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Abstract 

Steganographic secret sharing is an access control technique that transforms a secret 
message into multiple shares in a steganographic sense. Each share is in a human-read‑
able format in order to dispel suspicion from a malicious party during transmission and 
storage. Such a human-readable format can also serve to facilitate data management. 
The secret can be reconstructed only when a sufficient number of authorized share‑
holders collaborate. In this study, we use neural networks to encode secret shares into 
photorealistic image shares. This approach is conceptually related to coverless image 
steganography in which the data are transformed directly into an image rather than 
concealed into a cover image. We further implement an authentication mechanism to 
verify the integrity of the image shares presented in the decoding phase. All coverless 
image steganography schemes can be used to achieve steganographic secret sharing, 
but our detection mechanism can further improve the robustness of these schemes. 
Experimental results confirm the robustness of the proposed scheme against various 
steganalysis and tampering attacks.

Keywords:  Coverless steganography, Generative adversarial networks, Image 
synthesis, Secret sharing

1  Introduction
With the rapid development of the Internet, communication via social media has 
become a regular activity in our daily life. Network security, as well as data protection, 
has become a major concern. A lot of research reports on information security have 
been published. Access control is an essential technology in data security that enables 
the authenticated user to access the secret message and keeps the inappropriate user 
out. As a common technique of access control, the concept of (k, n)-secret sharing was 
first proposed in 1979 by Shamir [1] and Blakley [2]. Their scheme distributes secret 
information into n shares and deals them to n participants. When recovering the secret 
information, any k(k < n) participants can reconstruct the complete secret message by 
combining their shares. This concept has been applied to the secure transmission of 
secret information on the Internet. Since then, many scholars have intensively studied 
this area [3, 4] and proposed visual secret sharing, authenticable secret sharing, and so 
on.
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Steganography is a technique that hides the secret message in a transmission carrier, 
such as a sound signal, image, and video. Image-based steganography is the most com-
mon approach because it is very difficult to detect minor modifications to images. Thus, 
many scholars use images as the media for secret sharing. In 2008, Chang et al. [5] intro-
duced a Sudoku reference matrix-based secret sharing scheme that can generate two 
meaningful image shares, but the quality of the image shares was bad. In 2018, Liu et al. 
[6] proposed a Turtle Shell reference matrix-based secret sharing scheme, which could 
generate two high-quality image shares when embedding the secret message. In addi-
tion, Liu et al. added an authentication mechanism to detect the validity of image shares. 
In recent years, many scholars have started to study the use of secret sharing to achieve 
steganography [7–9]

With updates to computer hardware, the deep learning-based steganalysis scheme 
attracts more and more attention. Such techniques can detect images that have been 
tampered with by learning the data distribution patterns of natural images. Although 
traditional secret sharing schemes provide high-quality and meaningful image shares, 
these image shares are modified from the original image and thus cannot escape detec-
tion by steganalysis based on deep learning [10, 11]. Therefore, many scholars have 
worked to combine deep learning with steganography [12–14] and develop a new kind 
of steganography that can counteract steganalysis. The essence of this type of scheme 
is to embed the secret message into the image without changing the latter; this is also 
known as coverless steganography. Based on the rapid development of deep learning, we 
want to combine the concept of coverless steganography with secret sharing. However, 
none of the coverless steganography schemes provide an authentication mechanism. 
Therefore, we would like to design a convolutional neural network (CNN)-based authen-
tication mechanism to improve the sensitivity of secret sharing.

In this paper, we propose a novel steganographic secret sharing (Stego-SS) scheme 
that can be used to build an access control mechanism. We first train generator Gen and 
encoder Enc to embed the secret share and the authentication code in the image share. 
Meanwhile, the decoder Dec and the extractor Ext are trained to extract the authentica-
tion code and the secret shares severally. After training, the dealer can use Gen and Enc 
to hide the secret share and the authentication code in the generated image shares and 
distribute them to n participants. Then, the dealer can do access control by choosing the 
threshold of k. After authentication, any k of participants can work together to extract 
their secret shares and recover the secret message. The main contributions of this paper 
are summarized as follows:

1.	 The concept of coverless steganography is combined with (k, n)-secret sharing.
2.	 A new CNN-based authentication mechanism is designed to improve the sensitivity 

of the proposed scheme.
3.	 The idea of adversarial training is applied to enhance the robustness of the proposed 

scheme against various types of distortion.

The rest of this paper is organized as follows. Section 2 introduces two types of cov-
erless image steganography. In Sect.  3, we describe the procedures of the proposed 
steganographic secret sharing in detail. In Sect. 4, experimental results and analysis of 
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the proposed scheme are provided. Finally, conclusions and prospects are presented in 
Sect. 5.

2 � Preliminaries
Coverless steganography is an advanced data transmission scheme that aims to transmit 
a secret message without pixel-wise modification of the cover image. In other words, the 
secret message is directly embedded into the unmodified cover image.

In this section, we briefly review two types of coverless steganography schemes: selec-
tive coverless steganography and generative coverless steganography.

