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Abstract 

With the rapid development of the information age, software vulnerabilities have 
threatened the safety of communication and mobile network, and research on vulner-
ability repair is urgent. Different from the existing machine learning-based approaches, 
we propose VulRep, a vulnerability repair approach based on vulnerability introduction, 
which combines empirical research findings on vulnerability inducing and vulner-
ability fixing commit with machine learning approaches for vulnerability repair. Firstly, 
we construct the vulnerability introduction and repair dataset, and generate the AST 
tree for the code of inducing commit and fixing commit to form a sequence after 
abstraction processing, and input it into the Transformer model to generate a recom-
mendation list through beam search. After filling in the abstracted code, it is combined 
with the rules defined by empirical research findings, and the final patch is obtained 
after verification. Experimental results show that VulRep can improve the performance 
of repairing vulnerabilities, which illustrates the effectiveness of combined empirical 
research findings. In addition, we found that our approach is more suitable for repair-
ing type CWE-119 (Improper Restriction of Operations within the Bounds of a Memory 
Buffer) vulnerabilities and can perform vulnerability repair better.
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1 Introduction
With the development of the information age, software vulnerabilities have become 
one of the major threats to software security, which exist covertly at all stages of the 
software life cycle [1–4]. According to statistics, the number of vulnerability reports in 
the public security database CVE1 has skyrocketed to nearly 190,000 [5]. This has led to 
an increasing workload for software developers to manually fix vulnerabilities, which is 
tedious, time-consuming and error-prone [6–10]. Therefore, many existing researches 
have explored and analyzed vulnerabilities [11–15], where automatic vulnerability repair 
remains an important topic, which is of great importance for software maintenance and 
development.

Automatic vulnerability repair (AVR) is an approach of automatically generating 
fixing codes to resolve software vulnerabilities, without human intervention [16–18]. 
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Currently, mainstream AVR approaches usually locate the erroneous elements (files, 
methods, statements) in the vulnerable program firstly, then generate and rank the 
repair patches using patch generation techniques, and finally recommend the veri-
fied correct patches to the developers [19]. Existing AVR techniques are mainly based 
on heuristic search, statistical analysis, manual fixing templates, and semantic con-
straints [20]. AVR approaches based on heuristic search [17, 21–23] are the most 
widely researched class of approaches by far, and it has strong generality. However, 
both this approach and the statistical analysis-based AVR approach [24–27] require 
collecting a large number of patches in open-source projects and learning their 
repair patterns as a way to design repair strategies. As a result, such approaches have 
huge requirements for patch search space, and this only works well if similar vulner-
ability fixing code exists in the search space. This makes the search less efficient and 
increases the time cost of remediation. In addition, AVR approaches based on man-
ual fixing templates [28, 29] and semantic constraints [30, 31] guide patch generation 
based on manually defined templates or correct statutes of the program by analyzing 
the patch code. However, in the actual fix process, the code repair or change opera-
tion for a class of vulnerabilities is not limited to one fixing template. Therefore, the 
above two approaches lack flexibility. Moreover, the research on vulnerability fixing 
templates or protocols is often limited by the available data and lacks comprehensive 
investigation, making it difficult to perform well when applied to vulnerability fixing.

