
Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creat iveco mmons. org/ licen ses/ by/4. 0/.

RESEARCH

Wei et al. J Wireless Com Network (2023) 2023:34
https://doi.org/10.1186/s13638-023-02242-7

EURASIP Journal on Wireless
Communications and Networking

VulRep: vulnerability repair based
on inducing commits and fixing commits
Ying Wei1, Lili Bo1,2*, Xiaoxue Wu1, Yue Li1, Zhenlei Ye1, Xiaobing Sun1,3 and Bin Li1

Abstract

With the rapid development of the information age, software vulnerabilities have
threatened the safety of communication and mobile network, and research on vulner-
ability repair is urgent. Different from the existing machine learning-based approaches,
we propose VulRep, a vulnerability repair approach based on vulnerability introduction,
which combines empirical research findings on vulnerability inducing and vulner-
ability fixing commit with machine learning approaches for vulnerability repair. Firstly,
we construct the vulnerability introduction and repair dataset, and generate the AST
tree for the code of inducing commit and fixing commit to form a sequence after
abstraction processing, and input it into the Transformer model to generate a recom-
mendation list through beam search. After filling in the abstracted code, it is combined
with the rules defined by empirical research findings, and the final patch is obtained
after verification. Experimental results show that VulRep can improve the performance
of repairing vulnerabilities, which illustrates the effectiveness of combined empirical
research findings. In addition, we found that our approach is more suitable for repair-
ing type CWE-119 (Improper Restriction of Operations within the Bounds of a Memory
Buffer) vulnerabilities and can perform vulnerability repair better.

Keywords: Vulnerability fixing, Software vulnerability, Patch recommendation

1 Introduction
With the development of the information age, software vulnerabilities have become
one of the major threats to software security, which exist covertly at all stages of the
software life cycle [1–4]. According to statistics, the number of vulnerability reports in
the public security database CVE1 has skyrocketed to nearly 190,000 [5]. This has led to
an increasing workload for software developers to manually fix vulnerabilities, which is
tedious, time-consuming and error-prone [6–10]. Therefore, many existing researches
have explored and analyzed vulnerabilities [11–15], where automatic vulnerability repair
remains an important topic, which is of great importance for software maintenance and
development.

Automatic vulnerability repair (AVR) is an approach of automatically generating
fixing codes to resolve software vulnerabilities, without human intervention [16–18].

*Correspondence:
lilibo@yzu.edu.cn

1 School of Information
Engineering, Yangzhou
University, Yangzhou, China
2 State Key Laboratory for Novel
Software Technology, Nanjing
University, Nanjing, China
3 Jiangsu Province Engineering
Research Center of Knowledge
Management and Intelligent
Service, Yangzhou, China

1 https:// cve. mitre. org.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13638-023-02242-7&domain=pdf
https://cve.mitre.org

Page 2 of 16Wei et al. J Wireless Com Network (2023) 2023:34

Currently, mainstream AVR approaches usually locate the erroneous elements (files,
methods, statements) in the vulnerable program firstly, then generate and rank the
repair patches using patch generation techniques, and finally recommend the veri-
fied correct patches to the developers [19]. Existing AVR techniques are mainly based
on heuristic search, statistical analysis, manual fixing templates, and semantic con-
straints [20]. AVR approaches based on heuristic search [17, 21–23] are the most
widely researched class of approaches by far, and it has strong generality. However,
both this approach and the statistical analysis-based AVR approach [24–27] require
collecting a large number of patches in open-source projects and learning their
repair patterns as a way to design repair strategies. As a result, such approaches have
huge requirements for patch search space, and this only works well if similar vulner-
ability fixing code exists in the search space. This makes the search less efficient and
increases the time cost of remediation. In addition, AVR approaches based on man-
ual fixing templates [28, 29] and semantic constraints [30, 31] guide patch generation
based on manually defined templates or correct statutes of the program by analyzing
the patch code. However, in the actual fix process, the code repair or change opera-
tion for a class of vulnerabilities is not limited to one fixing template. Therefore, the
above two approaches lack flexibility. Moreover, the research on vulnerability fixing
templates or protocols is often limited by the available data and lacks comprehensive
investigation, making it difficult to perform well when applied to vulnerability fixing.