2.1 � Selective coverless steganography

Selective coverless steganography schemes usually compute the binary hash sequence 
of each image in a database first. When transmitting a secret message, the image whose 
hash sequence matches the secret message is selected as the carrier image. Thus, the 
carrier image requires no further modification. In 2015, Zhou et al. [15] first proposed 
a selective coverless steganography scheme. A carrier image is divided into multiple 
blocks, and the average pixel value within each block is calculated first. The hash value 
is then determined to be 0 or 1 by comparing the average pixel values of adjacent blocks. 
In the next year, Zhou et al. [16] proposed a coverless steganography scheme based on 
the bag-of-words model. A carrier image is divided into sub-images, and a correspond-
ing visual word for each sub-image is analyzed. Text information can be communicated 
by transmitting a series of images containing the sub-images related to the text words. In 
2016, Zhou et al. [17] proposed a histogram of oriented gradients (HOG)-based image 
steganography, in which the hash sequence of a sub-image is generated using HOG. This 
scheme has good security and strong robustness to various attacks. In the same year, 
Zhang et al. [18] proposed a robust coverless steganography scheme based on the scale-
invariant feature transform (SIFT), in which the hash sequence is calculated using the 
orientation information of the SIFT feature points. In 2018, Zhang et  al. [19] applied 
the discrete cosine transform and latent Dirichlet allocation (LDA) topic classification 
to generate the feature sequence of a carrier image. The feature sequence plays the same 
role as the hash sequence in the previous schemes.

All these selective coverless steganography schemes are based on transmitting the real 
image with the hash sequence that matches the secret message. However, the hiding 
capacity of each image is very low. The longer the data length, the harder an image with 
a matched hash sequence can be found. As the length of the hash sequence grows, the 
required size of the image database increases significantly. The storage and processing of 
a large database are inefficient. In addition, since the selective coverless steganography 
scheme uses the real image to transmit the secret message, this may violate the privacy 
and portrait rights of the image owner. To solve these problems, generative coverless 
steganography schemes were proposed.

2.2 � Generative coverless steganography

Generative coverless steganography schemes use various types of generative adversar-
ial networks (GANs) to produce a carrier image according to the secret message to be 
embedded. The generative adversarial network (GAN) is a neural network model that 
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can generate high-quality images. In 2017, Liu et al. [20] proposed a generative coverless 
steganography scheme based on the auxiliary classifier generative adversarial network 
(ACGAN), in which each segment of secret message is mapped to an integer digit from 
0 to 9, and the noise and the secret message are fed into the generator network alto-
gether, and then a carrier image related to the secret message is generated through mul-
tiple training processes. The embedded secret message can be extracted from the carrier 
image by using the discriminator network. Inspired by Liu et al., Duan et al. proposed 
a scheme [21] in which the original secret image is fed into a GAN model directly to 
generate a meaning-normal image. On the receiver side, the secret image can be roughly 
recovered from the generated image. However, as the number of secret images increases, 
more training models are required. In the same year, Hu et al. [22] proposed a coverless 
steganography scheme based on the deep convolutional generative adversarial network 
(DCGAN), in which the secret message is mapped into the noise according to a mapping 
rule. Then, the noise is fed into the DCGAN to generate a natural fake image. On the 
receiver side, the receiver can use a well-trained extractor to reconstruct the noise from 
the fake image and then recover the secret message by the mapping rule. In 2019, Zhang 
et al. [23] provided a new direction for generative coverless steganography schemes. The 
secret message is hidden by converting the styles of the cover image. In 2020, Chen et al. 
[13] established a rule between the secret message and the multiple features of a face 
image. The secret message and a cover face image are fed into the StarGAN, a scalable 
model capable of learning mappings relationships between multiple domains, to gener-
ate a face image with new features.

Compared with the selective coverless steganography scheme, the generative coverless 
steganography scheme can directly generate diverse images without the need to collect 
a large number of real images. Furthermore, the generated fake images are less likely to 
violate the privacy and portrait rights of the image owner.

Since secret sharing can provide higher security than steganography, all coverless 
steganography schemes can be used to implement secret sharing. However, none of 
the existing coverless steganography schemes has an authentication mechanism, which 
leads to no way for participants to verify the authenticity of the share provided by each 
other. To solve this problem, we design a new CNN-based authentication mechanism 
and propose a novel steganographic secret sharing scheme.

3 � Methods
In our work, we aim to combine the concept of coverless steganography with secret 
sharing and design a CNN-based authentication mechanism to improve the sensitivity 
of the proposed scheme. To achieve this goal, we use generator Gen and encoder Enc to 
encode secret shares into photorealistic image shares. Then, the generated image shares 
are distributed to n participants. After that, any k(k < n)  participants can work together 
to restore the secret message with the help of extractor Ext. Also, we further implement 
an authentication mechanism to verify the authenticity of the image shares presented in 
the decoding phase, which helps to improve the sensitivity of the proposed scheme. All 
experiments are implemented in PyTorch 1.7 on a PC with Intel® Core™ i9-9900K CPU 
and accelerated with an NVIDIA RTX 3090 GPU.
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3.1 � Steganographic secret sharing

Suppose a dealer embeds a secret into n image shares and distributes them to n partici-
pants. Any k of authentic participants can recover the secret only by sharing their image 
shares. The proposed Stego-SS scheme includes a secret sharing stage and a secret resto-
ration stage. The flowcharts of secret sharing and secret restoration stages are shown in 
Fig. 1. In this figure, k = 2 and n = 3.

In the secret sharing stage, the secret message is split into n binary secret shares and 
modulated to obtain n noise-like secret shares of floating points first. Then, the noise-like 
secret shares are fed to the generator Gen to produce n image shares. A binary authen-
tication code is generated by the dealer. After that, the authentication code is converted 
to two-dimensional and merged with image shares. Finally, n authentic image shares are 
produced and distributed to n participants by feeding the merged image shares to the 
encoder Enc.