For the above problems, we propose a vulnerability fixing approach, VulRep, based 
on vulnerability inducing commits and fixing commits. Vulnerability inducing means 
that when a developer fixes the first vulnerability, the submitted code induces the sec-
ond vulnerability. Moreover, a commit that inducing a new vulnerability while fix-
ing the previous vulnerability is called a vulnerability inducing commit (vul-inducing 
commit), while a commit that fixes the second vulnerability is called a vulnerability 
fixing commit (vul-fixing commit). In the process of fixing existing vulnerabilities, new 
vulnerabilities are inevitably induced. We collected 453 vulnerabilities from the CVE 
database, and all of these data induced another vulnerability in the process of fixing 
vulnerabilities. In addition, existing research [32] shows that most newly induced vul-
nerabilities have aggravated in severity, indicating that vulnerability inducing exists 
and cannot be ignored. However, clarifying the reason for the inducing of the vul-
nerability can be effective in avoiding the creation of the vulnerability [33, 34], thus 
pointing the way of a fix. Therefore, VulRep takes the vul-inducing commit as a start-
ing point to analyze the fix composition in the vul-inducing commit and the vul-fixing 
commit. Fix compositions are variable names, method names, and value codes that 
appear in a normalized and abstracted form when the change operation of the state-
ment to be fixed is known. The proposed approach learns the process of vulnerability 
fixing so as to generate a fixing template for the vulnerability, after which the relation-
ship between the inducing and the fixing is used to supplement the fix compositions 
(code) and finally complete the vulnerability fixing. This AVR approach based on vul-
nerability inducing not only combines the machine learning approach, but also incor-
porates the findings from empirical studies to compensate for the deficiencies of both. 
The experimental results show that our approach can effectively repair the induced 
vulnerabilities. The main contributions of this paper are as follows:
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• We combine empirical research findings for vul-inducing commits with machine 
learning methods, to propose a new vulnerability repair approach based on vulner-
ability introduction, VulRep.

• We explored the relationship between vulnerability introduction and fixing and 
obtained two findings, to better utilize the code in vul-fixing commits for vulnerabil-
ity repair.

• We collected vulnerabilities introduced due to commits in CVE as the test dataset, 
containing a total of 116 pairs of vul-inducing and vul-fixing commits. Experiments 
based on this dataset demonstrated that the proposed approach combining empirical 
analysis of vulnerability data is effective.

2  Preliminaries and motivation
2.1  Preliminaries on models

In our proposed vulnerability repair approach, we use the following models and 
algorithms:

Seq2seq model [35–38] consists of three parts: an encoder, a decoder, and a fixed-size 
intermediate vector representation that connects the two. In the encoder (e.g., BiLSTM 
[39]), the code sequence is converted into a vector through the embedding layer and 
input into an RNN structure, and the overall representation vector is obtained after cal-
culation. In the decoder, each step is to predict the output word of the next state based 
on the current correct output word and the state of the previous step. In bug repair, 
DeepFix [24] proposes an end-to-end solution to grammatical bugs in some natural 
languages, which can fix multiple bugs in one program without relying on any external 
tools. SequenceR [25] uses Seq2seq for bug repair that address vocabulary limitations 
in the code. Therefore, the proposed VulRep approach uses an end-to-end technique 
SequenceR to perform vulnerability repair with the AST of the method involved in the 
vul-fixing commit as input.

Transformer [40] is an attention-based network architecture that completely abandons 
recursion and convolution. Transformer consists of encoder and decoder. Both encoder 
and decoder contain six blocks. Also take the translation model as an example. When 
performing a translation task, first obtain the representation vector W of each word in 
the input sentence (the embedding of the representation vector of the word is added to 
the embedding of the word position), and input the representation vector matrix of the 
word into the code. In the encoder, the encoding information of all words in a sentence 
is obtained after passing through six encoder blocks. In bug fixing, TranS3 [41] encodes 
collected code snippets based on Transformer and Transformer’s encoder and decodes 
a given code snippet to generate its annotations. Tree-LSTM [42] devised a generalized 
tree-dependent attention framework. What is worth noting in Transformer is the atten-
tion mechanism it uses. It can effectively alleviate the problem of limited computing 
power of the model. When a bunch of information carriers appear, how to pay more 
attention to useful information, based on which an attention mechanism is proposed. 
Therefore, we chose Transformer as the method of learning vulnerability code repair.

Beam search [43, 44] is an algorithm to find the optimal solution in a rela-
tively limited search space with less cost. Suppose the input sequence is X, the 
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output sequence is Y =
(

y1, y2, . . . , yn
)

 , the probability distribution of decoding is: 
P(Y | X) = P y1 | X P y1 | y2,X . . .P(ym|y1 . . .m− 1|X) . When decoding, if all possi-
ble options are listed, it will lead to an explosion of the space, greedy search is to choose 
the order of the highest probability each time output. Beam search is a compromise 
method between exhaustive method and greedy search, that is, only the first k possible 
results are retained in each step of decoding.