For the above problems, we propose a vulnerability fixing approach, VulRep, based
on vulnerability inducing commits and fixing commits. Vulnerability inducing means
that when a developer fixes the first vulnerability, the submitted code induces the sec-
ond vulnerability. Moreover, a commit that inducing a new vulnerability while fix-
ing the previous vulnerability is called a vulnerability inducing commit (vul-inducing
commit), while a commit that fixes the second vulnerability is called a vulnerability
fixing commit (vul-fixing commit). In the process of fixing existing vulnerabilities, new
vulnerabilities are inevitably induced. We collected 453 vulnerabilities from the CVE
database, and all of these data induced another vulnerability in the process of fixing
vulnerabilities. In addition, existing research [32] shows that most newly induced vul-
nerabilities have aggravated in severity, indicating that vulnerability inducing exists
and cannot be ignored. However, clarifying the reason for the inducing of the vul-
nerability can be effective in avoiding the creation of the vulnerability [33, 34], thus
pointing the way of a fix. Therefore, VulRep takes the vul-inducing commit as a start-
ing point to analyze the fix composition in the vul-inducing commit and the vul-fixing
commit. Fix compositions are variable names, method names, and value codes that
appear in a normalized and abstracted form when the change operation of the state-
ment to be fixed is known. The proposed approach learns the process of vulnerability
fixing so as to generate a fixing template for the vulnerability, after which the relation-
ship between the inducing and the fixing is used to supplement the fix compositions
(code) and finally complete the vulnerability fixing. This AVR approach based on vul-
nerability inducing not only combines the machine learning approach, but also incor-
porates the findings from empirical studies to compensate for the deficiencies of both.
The experimental results show that our approach can effectively repair the induced
vulnerabilities. The main contributions of this paper are as follows:

Page 3 of 16Wei et al. J Wireless Com Network (2023) 2023:34

• We combine empirical research findings for vul-inducing commits with machine
learning methods, to propose a new vulnerability repair approach based on vulner-
ability introduction, VulRep.

• We explored the relationship between vulnerability introduction and fixing and
obtained two findings, to better utilize the code in vul-fixing commits for vulnerabil-
ity repair.

• We collected vulnerabilities introduced due to commits in CVE as the test dataset,
containing a total of 116 pairs of vul-inducing and vul-fixing commits. Experiments
based on this dataset demonstrated that the proposed approach combining empirical
analysis of vulnerability data is effective.

2 Preliminaries and motivation
2.1 Preliminaries on models

In our proposed vulnerability repair approach, we use the following models and
algorithms:

Seq2seq model [35–38] consists of three parts: an encoder, a decoder, and a fixed-size
intermediate vector representation that connects the two. In the encoder (e.g., BiLSTM
[39]), the code sequence is converted into a vector through the embedding layer and
input into an RNN structure, and the overall representation vector is obtained after cal-
culation. In the decoder, each step is to predict the output word of the next state based
on the current correct output word and the state of the previous step. In bug repair,
DeepFix [24] proposes an end-to-end solution to grammatical bugs in some natural
languages, which can fix multiple bugs in one program without relying on any external
tools. SequenceR [25] uses Seq2seq for bug repair that address vocabulary limitations
in the code. Therefore, the proposed VulRep approach uses an end-to-end technique
SequenceR to perform vulnerability repair with the AST of the method involved in the
vul-fixing commit as input.