In the secret restoration stage, participants decode their image shares into query codes 
using decoder Dec first and compare them with each other. If the number of similar 
codes exceeds the threshold, the corresponding image shares are considered authen-
tic. After authentication, participants can extract the noise-like secret shares from their 
image shares using the extractor Ext and de-modulate the noise-like secret shares into 
secret shares. Finally, the embedded secret message can be obtained by merging any k 
secret shares.

To enable the whole scheme, as shown in Fig. 2, we have to design the generator Gen, 
encoder Enc, decoder Dec, and extractor Ext properly. This section includes four subsec-
tions: neural network training, network structures, secret sharing, and secret restora-
tion. The preparation of four networks is introduced first. Then, details on the secret 
sharing and the secret restoration are presented. Table 1 shows the main notations used 
in the proposed scheme.

3.2 � Neural network training

The training process of the proposed scheme can be decomposed into three training 
phases: internal training, external training, and adversarial training.

The internal training phase is trained first with network structures shown in Fig. 2a, 
b. The encoder Enc and decoder Dec are jointly trained. An image dataset is applied as 
the ground truth for training Enc. Also, the image share in this dataset is used to simu-
late the output of the generator Gen in the external training phase. Before feeding to 
Enc, the image share is merged with a pseudo-two-dimensional authentication code. The 
generation of the pseudo-two-dimensional authentication code and the merge process 
are omitted here. In this phase, we train Enc to generate an authentic image share that is 
close to the image share, while the two-dimensional authentication code can be success-
fully extracted by Dec.

In the external training phase, the generator Gen, the discriminator Dis, and the extrac-
tor Ext are jointly trained with the network structures shown in Fig.  2c–e. The noise 
vector produced by a random number generator is applied to simulate the noise-like 
secret share. We train Gen to generate an image share that is close to the ground-truth 
dataset like [24]. After that, the image share is merged with a pseudo-two-dimensional 
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Fig. 1  Flowchart of the proposed scheme
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Fig. 2  Architectural details of models for steganographic secret sharing
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authentication code and fed into the pertained Enc. Then, the output of Enc, the authen-
tic image share, is fed into Ext to recover the noise vector.

In the adversarial training phase, the decoder Dec and extractor Ext are jointly trained 
to enhance the ability of models. In particular, we add a noise layer during the training 
process and then fine-tune the pre-trained models to increase the robustness of Dec and 
Ext against slight noise addition and color jittering.

The flowchart of the training phase is shown in Fig. 3, where the blue cube represents 
the model being trained and the red cube represents the model that is pre-trained and 
not involved in the training phase.

3.3 � Network structures

To embed the two-dimensional authentication code into image share, we design an 
encoder Enc by following the residual channel attention network (RCAN) [25], which is a 
CNN for image super-resolution. As shown in Fig. 1a, Enc is composed of three groups, 
each of which consists of three blocks. Each block consists of four convolution layers, 
the first and third convolution layers are followed by rectified linear unit (ReLU) [26] 
activation function. The feature maps provided in each block are enhanced and reused. 
We apply L2-norm as the loss function of Enc, which is given by

Table 1  Descriptions of the main notations used in the proposed scheme

Symbols Descriptions

Gen Generator

Enc Encoder

Dec Decoder

Ext Extractor

m 1× ℓm sized binary secret message

m Decimal secret message converted by m

s Decimal secret share

s 1× ℓs sized binary secret share converted by s

RS(si) 1× ℓ sized R–S encoded binary secret share

η 1× ℓ sized modulated noise-like secret share

I 64× 64× 3 sized image share

c 1× 64 sized binary authentication code

C 64× 64 sized binary two-dimensional authentication code

I
′

64× 64× 3 sized authentic image share

Î
′

64× 64× 3 sized query image share

Ĉ 64× 64 sized binary two-dimensional query code

ĉ 1× 64 sized binary query code

η̂ 1× ℓ sized extracted noise-like secret share

RS ŝ 1× ℓ sized de-modulated R–S encoded secret share

ŝ 1× ℓs sized binary secret share recovered by R-S code

ŝ Decimal secret share converted by ŝ

m̂ Recalculated decimal secret message

m̂ 1× ℓm sized binary secret message converted by m̂

ℓ Length of R–S encoded binary secret share

ℓs Length of binary secret share

ℓm Length of binary secret message



Page 9 of 23Gao et al. J Wireless Com Network        (2022) 2022:119 	

where I is the image share and I ′ is the authentic image share.
To reconstruct the embedded two-dimensional authentication code from the authen-

tic image share, as shown in Fig. 1b, we design a decoder Dec by following the structure 
of U-net [27], which is a CNN for biomedical image segmentation. Dec is composed of 
a contracting path and an expansive path. The contracting path has four down-sampling 
steps, each of which consists of two convolution layers and a max pooling layer. The 
expansive path has four up-sampling steps, each of which has two convolution layers, 
a concatenation module, and a deconvolution layer. In the contracting path, each max 
pooling layer halves the size of the feature map and doubles the resulting channels. In 
the expansive path, each deconvolution layer doubles the size of the feature map and 
halves the resulting channels. All convolution layers are followed by the ReLU activation 
function. The loss function of Dec is a pixel-level binary cross-entropy with logits loss, 
which is given by

where C is the two-dimensional authentication code, Ĉ is the recovered two-dimensional 
query code, and σ(x) = 1/(1+ exp (−x)).