2.2  Motivation

Bo et  al. [32] study the specific correlation between vul-inducing and vul-fixing com-
mits. Research has shown that fixing commits that induce a new vulnerability are usually 
caused by incorrect fixes, incomplete fixes, or a combination of both. In order to per-
form more accurate code filling and more efficient code search, we continue to explore 
the relationship between vul-inducing and vul-fixing commits on our dataset based on 
the research results of Bo et al. [32] and obtain the following three observations.

Observation 1 We collected a total of 116 pairs of vul-inducing and vul-fixing com-
mits, and the specific collection process is introduced in Sect. 4.1. Based on this dataset, 
we conduct the statistical analysis on the method names and variable names in the state-
ments involved in the vul-inducing commits. It can be found that 74.1% of the method 
names and variable names from vul-inducing commits could be matched in the modi-
fied statement of the vul-fixing commits. In the process of learning about vulnerabil-
ity code fixes, the corresponding fix components need to be generated, so we further 
explored the code in the vul-fixing commits for better exploitation. We split the method 
names and variable names in the vul-inducing commits, using different splitting princi-
ples (Camelcase and PASCAL nomenclature) as the dataset is multilingual and contains 
both C/C++ and java languages. The C/C++ language is split using “_” or by symbols. 
The Java language, on the other hand, can be split by words, for example, the getNext-
Block() method can be seen as a variable name consisting of three words, and constants 
in java are split by upper case letters. To unify the results of the exploration, as shown 
in Table 1, the tag length of each variable is regarded as divided into several parts, the 
example shows the name with length 1-3, and so on.

Observation 2 We also counted the percentage of fix components at different lengths 
as a percentage of fix components in vul-fixing commits. The results show that 50.0% of 
the fix components tagged with length 1 can be inferred from the introduction of vul-
nerability in the commit, while 31.9% and 20.7% of the fix components with lengths 2 
and 3, respectively. For example, for CVE-2022-41918,2 the description statement in its 

Table 1 Examples of tag lengths for variables and methods

Length of tag C/C++ language Java language

1 Put() Put()

2 mutex_lock() getName()

3 rcu_read_unlock() getNextBlock()

2 https:// cve. mitre. org/ cgi- bin/ cvena me. cgi? name= CVE- 2022- 41918.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-41918
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vul-fixing commit contains “Data Streams,” which corresponds to the repair component 
“DATA_STREAM” of its code. This leads to the second observation that there are fix 
components that can be inferred from vul-inducing commits at different mark lengths. 
Therefore, VulRep generates vulnerability patches by making code recommendations 
based on the different vul-inducing commits when filling in the abstract fix components.

Observation 3 We counted the changes in operations between the vulnerability intro-
duction commit and the fixing commit, including the coverage of the same operation 
and the opposite operation. This means whether the modified statement in the introduc-
tion commit is the opposite of or the same as the modified statement in the fixing com-
mit, e.g., the opposite of an insert statement is a delete, and the opposite of an update 
operation is no change. After the comparison, we found that the coverage of the opposite 
operation was about 59.5%, and the same operation was 35.3%. Thus, the third finding 
was obtained that some vulnerability fixes can be inferred from vulnerability introduc-
tion, and some vulnerabilities can be fixed by restoring the operations in the vul-induc-
ing commit. Taking CVE-2017-63533 as an example, this vulnerability exists because of 
an incorrect fix for CVE-2017-5986.4 as shown in Fig. 1, (a) from the vul-inducing com-
mit and (b) is the change in the vul-fixing commit, the if statement body added in the 
vul-inducing commit is removed in the vul-fixing commit, thus achieving the purpose of 
repairing the vulnerability, visually demonstrating the effectiveness of the finding.

From the above three observations, it can be seen that when the vulnerability is 
repaired, most of the fix components in the vul-fixing commit can be obtained from 
the vul-inducing commit, and the opposite operation in the commit is helpful to the 

Fig. 1 Vul-inducing and Vul-fixing commits of CVE-2017-6353

3 https:// cve. mitre. org/ cgi- bin/ cvena me. cgi? name= CVE- 2017- 6353.
4 https:// cve. mitre. org/ cgi- bin/ cvena me. cgi? name= CVE- 2017- 5986.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-6353
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-5986
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vulnerability repair. Based on the above observations, we propose VulRep, a vulnerability 
repair approach based on vulnerability introduction.

