to synthesize 
time sequences of UE data, we employ macro BSs with tri-sectored structure in the 
hexagonal geometry using 7 macro BSs with each macro BS having 120 UEs. Addi-
tionally, we generate 2 FAPs in each sector of every macro-cell cluster and 5 UEs in 
each femtocell. The positions of the UEs are randomly generated. The FAPs operate in 
open subscriber group configuration in which the femtocells also service users from 
other base stations. The parameters of the system level simulations are summarized 
in Table  1. We adjust the output power of the FAPs as described in [5] to generate 
the abnormal conditions. In our proposed framework, we employ healthy, degraded, 
crippled, and catatonic FAPs that radiate at 30 dBm, 20 dBm, 10 dBm, and −10 dBm, 
respectively. We run the simulations for a duration of 60 milliseconds and record UE 
data in every millisecond. Within this duration, for imitating the anomalous cases, we 
degrade the transmit power of the FAPs in a random time for all three possible anom-
alous cases with the condition that FAPs are initially in healthy state. In our work, we 
employ three different shadowing conditions with standard deviations 2, 5, and 8 dB 
to scrutinize the fading effects on outage detection.

2.3 � Long short‑term memory

In deep learning field, LSTM is known to be a special type of artificial RNN architec-
ture. RNNs have the ability of incorporating activations from previous time steps as 
inputs to make decisions for the current output and current state. This makes RNNs 
efficient for time sequence classification purposes; nevertheless, RNNs suffer the bot-
tleneck of gradient vanishing problem. At this point, LSTM comes out with a memory 
cell unit and four gates layers which interact and cooperate in a special structure so as 

(1)usern =
cqi1 cqi2 ... cqit−1 cqit cqit+1 ... cqiT
sinr1 sinr2 ... sinrt−1 sinrt sinrt+1 ... sinrT
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to eliminate gradient vanishing. LSTM networks are useful in classification and pro-
cessing of time series. Besides, LSTM can be suitable for making predictions on time 
sequences since it has the ability to learn long-term relationships. It can recall infor-
mation for past periods of time, and it can cope with lags between critical points in 
time series. Within this framework, in [28] researchers made use of LSTM for anom-
aly detection in cellular networks.

Unlike RNNs having one hyperbolic tangent layer, a typical LSTM unit is composed 
of a cell being the memory part, an input gate, an input modulation gate, an out-
put gate, and a forget gate. Input gate decides the entrance of a new data to the cell, 
whereas input modulation gate controls the extent to which the new data enter the 
cell. Forget gate decides what information will be eliminated from the cell state, and 
the output gate controls the extent to which the value in the cell is used to contribute 
to the activation of the LSTM unit output.

Table 1  RAN simulation parameters

Parameters Values

Cellular layout 7 macro-cells 
(three-sectored) 
in hexagonal 
geometry
A total of 42 fem-
tocells (2 FAPs per 
sector)

Macro BS Tx power 46 dBm

Femto BS Tx power for healthy case 30 dBm

Femto BS Tx power for degraded case 20 dBm

Femto BS Tx power for crippled case 10 dBm

Femto BS Tx power for catatonic case −10 dBm

Path loss model TS36942 urban

Number of UEs per macro-cell 120

Number of UEs per sector 40

Number of UEs per femtocell 5 UEs

Inter eNodeB distance 500 m

Channel bandwidth 20 MHz

User location and mobility Uniformly distrib-
uted locations 
with random walk 
model