The network structures of the generator Gen and the discriminator Dis follow the typi-
cal DCGAN [24]. The network structures of Gen and Dis are illustrated in Fig.  1c, d, 
respectively. Gen consists of a fully connected layer and four deconvolution layers. Gen 

(1)LEnc =
∑

i,j

(

Iij − I ′i,j

)2
,

(2)LDec =
∑

i,j

−
[

Ci,j × log
(

σ

(

Ĉi,j

))

+
(

1− Ci,j

)

× log
(

1− σ

(

Ĉi,j

))]

Fig. 3  Internal, external, and adversarial training phases
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is used to learn the data distribution from the real image dataset in order to generate a 
natural image share. Dis consists of four convolution layers and a fully connected layer. 
Dis needs to discriminate whether the input image is real, while Gen needs to deceive 
Dis with the generated image share.

The loss function of Gen and Dis is an adversarial loss, defined as Eq. (3), where Gen(·) 
and Dis(·) denote the output of Gen and Dis, respectively; z is a noise vector sized 
1× 100 , and x denotes the real image.

when the training process is completed, Gen can produce an image share from a noise-
like secret share that is difficult for Dis to distinguish from the real image. For the con-
venience of implementation, the generator loss and the discriminator loss in Eq. (3) are 
reformulated as

To recover the noise-like secret share from the authentic image share, we design an 
extractor Ext by following the network structure of the densely  connected convolu-
tional network (DenseNet) [28], which connects each layer forward to all other layers. 
As shown in Fig. 1e, Ext comprises six convolution layers, the second to fifth convolu-
tion layers are followed by the leaky rectified linear unit (Leaky ReLU) [29] activation 
function. The feature maps provided by each convolution layer are reused, and the final 
feature maps are fed to two fully connected layers. We apply 1-norm as the loss function 
of Ext, which is given by

where n is the length of the noise-like secret share, η is the input noise-like secret share, 
and η̂ is the extracted noise-like secret share. To train the networks above, the adaptive 
moment estimation (Adam) algorithm [30] with β1 = 0.9 and β2 = 0.999 is applied until 
convergence.

3.4 � Secret sharing inference

As the generator Gen, encoder Enc, decoder Dec, and extractor Ext are constructed and 
the training processes are completed, we are ready to share a secret by generating the n 
image shares. Referring back to Fig. 1, binary secret message m is converted to decimal 
m and split into n decimal secret shares s1, s2, . . . , sn . Each secret share is generated by (k, 
n)-secret sharing mechanism as illustrated in Eqs. (7–8) and converted to binary.

In order to ensure the correct calculation of the secret message, the Reed–Solomon 
code (R–S code) [31] can be applied in each binary secret share. Then, each binary 
secret share is encoded by R–S code and modulated to a noise-like secret share. 
The noise-like secret shares are severally fed to the pre-trained generator Gen. The 

(3)
min
Gen

max
Dis

V (Gen,Dis) = Ex∼Pdata(x)[logDis(x)]

+ Ez∼Pz(z)[log(1− Dis(Gen(z)))].

(4)LGen = −[logDis(Gen(z))],

(5)LDis = −[logDis(I)+ log(1− Dis(Gen(z)))].

(6)LExt =

n
∑

i=1

∣

∣ηi − η̂i
∣

∣,
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resulting image shares are concatenated with the two-dimensional authentication 
code and fed to the encoder Enc individually; therefore, the authentic image shares 
can be obtained. The detailed steps of the production of authentic image share are as 
follows.

Step 1. Split m to n secret shares s1, s2, . . . , sn by

where α1,α2, . . . ,αk−1 are random positive integers.
Step 2. Convert secret shares to binary  s1, s2, . . . , sn and encode them via R–S code.
Step 3. Modulate the R–S encoded secret shares RS(s1),RS(s2), . . . ,RS(sn) to the 

noise-like secret shares η1, η2, . . . , ηn.

where the symbols η1
(

j
)

 , η2
(

j
)

 , and ηn
(

j
)

 denote the j-th entry of the corresponding 
noise-like secret share; and the operation rand() generates a random floating-point num-
ber within the given range. In the proposed scheme, the range of j is [1, ℓ ] and ℓ is set to 
100.

Step 4. Generate image shares I1, I2, . . . , In by feeding the noise-like secret shares to 
generator Gen.

Step 5. Generate a 64-bit binary authentication code c . Reshape c to 8× 8 and 
upscale it to a 64 × 64 two-dimensional authentication code C.

Step 6. Concatenate each image share with C . Then, encode n concatenated image 
shares to authentic image shares I ′1, I

′
2, . . . , I

′
n by feeding the concatenated images into 

encoder Enc.

(7)

s1 = f (1),

s2 = f (2),

...

sn = f (n).

(8)f (x) = m+ α1x + α2x
2 + · · · + αk−1x

k−1,

(9)

η1

(

j
)

=

{

rand(−1,−δ), if RS(s1
(

j
)

) = 0

rand(+δ,+1), if RS(s1
(

j
)

) = 1
,

η2

(

j
)

=

{

rand(−1,−δ), if RS(s2
(

j
)

) = 0

rand(+δ,+1), if RS(s2
(

j
)

) = 1
,

...