3  Methods
In this paper, we propose VulRep, a vulnerability fixing technique based on vul-inducing 
and vul-fixing commits, the overall framework of which is shown in Fig. 2. Firstly, a vul-
nerability inducing and fixing pairs dataset is constructed, a syntax tree AST is gener-
ated from the code in the inducing and fixing commits, and a difference operation is 
performed on them. Next, the fix components in the new syntax tree are abstracted and 
the Seq2Seq model is trained to obtain a token sequence. Then, the token sequences 
from the training set are fed into the Transformer model for training, the test set is con-
verted into token sequences and fed into the trained Transformer model, and the list of 
predicted results is obtained by beam search. Finally, the abstract variable and method 
names are filled in, modified using the rules found through observations, and syntax 
checked to obtain the final recommended patches. We describe the approach in more 
details below.

3.1  Vulnerability code tree generation

This section describes the process of generating a vulnerability tree. After constructing 
the vulnerability inducing and fixing dataset, we processed the code before and after 
the vulnerability fixes were submitted in the dataset. Firstly, annotations and blank lines 
were removed from the code files, and the methods involved in the faulty code state-
ments were generated as abstract syntax trees AST’s. Secondly, the differences between 
the two were manipulated, i.e., the differences were used to obtain syntax trees AST’s 
that were closely related to the vulnerabilities. It is important to note that this section 
chooses to represent the code as an abstract syntax tree, rather than representing the 
semantics by adding data flow and control flow statements, as is currently common. On 
the one hand, AST is the most common abstract representation of source code syntac-
tic structures, and it is also more useful for obtaining differences between two pieces 
of code. On the other hand, Bo et al. [32] explored vulnerability introduction commits 
and fixing commits and calculated the coverage between the data flow and control flow 
of a vulnerability introduction commit and the modified statements in a fixing commit. 
Their results showed that the coverage was low and of little relevance to the vulnerability 

Fig. 2 Overview of our approach VulRep 
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remediation effort. Therefore, in this approach, we only use abstract syntax trees to rep-
resent the contextual structure of the code.

3.2  Code abstraction and serialization

After representing the vulnerability code as an abstract syntax tree, VulRep will abstract 
the code tree due to the fact that when learning the repair of the vulnerability code later, 
the Transformer model takes more into account the probability distribution of a certain 
word, which forms the vocabulary, in its output. However, when the vulnerable code is 
put into the model for training, it is prone to vocabulary explosion problems due to the 
different and large number of variable and method names in the code, naming rules and 
limitations of the programming language. Therefore, this section abstracts the AST in 
order to reduce the vocabulary space. As shown in Fig. 3, when variable names, method 
names and values appear in the code, they are marked abstractly in order, respectively, as 
var 1...var n, fun 1....fun n and num 1... num n. We then use the Seq2Seq model to learn 
the abstracted syntax tree and serialize the token sequences required to characterize the 
Transformer model.

3.3  Prediction model training

After abstraction and serialization of the vulnerability code tree, this method feeds 
Token sequences into the Transformer model to learn code repair and use its attention 
mechanism to alleviate the long dependency problem [26, 40]. OpenAI5 and DeepMind6 
have used it extensively in their language models [26]. Unlike recurrent neural network 
(RNN) [45] or long short-term memory (LSTM) [46] models, Transformer relies entirely 
on attention mechanisms to map the global dependencies between input and output 
data, and thus the model has better translation results. Transformer consists of two 

Fig. 3 Example of abstraction process

5 https:// openai. com/.
6 https:// www. deepm ind. com/.