Fig. 1  Repetitive architecture of LSTM units in time steps
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Recurrent neural networks, including LSTM networks, consist of repetitive sequences 
of neural network modules in chain arrangement as shown in Fig. 1. By use of activations 
from previous cycles as inputs to the current network, a decision for the current input 
can be made, so that LSTM can better be suited for sequential labeling purposes [29, 30]. 
Correspondingly, LSTM units can be trained with training sequence sets in a supervised 
manner by means of an optimization algorithm. For the optimization process, gradient 
descent method with back-propagation in time can be used to compute the required 
gradients. By this way, each weight of the LSTM network changes in proportion to the 
derivative of the error at the output layer of the LSTM unit with respect to correspond-
ing weight. The relations concerning the hidden state ht−1 , current state ct  , and input 
of the modules xt  are expressed in a set of equations; ft=σ (Wxf xt +Whf ht−1 + bf ) , it
=σ (Wxixt +Whiht−1 + bi) , čt=tanh (Wxcxt +Whcht−1 + bc) , ct= ft ◦ ct−1 + it ◦ čt , ot
=σ(Wxoxt +Whoht−1 + bo) , and ht=ot ◦ tanh ct . In these compact equations, ft  is the 
forget gate value, it  is the input gate value, čt  is the input modulation gate value, ot  is the 
output gate value, ct  is the current state (cell memory) value, ht  is the value of the out-
put (hidden state) of the LSTM unit at time step t, σ is the activation function (sigmoid, 
ReLU, etc.), tanh is the hyperbolic tangent function, and ◦ is the element-wise Hadamard 
product. Wxf  , Whf  , Whi , Wxi , Wxc , Whc Wxo , Who are the weights of the inputs and the 
recurrent connections. Wxf  is the weight from input to forget gate, Whf  is the weight 
from previous hidden state to forget gate, Whi is the weight from previous hidden state 
to input gate, Wxi is the weight from input to input gate, Wxc is the weight from input to 
input modulation gate, Whc is the weight from previous hidden state to input modula-
tion gate, Wxo is the weight from output to output gate, and Who is the weight from pre-
vious hidden state to output gate. Additionally, b f  , bi , bc , and bo are the bias values for 
the forget, input, input modulation, and output gates, respectively. The detailed internal 
structure of a single LSTM unit is shown in Fig. 2.

Fig. 2  Unit structure of LSTM
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Finally, in our envisaged LSTM model, besides our input of size 2x60, we employ a 
mini-batch size of 27, hidden neuron units of 50 and a maximum epoch number of 100 
for training. Sequentially, we construct an input layer, an LSTM layer like the one shown 
in Fig. 2 with 50 hidden neurons, 4 fully connected layers, a soft-max layer, and a final 
classification layer at the end.

2.4 � One‑dimensional convolutional neural networks

CNNs are very powerful tools in many modern artificial intelligence applications, par-
ticularly in machine learning and computer vision tasks. The architecture of a generic 
CNN has one or more convolutional layers, followed by a pooling layer, a flattening 
layer, and a fully connected layer. These layers help in learning the features, patterns, and 
objects in the data of interest.

In the literature, many CNN applications have multidimensional structure, especially 
in tasks related to image and video data [31] as well as intrusion detection tasks in net-
works [32, 33]. On the other hand, 1D CNN is also used in data having time sequence 
character such as text, handwriting, speech signals, and natural language processing 
[34]. 1D CNN searches for temporal patterns and differences in the direction of elapsing 
time via a convolution kernel window [35]. In our case, 1D CNN kernel of size 2 is slid 
toward the direction of elapsing time so that it can extract the temporal pattern changes 
in the time data composed of CQI and SINR values of subject UEs for investigating any 
probable anomalies.

The first layer, conv1, in our 1D CNN structure is the first convolutional layer. This 
layer is fed with the input data volume, I ∈ R

(nIH )×(nIW ) and learning filters, also called 
kernels, F ∈ R

(nFH )×(nFW ) where nIH , nFH are height and width of input volume and nIW 
and nFW are the height and width of the filters applied, respectively. In this layer, par-
allel convolution processes are employed between each kernel and the input volume 
in the desired directions followed by a bias and a rectified linear unit function (ReLu) 
operation to generate the output of this layer, Yconv1 ∈ R

(nIH−nFH+1)×(nIW ) , which is 
also the input of the second convolutional layer (conv2), Iconv2 . The output of the sec-
ond convolutional layer, Yconv2 ∈ R

(nIH−2nFH+2)×(nIW ) is also the input to pooling layer, 
Imaxpool . As illustrated in Fig. 3, two subsequent convolutional layers are conducted in 
our CNN architecture for better extraction of features consisting of lower level fea-
tures. At the end of convolutional layers, activation maps, also called as feature maps, 

Fig. 3  Employed CNN layers with dimensions
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holding the kernel responses for every spatial position are generated. In our work, the 
number of kernels Nkernel is 32 which means that 32 probable patterns are subject to 
our feature extraction task.