ηn

(

j
)

=

{

rand(−1,−δ), if RS(sn
(

j
)

) = 0

rand(+δ,+1), if RS(sn
(

j
)

) = 1
,

(10)

I1 = Gen
(

η1

)

,

I2 = Gen
(

η2

)

,

...

In = Gen
(

ηn

)

.
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Step 7. Distribute the authentic image shares the secret image shares to participants 
1, 2, . . . , n , respectively, if the authentic secret shares escape the steganalyzer’s detection.

3.5 � Secret restoration inference

After receiving the authentic image shares, none of the participants can extract the 
secret message alone. But, they can provide their image shares for authentication first. 
After authentication, any authentic k of them can cooperate to recover the secret mes-
sage. Referring back to Fig. 1, the details of the secret restoration stage are as follows. 
Participants use decoder Dec to decode the two-dimensional authentication code 
embedded in their query image shares as the query code. If the number of similar codes 
exceeds the threshold, the corresponding query image shares are considered authentic. 
Then, any k participants use their trustworthy image shares to restore the secret shares 
and combine them to calculate the final secret message. The detailed steps of the overall 
restoration procedures are as follows.

Step 1: Decode two-dimensional query codes Ĉ1, Ĉ2, . . . , Ĉn from the corresponding 
query image shares  Î

′

1, Î
′

2, . . . , Î
′

n using decoder Dec and convert to 64-bit binary query 
codes ĉ1, ĉ2, . . . , ĉn.

Step 2: Authenticate the binary query codes with each other. If the number of similar 
codes exceeds the threshold, the corresponding image shares are considered authentic.

Step 3: Extract the noise-like secret share η̂1, η̂2, . . . , η̂k from any k of authentic image 
shares Î

′

1, Î
′

2, . . . , Î
′

k using extractor Ext.

(11)

I
′
1 = Enc(I1,C),

I
′
2 = Enc(I2,C),

...

I
′
n = Enc(In,C).

(12)

Ĉ1 = Dec

(

Î

′

1

)

,

Ĉ2 = Dec

(

Î

′

2

)

,

...

Ĉn = Dec

(

Î

′

n

)

.

(13)

η̂1 = Ext

(

Î

′

1

)

,

η̂2 = Ext

(

Î

′

2

)

,

...

η̂k = Ext

(

Î

′

k

)

.
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Step 4: De-modulate the noise-like secret share η̂1, η̂2, . . . , η̂k back to the R–S 
encoded secret shares RS

(

ŝ1

)

,RS
(

ŝ2

)

, . . . ,RS
(

ŝk

)

 , respectively.

Step 5: Recover the R–S encoded secret shares to ŝ1, ŝ2, . . . , ŝk and convert them to 
decimal ŝ1, ŝ2, . . . , ŝk.

Step 6: Combine the recovered secret shares ŝ1, ŝ2, . . . , ŝk to recalculate the secret 
message m̂ by Eqs. (7) and (8).

Step 7: Convert m̂ to binary m̂.

4 � Experimental results and discussion
We analyze the performance of our scheme from several viewpoints. First, the experi-
mental data for training the whole network are presented. Then, the accuracy of the 
decoder Dec and extractor Ext as well as the characteristics of the proposed scheme 
are analyzed. Finally, the sensitivity and robustness of the proposed scheme are tested 
and discussed. All experiments are implemented in PyTorch 1.7 on a PC with Intel® 
Core™ i9-9900 K CPU and accelerated with an NVIDIA RTX 3090 GPU.

4.1 � Dataset

We train the models on a face dataset “CelebA,” which contains 202,599 face images 
of 10,177 celebrity identities. By leveraging biological diversity, we can generate vari-
ous face images which can mimic the real ones. Samples of ground-truth images from 
“CelebA” dataset are shown in Fig. 4.

(14)
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(

ŝ1

(

j
))

=

{

0, if η̂1
(

j
)
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(
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)
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,
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ŝ2

(

j
))

=

{

0, if η̂2
(

j
)
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(

j
)

≥ 0
,

...
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(

ŝk

(

j
))

=
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(

j
)

< 0

1, if η̂k
(

j
)

≥ 0
.

Fig. 4  Samples of ground-truth images from “CelebA” dataset
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4.2 � Experimental setup

The internal training phase is trained on the face dataset, including training of the 
encoder Enc and decoder Dec. Enc can produce authentic image shares that are close 
to the image share. Besides, Dec is jointly trained to ensure the recoverability of the 
two-dimensional authentication code. Before feeding to Enc, the image is concatenated 
with the two-dimensional authentication code. The dataset of face images sized 64 × 64 
is applied as the ground truth. The loss functions for training Enc and Dec are shown 
in Eqs. (1) and (2). The learning rate of Enc is set to 0.001, the batch size is 8, and the 
applied epoch is 200.

By feeding the output of Enc to Dec, the expected output is the embedded two-dimen-
sional authentication code. In the training procedure of Dec, the learning rate is set to 
0.002 and halved every 50 epochs.

The training of the external phase includes training of the generator Gen, the discrimi-
nator Dis, and the extractor Ext. The learning rates of Gen and Dis are set to 0.001 and 
0.003, respectively, the batch size is 64, the dimension of the noise is 1× 100 , and the 
number of epochs is 200.

The objective of the extractor Ext is to recover the input noise-like secret share from 
the authentic image share generated by Enc. The entry value of the noise-like secret 
share ranges from − 1 to + 1 . As mentioned above, the 1-norm of the error vector is 
applied as the loss function. In the training procedure of Ext, the learning rate is set to 
0.0002 and the batch size is 64.