https://openai.com/
https://www.deepmind.com/
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main components: an encoder and a decoder that are connected in series. The structure 
of the encoder–decoder is widely used in the NMT model, where the encoder maps a 
sequence of symbolic representations of the input (x1, . . . , xn) to an embedded represen-
tation z = (z1, . . . , zn) , which contains information about the interrelated parts of the 
input. Given z, the decoder then uses the merged contextual information to generate the 
output sequence. At each step, the model uses the previously generated symbols as addi-
tional input when generating the next sequence. The Transformer follows this overall 
architecture, using stacked self-attentive layers and point-by-point fully connected layers 
for the encoders and decoders. Each encoder and decoder uses an attention mechanism 
to weigh the connections among each input and refer to that information to generate the 
output. The purpose of the attention mechanism used is to merge the context into the 
sequence using a set of encodings. The multi-headed attention used in the Transformer 
implements multiple attention mechanisms in parallel and then merges the resultant 
encodings into a single process. After generating a list of predicted results, we use the 
beam search algorithm to select the appropriate one. The hyperparameter beam width 
(B) in beam search indicates the top k results of the ranked sequence are selected. The 
hyperparameter B in beam search is set to 3 in this method in order to maximize perfor-
mance and save cost.

3.4  Fixed patch generation

The output of Transformer differs from the actual compilable code because of the 
abstraction carried out when processing the data. In this section, the predicted list is 
abstracted and populated to form the patch after the code has been populated in the 
order of the dictionary correspondence tokens. However, it is clear from the observa-
tions in Sect. 2 that not all vocabularies can be fully represented for the code required 
in the patch. A vocabulary that is too large tends to result in an explosion of vocabulary 
space, and conversely, a vocabulary that is too small results in more missing codes and 
therefore makes it difficult to add the correct repair components. Inspired by the obser-
vations, we summarize the specific rules and apply them to the modification of the filled 
abstract code as follows.

RULE: When the statement in the generated patch is the opposite of or the same as 
the statement in the vul-inducing commit, update the variable and method names 
in the patch to the corresponding ones in the vul-inducing commit.

Using this rule, the generated patch is re-modified to obtain the final vulnerability repair 
patch. This step is a good combination of the relationship between vul-inducing and 
vul-fixing commits, which is more conducive to the repair of vulnerabilities. During this 
process, if the patch generated by the Transformer model can pass the syntax check, 
then this rule will not be used to modify the patch; if it fails, it will be modified according 
to the rules defined above.

3.5  Fixed patch verification

In this section, the verification of vulnerability recommended patches will be performed 
manually. Since the vulnerability database CVE does not provide complete vulnerabil-
ity data, the dataset does not contain test cases related to vulnerabilities. Therefore, we 
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use the corresponding fixing code in the CVE database as the ground truth and employ 
the method in [44] to manually check the correctness of the patches generated by Vul-
Rep. That is, it checks whether the final patch code provided by the model has semantic 
equivalence with the vulnerability fixing code submitted in the dataset. In order to bet-
ter improve the reliability of this step, two graduate students who study this field con-
duct inspections separately, and the correctness of this patch will be recognized only 
when the inspections pass. At the same time, we carried out the consistency evaluation 
according to the evaluation standard of Cohen’s Kappa coefficient. For the patch to be 
verified, Cohen’s Kappa coefficient is greater than 80%, that is, the consistency strength 
is “Almost Perfect.” Therefore, it can be considered that there is almost a perfect agree-
ment between the two participants. Until this point, we recommend approved patches 
to developers to fix vulnerabilities. At the same time, the Cohen’s Kappa [47] consistency 
check was carried out, and the result was 0.95, which is a high consistency. Until this 
point, we recommend approved patches to developers to fix vulnerabilities.

4  Results and discussion
To verify the validity of the proposed approach VulRep, we constructed the correspond-
ing dataset and validated it with two experimental questions. We will describe them in 
detail below.

4.1  Dataset

In this approach, we used a total of two datasets for training and testing:
(1) Training dataset  The training data was selected as the Transformer model was 

used to learn the code changes committed by the vulnerability fixes. The training data 
only requires the code before and after the fix, not the commit description of the vulner-
ability. Therefore, the publicly available dataset Big-Vul [48] was chosen as our training 
data, containing a total of 3754 vulnerability data.