In our study, we set filter height, nFH to 3 since the sign of anomalies in CQI and 
SINR of UEs generally appears suddenly within a few milliseconds. These sudden pat-
tern deviations due to anomalous degradations are also the main reason why we do 
not apply any strides or zero paddings to our data to avoid missing any significant 
patterns. In our study, the height of our input volume nIH is set to 60 which is the 
employed UE time sequence duration in milliseconds. Since we use time sequences of 
two metrics, width of our input volume, nIW equals 2. Accordingly, the width of our 
filter, nFW is also set to 2.

In the sequential structure of CNNs, pooling layers generally take place right after the 
convolutional layers to reduce the spatial size and parameters within a downsampling 
character. We employ a max-pooling filtering operation which computes the largest 
value in each patch of every activation map. The input to this layer Imaxpool is reduced 
according to the max-pooling filter size, nmp which can be considered as the downsam-
pling rate and is chosen as 2 in our study.

The output of the max-pooling layer, Ymaxpool with the given dimensions 
⌊ (nIH − 2nFH + 2)

nmp

⌋

× (nIW) is also the input of the flattening layer, Iflat . Flattening layer 

reshapes the input by converting it into a one-dimensional long feature vector output, 

Yflat with dimensions 
(

⌊ (nIH − 2nFH + 2)

nmp

⌋

× (Nkernels)

)

× 1 , which is also the input of 

the last fully connected layer, IDense . Fully connected layers, following the flattening layer, 
basically emit the probability distribution of the classes that the overall net has to 
choose. In other words, the feature maps are transformed into output predictions for the 
model where each hidden unit is connected to all hidden units of the previous flattening 
layer. At the very end of the layered structure, we employ two consecutive fully con-
nected layers where the first one has 128 and the second one has 4 neurons. The output 
of these two cascaded fully connected layers gives us the probability distribution of the 
classes corresponding to the input volume. The predicted class related to the input vol-
ume is decided according to most probable class.

3 � Implementation of anomaly detection
Our proposed anomaly detection approaches involve continuous monitoring of the UE 
signals around the FAP of interest by the operations support system. Once our trained 
deep learning model senses an anomaly in the femtocell, an alarm is generated. Unlike 
macro BSs, FAPs are generally serving much fewer number of users which makes them 
harder to detect in the case of an anomalous situation due to lack of information ema-
nating from sparse user characteristics on the site (i.e., 1–5 users per femtocell). For our 
anomaly detection analysis, we made use of the time sequence data of the UEs resid-
ing inside a circle of a certain radius centered at the FAP of interest. We call this radius 
for FAP region of interest as ROI in the rest of the paper. In this study, for UEs to be 
involved in the anomaly detection process we employ widely accepted typical values for 
ROI as 30, 40, and 50 meters [36, 37].
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3.1 � Model training

The first step of proposed anomaly detection scheme involves training of our deep net-
work structure with two featured (SINR and CQI) time sequences of every UE in ROI 
for healthy and all three possible anomalous cases. Once training is complete, time 
sequences of the test UEs in ROI are tested on the trained model with tenfold cross-
validation. In other words, two featured time sequence data of UEs are fed into trained 
model structure and a classification decision is made for the FAP. It is worth mentioning 
that in practical applications, training step is done for once at the beginning of network 
monitoring and hence will neither take time nor bring computational burden in classifi-
cation and detection phases in real time.