At the end of the internal and external training phases, Dec and Ext are jointly trained 
for 20 epochs. Besides, a noise layer is added during the training process, and then the 
pre-trained models are fine-tuned to increase the robustness against slight noise addi-
tion and color jittering. This noise layer randomly adds Gaussian noise with a mean of 
0 and a variance of 58.52 to the image share or reduces the contrast of the image share 
with a contrast parameter of 0.5.

Figure 5 shows some samples of the generated authentic image shares with a resolu-
tion of 64 × 64.

4.3 � Accuracy analysis

Each 8*8 sized block in the two-dimensional query code represents a 1-bit query code 
by pixel voting; if the number of black pixels is larger than the white pixels in it, this 

Fig. 5  Samples of image shares generated by encoder
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block represents 0, otherwise, it represents 1. The decoding accuracy of Dec is the key 
to authenticating the image shares, which is defined as

where Ham
(

a, b
)

 represents the Hamming distance between vectors a  and b  ; ||V|| rep-
resents the length of vector V . Figure  6 visualizes an example of the decoding ability 
of Dec, images from the left to right are two authentic image shares, the original two-
dimensional authentication code, and two two-dimensional query codes decoded by 
Dec from two authentic image shares, respectively. The numerical data in the figure rep-
resent the decoding accuracy of the query code. As shown in the figure, the decoding 
ability of Dec is almost perfect, which is sufficient for a practical application of a 64-bit 
authentication code.

In order to ensure the correct recalculating of the secret message m̂ , R-S code is 
applied in each binary secret share. R–S code is a subset of error correction codes that 
offer the following guarantee: Given a binary secret share size of length ℓs , R–S code 
adds check bits to the share and extends the length of the share to ℓ ( ℓ is set to 100 in 
the proposed scheme). Consequently, ℓ−ℓs

2  erroneous bits can be detected and recov-
ered. Thus, the extraction accuracy of Ext is directly related to the length of the R–S 
code, which can be defined as

We would want the number of incorrect bits to be less than or equal to the number 
of bits we can recover:

where

The higher the extraction accuracy, the less R–S code is needed. To know the effect 
of the gap value δ on Gen, we set δ from 0.1 to 0.9 and list the extraction accuracy and 
the number of bits required for the R–S code (i.e., ℓ− ℓs ) in Table 2. The extraction 
accuracy increases slightly with increasing gap value δ . This is because the larger the 
δ , the smaller the floating range of the randomly generated noise values.

(15)DecAcc =

(

1−
Ham

(

ci, ĉi
)

∣

∣

∣

∣ĉi

∣

∣

∣

∣

)

× 100%,

(16)ExtAcc =

(

1−
Ham

(

si, ŝi
)

∣

∣

∣

∣ŝi
∣

∣

∣

∣

)

× 100%.

(17)(1− ExtAcc)× ℓ ≤
ℓ− ℓs

2
,

(18)ℓs = ℓ× (2× ExtAcc − 1).

Fig. 6  A visual example of the recovery ability of decoder
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4.4 � Diversity analysis

Theoretically, the larger the δ , the lower the diversity of the generated images. To 
estimate and visualize the similarity between the distributions of real and generated 
images, we project the image samples onto a two-dimensional space via principal 
component analysis (PCA). The data points in Fig. 7 represent the first two principal 
components of real images and generated images with different δ settings ( δ = 0.1, 
0.3, 0.5, 0.7, and 0.9). The distribution of the real image has the widest spread, indi-
cating a wide variety of image content, while that of the generated images has a 
slightly narrower spread. As shown in the figure, the value of δ does not seem to have 
a significant effect on diversity. In addition, we do not feel much difference in diver-
sity when we directly observe the actual generated images with different δ settings. 
Therefore, δ is set to 0.5 in subsequent experiments because a larger value of δ can 
slightly improve the extraction accuracy of Ext and does not affect the diversity of 
generated image too much.

Table 2  Extraction accuracy under different δ

δ 0 0.1 0.3 0.5 0.7 0.9

Accuracy 87% 90% 91% 92% 92% 92%

R–S code (bits) 26 20 18 16 16 16

ℓs(bits) 74 80 82 84 84 84

Fig. 7  Data distribution projected onto the first two principal components



Page 17 of 23Gao et al. J Wireless Com Network        (2022) 2022:119 	

4.5 � Characteristics analysis

The proposed Stego-SS scheme aims to distribute a secret into n image shares while 
the pixel values of the carrier images remain unchanged. The embedding capacity of 
such schemes is much lower than the conventional secret sharing schemes based on 
pixel modification. Thus, we compare our performance with some state-of-the-art 
coverless steganography schemes [14, 22] and a similar Stego-SS scheme [23] in the 
same dataset. In our scheme, each image share is embedded with 100 bits of the R-S 
encoded secret share. As shown in Table  3, the proposed scheme and Hu’s scheme 
[22] have the largest embedding capacity because of the smaller carrier size and the 
larger amount of data embedded in a single carrier. As for the data extraction stage, 
both our scheme and the compared schemes use a CNN-based extractor to recover 
the embedded data. The extractor designed by us has a more complex network struc-
ture, which leads to slightly higher accuracy in extracting the embedded data than 
others [13, 22].