(2) Testing dataset  Bo et al. [32] collected 71 pairs of commits that induced a vulner-
ability due to an incorrect fix, an incomplete fix, or neither an incorrect nor an incom-
plete fix. However, our approach is not limited to these types of data, we also focus on 
vulnerabilities that induced by fixing commits. For example, the description of CVE-
2015-62507 is: “simple-php-captcha before commit 9d65a945029c7be7bb6bc893759e74
c5636be694 allows remote attackers to automatically generate the captcha response by 
running the same code on the client-side.” It indicates that this vulnerability is caused 
by a commit. The reference links in the vulnerability report provide code commit data 
in GitHub or other fixing links. We also use some developer comments to determine if 
a commit is a fix for a vulnerability. Developers who fix vulnerabilities will leave com-
ments on GitHub or other sites such as Red Hat Bugzilla8 that contain information such 
as a commit that introduces or fixes a vulnerability, which may be considered a vul-
inducing commit. Based on this approach, a total of 45 pairs of vulnerability introduc-
tions and fixes were added, resulting in 116 pairs of vul-inducing and vul-fixing commits 
as the testing dataset for the experiment.

7 https:// cve. mitre. org/ cgi- bin/ cvena me. cgi? name= CVE- 2015- 6250.
8 https:// bugzi lla. redhat. com/.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-6250
https://bugzilla.redhat.com/
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4.2  Research questions

We design experiments to verify the effectiveness of the proposed approach and explore 
the performance of the approach on different types of vulnerabilities.

RQ1 Compared with the machine learning generated remediation code, how effective 
is the approach VulRep proposed in this paper?

In most of the existing studies, the generation of vulnerability repair code has been 
implemented with the help of machine learning approaches. However, our proposed 
approach, VulRep, combines the generation of fixing codes using the Transformer with 
empirical findings to produce the final fixing code. Therefore, we use experiment to 
investigate whether the findings from empirical research can be useful for vulnerability 
remediation. The experiments compares VulRep with patch generation using machine 
learning (Transformer) alone to see if it yields more effective patches for vulnerability 
repair.

RQ2 Which type of vulnerabilities does VulRep fix best?

After validating the effectiveness of the proposed approach, we also explored which 
type of vulnerabilities VulRep is better at fixing. On the one hand, some studies will 
focus on the types of vulnerabilities to fix, such as pointer exceptions, missing specified 
encoding and other vulnerability types. On the other hand, a statistical study by Bo et al. 
[32] shows that the logic error type accounts for 66% of the vulnerability data, so vulner-
abilities may be relatively clustered in the same type. Therefore, in RQ2, we investigate 
the correctness of VulRep’s fix patches for different vulnerability types. For the types of 
vulnerabilities, we chose the CWE (Common Weakness Enumeration) standard,9 which 
is a classification system for software defects and vulnerabilities [26] and can cover most 
types of vulnerabilities.

4.3  Evaluation metrics

Since in the process of vulnerability repair, it is necessary to judge whether a generated 
patch actually fixes the vulnerability or not. The patching situation contains complete 
fixes, partial fixes and incorrect fixes. Therefore, for patches generated using VulRep for 
vulnerability repair, two metrics are used in this chapter to evaluate the capability and 
quality of the generated patches, Precision and Recall, which are calculated as follows:

where CF denotes the number of completely fixed vulnerabilities, PF denotes the 
number of partially fixed vulnerabilities, IF denotes the number of incorrectly fixed 

(1)Precision =
CF

CF+ PF

(2)Recall =
CF

CF+ PF+ IF

9 https:// cwe. mitre. org/.

https://cwe.mitre.org/
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vulnerabilities, and the sum of the three denotes the total number of vulnerability 
samples.

4.4  Experiment results

In this section, we observe, analyze and summarize the relevant experimental results 
for two research questions designed.

RQ1 Effectiveness of VulRep

This paper proposes a new repair approach VulRep, that is, learning the difference 
between the abstract syntax trees of inducing commit and fixing commit, the code in 
inducing code is used for abstract reduction when generating the patch sequence. 
Table 2 shows the comparison results of VulRep and Transformer. The Precision of Vul-
Rep is 56.5%, and the Precision of the machine learning approach (Transformer) is 55%. 
The former fixes one more vulnerability than the latter. The Recall of VulRep and Trans-
former are 11.2% and 9.48%, respectively. It can be concluded that this chapter proposes 
one more partially repaired vulnerability than the machine learning method. This shows 
that only using the findings of empirical research can also play a role in repairing some 
sentences. From a macro-repair perspective, the approach VulRep proposed in this 
paper makes up for the shortcomings of machine learning repair approaches to a cer-
tain extent, and also proves that the approach of combining vul-inducing commits with 
machine learning approaches to repair vulnerabilities is effective.