3.2 � Classification

Every test sequence of the UEs residing in ROI is applied to the trained model so as to 
produce a discrete probability distribution vector PDUE , with four probability values as 
expressed in Eq. (2). For every UE in ROI, PDUE vector holds phealthy , pdegraded , pcrippled , 
and pcatatonic values. These values are the probabilities of a single UE being in a healthy, 
degraded, crippled, and catatonic cell, respectively. Thus, the probabilities in this vector 
are accepted as scores revealing the degree of involvement of each UE with the given 
anomalous or healthy states. The classifier predicts the anomalous state of the UE time 
sequence by choosing the class with the highest probability in PDUE.

3.3 � Aggregation decision

In this framework, we are motivated to make a decision about the state of the FAP 
rather than the state of the UE being exposed to such a probable anomaly. Therefore, we 
employ cell-level aggregation to predict the state of the FAP by making use of the scores 
of the UEs that form a cluster ensemble in ROI [17, 18, 38, 39]. Henceforth, once the 
probability scores of each state in PDUE vector are computed for every UE in ROI, we 
employ an aggregation decision procedure based on PDUE and come to a final decision 
regarding the state of the FAP of interest.

Assuming that the positions of the UEs and FAPs are known to the OSS, we simply 
compute the mean of the probabilities in PDUE within all UEs residing in ROI. The class 
label with the highest average probability is simply decided as the state of the FAP. We 
call this aggregation procedure as ensemble averaging method.

Alternative to ensemble averaging, one can also propose another aggregation decision 
method, which we call majority voting. We start this procedure by examining the PDUE 
of every UE in ROI, revealed by the classifier, and determine the predicted class of each 
UE according to maximum of the probabilities in PDUE for every UE. Then, we check the 
majority among predicted class labels among UEs and continue as follows:

•	 In the case of equity in majority check among predicted classes of UEs, namely equal 
number of UEs are assigned to two or more different predicted classes, we compute 

(2)PDUE = [phealthy, pdegraded, pcrippled, pcatatonic]
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the mean of the probabilities in PDUE of each UE residing in ROI. The class label with 
the highest average probability is decided as the state of the FAP as in ensemble aver-
aging.

•	 If there is no equity in majority of the predicted classes, meaning that there is only 
one major predicted class, then the state of the FAP is directly decided as the class of 
majority of the predicted states of UEs in ROI.

Pseudo-algorithms for ensemble averaging and majority voting methods are given as 
Algorithms 1 and 2, respectively. The results regarding majority voting and ensemble 
averaging are mentioned in the Results and Discussion section.
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4 � Results and discussion
In this section, we present the results of our proposed anomaly detection procedures 
in terms of overall accuracies and analyze them with the related proper discussion. We 
use overall accuracy as a measure of how well our proposed anomaly detection methods 
identify and classify outages among four state categories. Accuracy metric in our study 
is simply the ratio of number of correct predictions to total number of predictions. We 
keep track of comparing the success of two deep learning architectures and the factors 
affecting their performance. Within this scope, we investigate the influences of various 
radius of interest values as 30, 40, and 50 meters, different shadowing standard devia-
tions as 2, 5, and 8 dB as well as two different aggregation methods as ensemble averag-
ing and majority voting.

A factor affecting four-category classification success emerges as the ROI which is 
related to the number of UEs involved in the analysis. In our analysis, we note a descend-
ing trend on accuracies along with increasing ROI values. Regardless of the aggregation 
method, we can see this trend in Fig. 4 which shows overall anomaly detection accuracies 
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of LSTM at 2 dB shadowing. Similarly, this can also be observed in Fig. 5 which shows 
the 5 dB shadowing accuracies of 1D CNN. In four-category classification scheme, it is 
worthy of noticing that as ROI gets bigger, although number of UEs subject to our classi-
fication and aggregation task gets more, the average information bearing quality per UE 
data gets less because the characteristics of data belonging to UEs placed near bounda-
ries of ROI start to overlap with that of UEs belonging to macro BS due to path loss 
effects. Therefore, the bigger the radius we take, the noisier average UE data involved in 
our computations get. The results support this conclusion because in 50 meters of ROI, 

Fig. 4  LSTM accuracies at 2 dB shadowing

Fig. 5  1D CNN accuracies at 5 dB shadowing
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although there are more UEs involved in classification, the accuracies all get lower and 
this holds for both aggregation decision methods.