Table  4 shows the characteristics of the proposed schemes and the compared 
schemes. The secret sharing mechanism proposed in our scheme and Chen et al. [23] 
scheme can be applied to access control, but the coverless steganography schemes 
[13, 14, 17, 19, 22] can only be applied to convert communications, which represents 
a higher level of protection for the secret message in our and Chen et al.’s schemes. 
Also, both we and Chen et  al. [23] provide an authentication mechanism, which is 
missing in [13, 14, 17, 19, 22]. Compared to Chen et al.’s scheme [23], the (2, 2)-secret 
sharing mechanism proposed in their scheme does not generalize to the (k, n)-secret 
sharing mechanism, which means that there is no possibility of recovering the secret 
message when a participant encounters a cheater. Thus, the proposed scheme is more 
applicable than the compared schemes.

Table 3  Comparison of embedding capacity

Bold values represent the best data in the comparison term

Scheme Carrier size Relative capacity (bits/
pixel)

Extraction 
accuracy (%)

Ours (Gen + Enc/Dec + Ext) 64 × 64 × 3 0.0081 92
[23] (Gen/Ext) 256 × 256 × 3 0.0006 92
[22] (Gen/Ext) 64 × 64 × 3 0.0081 90

[13] (Gen/Ext) 128 × 128 × 3 0.0008 89

Table 4  Comparison of scheme characteristics

Scheme Steganographic 
methodology

Application Cheater 
detectability

Access 
threshold

Ours Generative Access control ✓ (k, n)

[23] Generative Access control ✓ (2, 2)

[22] Generative Convert communications – –

[13] Selective Convert communications – –

[14] Selective Convert communications – –

[17] Selective Convert communications – –

[19] Selective Convert communications – –
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4.6 � Payload analysis

In the proposed scheme, each decimal secret share si consists of the decimal secret 
message m and random positive integer α1,α2, . . . ,αk−1 To estimate the effective num-
ber of bits per pixel that can be reliably conveyed under different access thresholds for 
the (k, n)-secret sharing mechanism, we refer to the embedding rate as given by

where (64 ∗ 64 ∗ 3) represents the total pixels of each image share. ER is calculated 
based on the parameter k and the maximum value of α.

The maximum value of α is derived based on the choice of (k, n)-threshold and the 
maximum value of decimal secret message mmax . As mentioned above, the length of 
each binary secret share si is ℓs bits, and therefore the maximum value of the decimal 
secret share smax is 2ℓs − 1 , which implies

In this case, the maximum payload (1-bit secret message), the maximum decimal 
value of secret message mmax is 1. For (k, n)-threshold the maximum value of x is n . 
Finally, we derive αmax by

Thus, the dealer can only choose α in the range of [0, αmax ]. Suppose the selected 
range of α is [0, αup ], where αup ≤ αmax , the maximum length of ℓm can be calculated 
as

We list five cases ((1, 1), (2, 2), (2, 4), (3, 5), and (4, 6)) in Table 5. In these cases, the 
range of α is set to [0, 2048]. As shown in the table, the ER decreases as k increases. 
Therefore, the dealer can select suitable parameters depending on the actual situation.

(19)ER =
ℓm

k × (64 × 64 × 3)
(bits/pixel),

(20)m+ α1x + α2x
2 + · · · + αk−1x

k−1 ≤ 2ℓs − 1.

(21)

mmax + αmax × n+ αmax × n2 + · · · + αmax × nk−1 = 2ℓs − 1;

αmax ×
(

n+ n2 + · · ·nk−1
)

= 2ℓs − 1−mmax;

αmax ×
n
(

1− nk−1
)

1− n
= 2ℓs − 1−mmax;

αmax =
(2ℓs − 1−mmax)(1− n)

n
(

1− nk−1
) .

(22)ℓm = log2

(

2ℓs − 1−
(

αupn+ αupn
2 + · · · + αupn

k−1
))

.

Table 5  Embedding rate of different parameters

(k, n) (1, 1) (2, 2) (2, 4) (3, 5) (4, 6)

ℓm(bit) 84 83 83 83 83

αmax 0 9.6 × 1024 4.8 × 1024 6.4 × 1023 1.4 × 1022

Range of α [0, 2048] [0, 2048] [0, 2048] [0, 2048] [0, 2048]

ER (bits/pixel) 0.0068 0.0034 0.0034 0.0023 0.0017
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4.7 � Steganalysis

To evaluate the risk of the stego image being detected by the steganalyzer, three stega-
nalysis models are selected to test the stego image. In this experiment, steganographic 
images using least significant bit (LSB) replacement under 1 bpp payload are generated 
and used to train three steganalysis models (Xu-Net [10], Zhu-Net [32], and SR-Net 
[33]) to distinguish between the steganographic image and the real image. After that, 
100 stego images generated, respectively, in different schemes are tested by three mod-
els. The stego images in [13, 22, 23] are generated by the GANs (PGGAN, DCGAN, and 
StarGAN); the stego images obtained by LSB replacement are generated by encoding 
the cover image; the stego images obtained in the proposed scheme are generated by 
DCGAN and encoded by RCAN. The detection rate is utilized to detect the stegano-
graphic images under different schemes, which can be defined as

where ND represents the number of stego images being detected as the steganographic 
images and NT  represents the number of total stego images. We expect the detection 
rate to be close to 50%, which indicates that models cannot correctly verify the stego 
images, resulting in random guesses for the detection results. As shown in Table 6, three 
models have high detection rates when testing real steganographic images (under 1 
bpp payload and 3 bpp payload). However, in the proposed scheme and the compared 
schemes [13, 22, 23], images are generated using the neural network. When the neural 
network learns the data distribution of the real images, steganalysis models are unable to 
detect the authenticity of the stego images correctly, resulting in a detection rate floating 
around 50%. This experimental result shows that the images generated by the neural net-
work are difficult to arouse the suspicion of steganalyzers during transmission.