Transformer [40] is an attention-based network architecture that completely abandons
recursion and convolution. Transformer consists of encoder and decoder. Both encoder
and decoder contain six blocks. Also take the translation model as an example. When
performing a translation task, first obtain the representation vector W of each word in
the input sentence (the embedding of the representation vector of the word is added to
the embedding of the word position), and input the representation vector matrix of the
word into the code. In the encoder, the encoding information of all words in a sentence
is obtained after passing through six encoder blocks. In bug fixing, TranS3 [41] encodes
collected code snippets based on Transformer and Transformer’s encoder and decodes
a given code snippet to generate its annotations. Tree-LSTM [42] devised a generalized
tree-dependent attention framework. What is worth noting in Transformer is the atten-
tion mechanism it uses. It can effectively alleviate the problem of limited computing
power of the model. When a bunch of information carriers appear, how to pay more
attention to useful information, based on which an attention mechanism is proposed.
Therefore, we chose Transformer as the method of learning vulnerability code repair.

Beam search [43, 44] is an algorithm to find the optimal solution in a rela-
tively limited search space with less cost. Suppose the input sequence is X, the

Page 4 of 16Wei et al. J Wireless Com Network (2023) 2023:34

output sequence is Y =
(

y1, y2, . . . , yn
)

 , the probability distribution of decoding is:
P(Y | X) = P y1 | X P y1 | y2,X . . .P(ym|y1 . . .m− 1|X) . When decoding, if all possi-
ble options are listed, it will lead to an explosion of the space, greedy search is to choose
the order of the highest probability each time output. Beam search is a compromise
method between exhaustive method and greedy search, that is, only the first k possible
results are retained in each step of decoding.

2.2 Motivation

Bo et al. [32] study the specific correlation between vul-inducing and vul-fixing com-
mits. Research has shown that fixing commits that induce a new vulnerability are usually
caused by incorrect fixes, incomplete fixes, or a combination of both. In order to per-
form more accurate code filling and more efficient code search, we continue to explore
the relationship between vul-inducing and vul-fixing commits on our dataset based on
the research results of Bo et al. [32] and obtain the following three observations.

Observation 1 We collected a total of 116 pairs of vul-inducing and vul-fixing com-
mits, and the specific collection process is introduced in Sect. 4.1. Based on this dataset,
we conduct the statistical analysis on the method names and variable names in the state-
ments involved in the vul-inducing commits. It can be found that 74.1% of the method
names and variable names from vul-inducing commits could be matched in the modi-
fied statement of the vul-fixing commits. In the process of learning about vulnerabil-
ity code fixes, the corresponding fix components need to be generated, so we further
explored the code in the vul-fixing commits for better exploitation. We split the method
names and variable names in the vul-inducing commits, using different splitting princi-
ples (Camelcase and PASCAL nomenclature) as the dataset is multilingual and contains
both C/C++ and java languages. The C/C++ language is split using “_” or by symbols.
The Java language, on the other hand, can be split by words, for example, the getNext-
Block() method can be seen as a variable name consisting of three words, and constants
in java are split by upper case letters. To unify the results of the exploration, as shown
in Table 1, the tag length of each variable is regarded as divided into several parts, the
example shows the name with length 1-3, and so on.

Observation 2 We also counted the percentage of fix components at different lengths
as a percentage of fix components in vul-fixing commits. The results show that 50.0% of
the fix components tagged with length 1 can be inferred from the introduction of vul-
nerability in the commit, while 31.9% and 20.7% of the fix components with lengths 2
and 3, respectively. For example, for CVE-2022-41918,2 the description statement in its

Table 1 Examples of tag lengths for variables and methods

Length of tag C/C++ language Java language

1 Put() Put()

2 mutex_lock() getName()

3 rcu_read_unlock() getNextBlock()

2 https:// cve. mitre. org/ cgi- bin/ cvena me. cgi? name= CVE- 2022- 41918.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-41918

Page 5 of 16Wei et al. J Wireless Com Network (2023) 2023:34

vul-fixing commit contains “Data Streams,” which corresponds to the repair component
“DATA_STREAM” of its code. This leads to the second observation that there are fix
components that can be inferred from vul-inducing commits at different mark lengths.
Therefore, VulRep generates vulnerability patches by making code recommendations
based on the different vul-inducing commits when filling in the abstract fix components.