In Fig.  6, we see LSTM and 1D CNN accuracies in the same plot for all ROI val-
ues under ensemble averaging. At 2 dB shadowing case, within 30 meters of ROI, 1D 
CNN (80.1%) outperforms LSTM (79.08%). On the other hand, LSTM gives accuracies 
as 59.18% and 50.83% outperforming 1D CNN with accuracies 56.38% and 47.43% for 
shadowing conditions at 5 dB and 8 dB, respectively. Here, we notice that 1D CNN is 
more successful at milder shadowing conditions whereas LSTM can better suit anom-
aly detection in harsher channel conditions. Special gates and cell memory structure of 
LSTM might stand more noise resilient in channel conditions with severe shadowing. 
However, in less shadowing within 30 meters, the patterns caused by anomalies on time 
sequenced UE data might become more salient under convolutional filtering power of 
1D CNN. Under 40 and 50 meters of ROI, LSTM outperforms 1D CNN for all shadow-
ing conditions except the accuracy within 50 meters for 5 dB in which they perform the 
same.

In addition, Fig.  6 also tells us that shadowing is another factor that affects classifi-
cation and anomaly detection procedure. We notice that as shadow fading becomes 
harsher, under the same ROI, the classification accuracies all get less. This remarkable 
reduction obviously shows that harsher shadowing makes anomaly detection a harder 
task as the KPI data subject to classifiers start having more noisy nature.

Employed aggregation decision method, which is a necessary step for transforming 
UE probability distributions to FAP state prediction, also affects the overall anomaly 
detection performance. Anomaly classification accuracies within all ROI choices and 
both aggregation decision methods are shown in Fig.  7 for LSTM at 2 dB shadowing 
and in Fig. 8 for 1D CNN at 5 dB shadow fading. At all ROI choices, ensemble averaging 
performs better than majority voting for both deep learning architectures. This result 

Fig. 6  Accuracies of LSTM and 1D CNN for all shadowing conditions and ROI choices
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highlights the filtering power of ensemble averaging such that averaging the class poste-
rior scores over the whole UE ensemble filters out potential errors of the model and also 
eliminates the outlying or faulty UE data, most probably corrupted by multi-path chan-
nel effects, so as to reduce misclassification [40].

In multi-label classification, recall rates for every category also account for the clas-
sifier. Recall rate is a label-based evaluation measure which gives the ratio of truly pre-
dicted samples of a category to total actual samples of that category as expressed in 
Equation (3) where TP indicates the true positives and FN indicates false negatives.

Fig. 7  Accuracies of LSTM at 2 dB shadowing

Fig. 8  Accuracies of 1D CNN at 5 dB shadowing
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In Fig. 9, recall rates of every category are given for 30 meters of ROI under ensemble 
averaging. Here, we see again a different behavior between 2 dB shadowing and harsher 
shadowing conditions. At 2 dB shadowing, highest remarkable recall rates are achieved 
at healthy cases for both classifiers. On the other hand, at 5 dB and 8 dB shadowing con-
ditions both classifiers give rather lower recall rates for degraded state. Therefore, our 
proposed four-category classifier extracts the catatonic and healthy states at the best, 
while it exhibits less success in identifying the degraded and crippled states that stand 
between healthy and catatonic states.

Besides focusing on four-category classification, the results can also be analyzed by 
classifying the FAPs into two categories. So, if we binarize four-category FAP classifica-
tion structure into healthy and non-healthy states by merging degraded, crippled, and 
catatonic states into non-healthy state, the true positive rate (TPR) can also be another 
measure for assessment of our proposed two-state classification. TPR values simply indi-
cate the rate of correctly identified positive non-healthy cases to all actual non-healthy 
cases. A good classifier is expected to have a TPR as high as possible.