4.8 � Sensitivity and robustness analysis

In the proposed scheme, the two-dimensional authentication code is embedded into an 
image share to verify the identity of participants. In this section, we analyze the sensitiv-
ity and robustness of the proposed scheme.

Before extracting the secret message, the participants can authenticate each other by 
decoding their query image shares to two-dimensional query codes. So participants can-
not be cheaters. To know the authentication results under different conditions, we tam-
per with the image shares using five different ways (inauthentic image share replacement, 

(23)DetRate =
ND

NT
× 100%,

Table 6  Detection rates by three steganalysis models

Bold values represent the best data in the comparison term

Scheme Stego image Xu-Net (%) Zhu-Net (%) SR-Net (%)

Ours Gen(DCGAN) + Enc(RCAN) 52 51 53

[23] Gen(PGGAN) 54 52 55

[22] Gen(DCGAN) 54 49 49
[13] Gen(StarGAN) 47 48 54

LSB (1 bpp) Cover(“CelebA”) + Enc(LSB) 90 81 93

LSB (3 bpp) Cover(“CelebA”) + Enc(LSB) 96 86 97
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irrelevant image share replacement, patch removal, noise addition, and color jittering). An 
experimental result is shown in Fig. 8, where images in each row from the left to right are 
the authentic image share, the image share under various conditions, two two-dimensional 
query codes recovered by Dec from two image shares, and the authentication result, respec-
tively. Numerical data in the two-dimensional query code represent the decoding accuracy 
of Dec. In the authentication result, the mismatched query codes are displayed in red and 
numerical data represent the matching rate which can be defined as

where ci and cj represent the query codes of two participants.
The sensitivity for authentic image share and impersonated image share of the pro-

posed authentication mechanism is evaluated first. In our hypothesis, there are two 

(24)MatRate =

(

1−
Ham

(

ĉi, ĉj
)

∣

∣

∣

∣ĉi

∣

∣

∣

∣

)

× 100%,

Fig. 8  Examples of sensitivity and robustness against cheater and distortion
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kinds of impersonated image share: 1. inauthentic image share, which indicates that the 
image share is not embedded with the authentication code; 2. irrelevant image share, 
which indicates that the image share is embedded with the irrelevant authentication 
code. In Fig. 8 (a), when image shares are given by two honest participants, the matching 
rate of two query codes is 98%. When a cheater presents an impersonated image share 
to try to get other authentic image shares, the matching rate of two query codes is low 
(see Fig. 8b, c). These three results show that the proposed authentication mechanism is 
sensitive to impersonated image share. Without the knowledge about decoder Dec, the 
cheater has no clue to generate a trustworthy image share.

The authentication results under slight image distortion are listed in rows (d) to (f ), 
respectively. When the quality of image share is corrupted due to improper image pres-
ervation by participants (e.g., noise addition, patch removal, and color jittering), the 
extracted query codes can still obtain a high matching rate (around 90%) with each 
other, which reflects the robustness of our scheme. In general, the proposed authentica-
tion mechanism is highly sensitive to the impersonated image share and highly robust to 
the slight distortion of image share.

To further verify the robustness of the proposed scheme, we remove the adversar-
ial training phase of the training process and observe the decoding accuracy and data 
extraction accuracy. As shown in Table  7, without the adversarial training phase, the 
accuracy of the decoder and extractor is greatly affected by noise addition and color jit-
tering. But after the adversarial training, the decoder and extractor have the ability to 
resist slight noise addition and color jittering. However, the adversarial training phase 
slightly affects the extraction accuracy of the extractor under a noise-free condition, so 
the dealer can decide whether the adversarial training phase is necessary according to 
the actual situation.

5 � Conclusions
In this paper, we propose a novel steganographic secret sharing via AI-generated pho-
torealistic images. First, we use the generator and encoder to encode the secret shares 
into the authentic image shares. After that, the authentic image shares are distributed 
to n participants. Finally, participants can verify each other and any k of authentic 
participants can collaborate to restore the secret message. The proposed scheme suc-
cessfully applies the concept of coverless image steganography to implement an authen-
ticable Stego-SS. Experimental results show that the pre-trained decoder and extractor 
can effectively restore the authentication code and the secret share. Also, sensitivity and 
robustness analysis confirm that the proposed scheme is resistant to various tampering 
attacks. In comparison with the state-of-the-art schemes, the embedding capacity of our 

Table 7  Ablation study for adversarial training phase

Decoding accuracy Extraction accuracy

Adversarial training phase ✓ × ✓ ×
Noise addition 89% 67% 86% 63%

Color jittering 92% 65% 89% 87%

Noise-free condition 96% 96% 89% 92%
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scheme outperforms other schemes. Also, the (k, n)-secret sharing and the authentica-
tion mechanism proposed in our scheme are more robust than that of other schemes. 
However, the extractor cannot recover 100% of the secret share embedded in a single 
image share, which leads us to sacrifice the embedding rate of the secret message in 
order to add the error correction code in the secret share. Thus, our future work will 
focus on designing better algorithms to improve the extraction accuracy of the proposed 
scheme.
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