The comparison of the two approaches proves the validity of the rule defined by 
the empirical research findings for the vulnerability repair and also verifies the cor-
rectness of the empirical research in Sect.  2. Although the current mainstream 
approaches are all based on machine learning, it turns out that empirical analysis of 

Table 2 VulRep versus Transformer vulnerability repair performance

Approach Precision Recall

VulFix 13/23 (56.5%) 13/116 (11.2%)

Transformer 11/20 (55.0%) 11/116 (9.48%)

Table 3 Type and number of vulnerabilities in testing dataset

NO. CWE-ID Vul NO. CWE-ID Vul NO. CWE-ID Vul

1 CWE-119 13 7 CWE-369 7 13 CWE-125 6

2 CWE-476 11 8 CWE-79 6 14 CWE-787 5

3 CWE-199 8 9 CWE-200 6 15 CWE-399 5

4 CWE-199 5 10 CWE-189 5 16 CWE-400 4

5 CWE-199 4 11 CWE-416 3 17 CWE-415 3

6 CWE-199 2 12 CWE-120 2 18 CWE-264 3
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vulnerability data is equally important and cannot be ignored, and the rich informa-
tion contained in vulnerability submissions is also helpful for vulnerability repair.

Summary of RQ1 Compared to Transformer, VulRep, which is based on vulnerability 
introduction, shows better performance in vulnerability repair.

RQ2 Performance of VulRep on different types

First, we counted the CWE types of vulnerabilities in the test set, and the results are 
shown in Table 3. It is important to note that a vulnerability may belong to multiple CWE 
types. In this table, we have omitted the CWE type with a count of 1 and the 11 vulnerabili-
ties with type none.

From the results of the RQ1, it can be seen that a total of 13 of the fixes obtained through 
VulRep are completely correct. We examined the types of these 13 vulnerabilities, and the 
results are shown in Table 4. The experiments show that VulRep performs best in the case 
of CWE-119 (Improper Restriction of Operations within the Bounds of a Memory Buffer), 
fixing six vulnerabilities of the relevant type, followed by three fixes for vulnerabilities of 
CWE-476 (NULL Pointer Dereference). There may be two reasons for this. On the one 
hand, CWE-119 type vulnerabilities usually involve data boundary or data type checks, etc. 
These code modifications are usually less and relatively easy. On the other hand, the cor-
responding data that needs to be modified is usually mentioned in the commit, and the 
code vocabulary involved in this type of vulnerability is also relatively concentrated, such as 
length and size. For example, the “body size” in the commit can be mapped to the “body_
size” in the repair code. The rules used by VulRep can use this correspondence to assist in 
the repair, so it has a better performance on CWE-119 types excellent. Moreover, it also 
fixed a CWE-200 (Exposure of Sensitive Information to an Unauthorized Actor) of vulner-
ability. Three of the vulnerabilities fixed were of type none and are therefore omitted from 
the table. By looking at the actual patch generation data for the vulnerabilities, we find that 
indeed, as observed in the empirical study in Sect. 2, the introduction of the commit state-
ment for the opposite operation is of importance. Moreover, the experimental results not 
only prove the validity of the empirical findings, but also demonstrate that the relation-
ship between vul-inducing and vul-fixing commits can indeed assist in vulnerability repair 
effectively.

Summary of RQ2 VulRep is best at fixing vulnerabilities of type CWE-119 (Improper 
Restriction of Operations within the Bounds of a Memory Buffer).

Table 4 Types of vulnerabilities fixed by VulRep 

Top CWE-ID Vulnerabilities

Top1 CWE-119 6

Top2 CWE-476 3

Top3 CWE-200 1
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4.5  Threads to validity

Our findings of experiments are based on the Precision and Recall metrics. Other evalu-
ation metrics may yield different results, these metrics have been widely used to vulner-
ability repair task.