In Fig.  10, TPR values of LSTM at 2 dB shadowing are shown for both aggregation 
algorithms and all ROI choices. For both aggregation methods, TPRs all increase along 
with increasing ROI which is the opposite of the case in four-category classification.

As shown in Fig.  11, for both aggregation methods, at 5 dB shadowing TPRs all 
decrease along with increasing ROI which is parallel to the case in four-category classifi-
cation. Likewise, as shown in Fig. 13, there is also a decreasing trend of TPR values along 
with increasing ROI at 8 dB shadowing under ensemble averaging. Therefore, ROI affects 
the classification performance differently for two-state and four-state schemes at 2 dB 
shadowing and affects in the same way on other shadowing conditions. This different 

(3)Recall Rate =

[

TP

TP+ FN

]

Fig. 9  Recall rates of LSTM and 1D CNN at 30 meters of ROI under ensemble averaging
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behavior can be explained with the reason that in good signal conditions, every addi-
tional UE datum contains less noisy character. Thus, more qualified information leads to 
better detection of actual anomalous cases and prevents them from being erroneously 
classified as healthy. On the other hand, as shadowing increases to 5 and 8 dB, the infor-
mation bearing quality of the UEs in the edges starts to decrease and severely overlaps 
with that of macro BS users. Classifiers start erroneous predictions on actual anomalous 
FAPs which lead to a reduction in TPRs. Therefore, misguidance of the classifiers due to 
higher shadowing yields lower TPRs since harsher channel conditions make outer UEs 

Fig. 10  TPRs of LSTM at 2 dB shadowing in two-state classification

Fig. 11  TPRs of 1D CNN at 5 dB shadowing in two-state classification
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less reliable for being incorporated in classification task for both classification schemes: 
two-state and four-category classification.

In two-state scheme, our proposed methods come up with very high TPRs when com-
pared to four-category case accuracies since the internal misclassifications within the 
merged states all vanish. In our analysis, 1D CNN outperforms LSTM slightly in all cases 
for two-state scheme. As expected, the highest TPR is achieved with 2 dB shadowing 
condition with both classifiers having very close performances exceeding 95%. On the 
other hand, as shadow fading becomes harsher, TPR decreases. The best TPR is obtained 
within 50 meters of ROI at 2 dB shadowing, whereas the best TPR values are obtained 
within smaller ROI of 30 meters at harsher shadowing conditions with 5 and 8 dB for 
both deep learning architectures. This means that in finer channel conditions such as 2 
dB shadowing, it becomes more advantageous for classifiers to utilize more samples by 
employing larger ROI.

In the literature, researchers study outage detection in cellular networks in various 
aspects. For example, in [26] researchers come up with similar TPR values in detection 
of two-state anomalies in a cellular network of macro BSs. Proposed methods in our 
study stand promising since we come up with high TPR values in the existence of extra 
difficulties such as user sparsity and vertical handovers posed by femtocells [6]. Like-
wise, in four-category FAP anomaly classification we reach accuracies more than 80% on 
the average which is comparable to the average results reached in [5] where more easily 
detectable macro BSs are also involved in. Moreover, our study does not require any data 
regarding neighboring cells as in [11] and does not require any KPI data preprocessing 
as in [28] and thus has a potential on being operated in run time applications for rela-
tively reduced complexity.

For better understanding the performance of our proposed LSTM and 1D CNN 
schemes, using all the same UE sequences as input, we also employ a feed-forward 
neural network (FFNN) as a baseline, which is also used in outage detection [41]. The 
four-category classification accuracy values of LSTM, 1D CNN, and FFNN are shown in 
Fig. 12 under ensemble averaging aggregation. Proposed LSTM and 1D CNN methods 
both outperform existing FFNN approach in detecting and classifying anomalous states 
of ultra-dense femtocell networks in all shadowing conditions and for all ROI choices. By 
virtue of the gates and memory parts as well as cascaded layers, proposed deep learning 
methods may bring along computational complexity. However, proposed LSTM and 1D 
CNN methods have a much higher classification performance compared to the FFNN as 
used in [41] at the expense of an increase in computational cost.