Observation 3 We counted the changes in operations between the vulnerability intro-
duction commit and the fixing commit, including the coverage of the same operation
and the opposite operation. This means whether the modified statement in the introduc-
tion commit is the opposite of or the same as the modified statement in the fixing com-
mit, e.g., the opposite of an insert statement is a delete, and the opposite of an update
operation is no change. After the comparison, we found that the coverage of the opposite
operation was about 59.5%, and the same operation was 35.3%. Thus, the third finding
was obtained that some vulnerability fixes can be inferred from vulnerability introduc-
tion, and some vulnerabilities can be fixed by restoring the operations in the vul-induc-
ing commit. Taking CVE-2017-63533 as an example, this vulnerability exists because of
an incorrect fix for CVE-2017-5986.4 as shown in Fig. 1, (a) from the vul-inducing com-
mit and (b) is the change in the vul-fixing commit, the if statement body added in the
vul-inducing commit is removed in the vul-fixing commit, thus achieving the purpose of
repairing the vulnerability, visually demonstrating the effectiveness of the finding.

From the above three observations, it can be seen that when the vulnerability is
repaired, most of the fix components in the vul-fixing commit can be obtained from
the vul-inducing commit, and the opposite operation in the commit is helpful to the

Fig. 1 Vul-inducing and Vul-fixing commits of CVE-2017-6353

3 https:// cve. mitre. org/ cgi- bin/ cvena me. cgi? name= CVE- 2017- 6353.
4 https:// cve. mitre. org/ cgi- bin/ cvena me. cgi? name= CVE- 2017- 5986.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-6353
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-5986

Page 6 of 16Wei et al. J Wireless Com Network (2023) 2023:34

vulnerability repair. Based on the above observations, we propose VulRep, a vulnerability
repair approach based on vulnerability introduction.

3 Methods
In this paper, we propose VulRep, a vulnerability fixing technique based on vul-inducing
and vul-fixing commits, the overall framework of which is shown in Fig. 2. Firstly, a vul-
nerability inducing and fixing pairs dataset is constructed, a syntax tree AST is gener-
ated from the code in the inducing and fixing commits, and a difference operation is
performed on them. Next, the fix components in the new syntax tree are abstracted and
the Seq2Seq model is trained to obtain a token sequence. Then, the token sequences
from the training set are fed into the Transformer model for training, the test set is con-
verted into token sequences and fed into the trained Transformer model, and the list of
predicted results is obtained by beam search. Finally, the abstract variable and method
names are filled in, modified using the rules found through observations, and syntax
checked to obtain the final recommended patches. We describe the approach in more
details below.

3.1 Vulnerability code tree generation

This section describes the process of generating a vulnerability tree. After constructing
the vulnerability inducing and fixing dataset, we processed the code before and after
the vulnerability fixes were submitted in the dataset. Firstly, annotations and blank lines
were removed from the code files, and the methods involved in the faulty code state-
ments were generated as abstract syntax trees AST’s. Secondly, the differences between
the two were manipulated, i.e., the differences were used to obtain syntax trees AST’s
that were closely related to the vulnerabilities. It is important to note that this section
chooses to represent the code as an abstract syntax tree, rather than representing the
semantics by adding data flow and control flow statements, as is currently common. On
the one hand, AST is the most common abstract representation of source code syntac-
tic structures, and it is also more useful for obtaining differences between two pieces
of code. On the other hand, Bo et al. [32] explored vulnerability introduction commits
and fixing commits and calculated the coverage between the data flow and control flow
of a vulnerability introduction commit and the modified statements in a fixing commit.
Their results showed that the coverage was low and of little relevance to the vulnerability

Fig. 2 Overview of our approach VulRep

Page 7 of 16Wei et al. J Wireless Com Network (2023) 2023:34

remediation effort. Therefore, in this approach, we only use abstract syntax trees to rep-
resent the contextual structure of the code.