Internal threats (1) The empirical data used in this paper is relatively small. Although 
the effectiveness of the summarized repair rules has been demonstrated through experi-
ments, there are some rules being missing inevitably. (2) The proposed approach first 
generates a repair patch based on machine learning, but it cannot be sure whether it 
has learned the correct repair pattern. Our approach does not use predefined patterns, 
which makes fixing certain types of vulnerabilities less effective. (3) After getting the vul-
nerability patch, this paper uses manual verification to check the correctness, which may 
be subject to certain degree. However, we verify the validity of the test by calculating 
Cohen’s Kappa coefficient to reduce the threat.

External threats (1) During the evaluation of the experiments, we only collected 116 
pairs of data with the introduction of vulnerabilities as a testing dataset. We will expand 
the dataset in the future to meet the new needs of developers. (2) We use the dataset 
Big-Vul to learn vulnerability code fixes, the number and types of which are still limited, 
and it may be difficult to meet the training requirements of the model (e.g., the size and 
number of types of dataset Big-Vul) are not large enough, resulting in the model is dif-
ficult to achieve fitting. In the future, we will try to manually expand Big-Vul to achieve 
better fitting.

5  Related work
In recent years, a large number of automatic repair techniques for program defects have 
been proposed, which can be roughly divided into four categories: automatic repair 
techniques based on heuristic search, statistical analysis, manual fixing templates, and 
semantic constraints [20]. Zhang et  al. [49] applied the idea of search-based program 
repair to the field of heterogeneous computing and proposed HeteroGen, which takes 
C/C++ code as input and automatically generates a version of HLS with test behav-
ior retention and better performance. Li et al. [50] designed a novel fault location (FL) 
technique for multi-block, multi-statement repair that combines traditional spectrum-
based (SB) FL with deep learning and data flow analysis. Chi et al. [26] provided a novel 
approach called SeqTrans to exploit historical vulnerability fixes to provide suggestions 
and automatically fix the source code. It leveraged data-flow dependencies to construct 
code sequences and feed them into the state-of-the-art transformer model, to capture 
the contextual information around the vulnerable code. Liu et  al. [51] constructed an 
APR tool, TBar, by surveying the literature to collect, summarize and label frequently 
used repair patterns, which integrates a rich set of repair templates from previous 
authors, and experimental results show that it can correctly repair a wider range of 
bugs. Ke et al. [52] proposed SearchRepair, a defect repair technique based on semantic 
search of code, and built a database of code fragments. The above methods need to col-
lect a large number of patches to learn their repair modes. Chen et al. [27] proposed an 
approach for repairing security vulnerabilities named VRepair which is based on trans-
fer learning. VRepair is first trained on a large bug fix corpus and is then tuned on a 
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vulnerability fix dataset, which is an order of magnitude smaller. This approach allevi-
ates the problem of dataset scarcity to some extent. However, existing approaches guide 
patch generation by analyzing the patch code and manually defining templates or pro-
gram rules, but this is often incomplete and lacks generalizability and flexibility. Differ-
ent from them, VulRep combine the vul-inducing commit with the machine learning 
method through the empirical research on the vulnerability introduction and correct the 
generated code according to the rules to obtain the final patch. The approach is not lim-
ited to a certain type of vulnerability and can be more effectively tailored to the charac-
teristics of the vulnerability itself, making it widely available and more flexible.

6  Conclusion
In this paper, the empirical research findings based on vulnerability introduction 
are combined with machine learning to perform vulnerability repair, and a vulner-
ability repair approach based on vulnerability introduction (VulRep) is proposed. This 
approach processes the vulnerability repair submission as a sequence, then inputs it 
into the Transformer model, and generates a recommendation list through beam search, 
abstracts and fills the abstract code in the recommendation list, and combines it with 
the rules defined by empirical research findings to get the final patch. The experimental 
results show that VulRep can effectively improve the effect of repairing the vulnerability, 
and it performs best in the inappropriate operation restriction (CWE-119) within the 
scope of the vulnerability type memory buffer, and completes the repair work better.

In the future, we will further expand the existing dataset to meet follow-up research. 
Furthermore, we will consider automatically extracting the content of vulnerability text 
to assist machine learning methods in vulnerability repair.
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