We also emphasize the importance of aggregation decision methods employed in this 
study. For this purpose, we can consider on the PDUE values which are the raw prob-
ability distribution vectors computed by the classifiers for each UE. So if we focus on the 
assigned class of UEs individually we can measure how much the applied aggregation 
method improves the decision about the state prediction of the FAPs of interest. Within 
this scope, in Table 2, we give prediction success of UE-based raw classification and that 
of FAPs following the aggregation decision process. We see that, in all cases, aggregation 
methods improve the prediction performance based on raw UE state probabilities.

By considering the results of this study, we can deduce that a smart way of anomaly 
management in ultra-dense FAP networks should be monitoring the signal quality 
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and channel conditions in radio access network and choose the appropriate type of 
the proposed deep learning method and optimum ROI accordingly. In that regard, in 
four-category classification, it is better to use LSTM in harsher channel conditions 
and use 1D CNN in good signal conditions. And in two-state scheme, employing 
larger ROI gives better accuracies in good signal conditions, whereas smaller radius 
is more suitable in harsher conditions. Therefore, OSS should keep track of channel 
conditions and determine the most appropriate way of detection method and suitable 
ROI for anomaly detection in cellular networks.

Our proposed framework mainly focuses on LSTM and 1D CNN. In addition to 
this, in the future our framework can also be well extended to hybrid schemes like 

Fig. 12  Accuracies of proposed LSTM, proposed 1D CNN, and existing FFNN under ensemble averaging

Fig. 13  TPRs of 1D CNN and LSTM at 8 dB shadowing with ensemble averaging in two-state classification
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RCNN structures. Moreover in the future planning, for the purpose of anomaly 
detection in cellular networks of femtocells, proposed time sequence monitoring and 
labeling tasks can also be handled together with other schemes. For example, hier-
archical temporal memory (HTM) method can be a good candidate for its ability of 
being applicable to high-dimensional time sequences as covered in [42]. On the other 
hand, auto-encoder-based anomaly detection methods can also be well adopted to 
identification of cell outages in ultra-dense cellular networks [22, 43, 44].

5 � Conclusion
In this study, we work on detecting the anomalies in femtocells and classifying them into 
four categories as healthy, degraded, crippled, and catatonic. By using KPI data of UEs 
along with LSTM and 1D CNN, we propose two different deep learning-based frame-
works for efficient detection of anomalous FAP states which is much harder than detect-
ing macro BS anomalies. We also showed the usage of aggregate decision approaches on 
UE prediction scores for further improving prediction results of FAP states. Our pro-
posed method is capable of detecting anomalous cell states with more than 95% true 
positive rate and has an overall accuracy of more than 80% for four categorical state pre-
diction of FAPs at the best. Having larger training datasets, working with higher user 
density and more sophisticated aggregate decision methods may help further increase 
classification accuracy so as to offer better insights into the anomaly detection tasks for 
future networks.
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LSTM	�  Long short-term memory
1D CNN	�  One-dimensional convolutional neural network
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SON	�  Self-organizing networks
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CQI	�  Channel quality indicator
FAP	�  Femto access point
3GPP	�  Third-Generation Partnership Project
COD	�  Cell outage detection
UE	�  User equipment
KPI	�  Key performance indicators
RNN	�  Recurrent neural network
RAN	�  Radio access network

Table 2  Four-category accuracies: UE-based raw classification vs aggregation decision

Accuracies (%)

2 dB 5 dB 8 dB

UE-based
classification

Ensemble
averaging

UE-based
classification

Ensemble
averaging

UE-based
classification

Ensemble
averaging

LSTM

30m 65.75 79.08 51.40 59.18 43.50 50.83

40m 60.43 77.92 44.17 55.83 40.17 50.51

50m 55.70 75.83 41.04 52.50 39.83 48.75

1D CNN

30m 65.75 80.10 48.60 56.38 42.13 46.43

40m 59.83 74.58 43.45 55.00 40.28 46.25

50m 54.77 73.33 41.67 52.50 36.54 46.25
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