3.2 Code abstraction and serialization

After representing the vulnerability code as an abstract syntax tree, VulRep will abstract
the code tree due to the fact that when learning the repair of the vulnerability code later,
the Transformer model takes more into account the probability distribution of a certain
word, which forms the vocabulary, in its output. However, when the vulnerable code is
put into the model for training, it is prone to vocabulary explosion problems due to the
different and large number of variable and method names in the code, naming rules and
limitations of the programming language. Therefore, this section abstracts the AST in
order to reduce the vocabulary space. As shown in Fig. 3, when variable names, method
names and values appear in the code, they are marked abstractly in order, respectively, as
var 1...var n, fun 1....fun n and num 1... num n. We then use the Seq2Seq model to learn
the abstracted syntax tree and serialize the token sequences required to characterize the
Transformer model.

3.3 Prediction model training

After abstraction and serialization of the vulnerability code tree, this method feeds
Token sequences into the Transformer model to learn code repair and use its attention
mechanism to alleviate the long dependency problem [26, 40]. OpenAI5 and DeepMind6
have used it extensively in their language models [26]. Unlike recurrent neural network
(RNN) [45] or long short-term memory (LSTM) [46] models, Transformer relies entirely
on attention mechanisms to map the global dependencies between input and output
data, and thus the model has better translation results. Transformer consists of two

Fig. 3 Example of abstraction process

5 https:// openai. com/.
6 https:// www. deepm ind. com/.

https://openai.com/
https://www.deepmind.com/

Page 8 of 16Wei et al. J Wireless Com Network (2023) 2023:34

main components: an encoder and a decoder that are connected in series. The structure
of the encoder–decoder is widely used in the NMT model, where the encoder maps a
sequence of symbolic representations of the input (x1, . . . , xn) to an embedded represen-
tation z = (z1, . . . , zn) , which contains information about the interrelated parts of the
input. Given z, the decoder then uses the merged contextual information to generate the
output sequence. At each step, the model uses the previously generated symbols as addi-
tional input when generating the next sequence. The Transformer follows this overall
architecture, using stacked self-attentive layers and point-by-point fully connected layers
for the encoders and decoders. Each encoder and decoder uses an attention mechanism
to weigh the connections among each input and refer to that information to generate the
output. The purpose of the attention mechanism used is to merge the context into the
sequence using a set of encodings. The multi-headed attention used in the Transformer
implements multiple attention mechanisms in parallel and then merges the resultant
encodings into a single process. After generating a list of predicted results, we use the
beam search algorithm to select the appropriate one. The hyperparameter beam width
(B) in beam search indicates the top k results of the ranked sequence are selected. The
hyperparameter B in beam search is set to 3 in this method in order to maximize perfor-
mance and save cost.

3.4 Fixed patch generation

The output of Transformer differs from the actual compilable code because of the
abstraction carried out when processing the data. In this section, the predicted list is
abstracted and populated to form the patch after the code has been populated in the
order of the dictionary correspondence tokens. However, it is clear from the observa-
tions in Sect. 2 that not all vocabularies can be fully represented for the code required
in the patch. A vocabulary that is too large tends to result in an explosion of vocabulary
space, and conversely, a vocabulary that is too small results in more missing codes and
therefore makes it difficult to add the correct repair components. Inspired by the obser-
vations, we summarize the specific rules and apply them to the modification of the filled
abstract code as follows.

RULE: When the statement in the generated patch is the opposite of or the same as
the statement in the vul-inducing commit, update the variable and method names
in the patch to the corresponding ones in the vul-inducing commit.

Using this rule, the generated patch is re-modified to obtain the final vulnerability repair
patch. This step is a good combination of the relationship between vul-inducing and
vul-fixing commits, which is more conducive to the repair of vulnerabilities. During this
process, if the patch generated by the Transformer model can pass the syntax check,
then this rule will not be used to modify the patch; if it fails, it will be modified according
to the rules defined above.

3.5 Fixed patch verification

In this section, the verification of vulnerability recommended patches will be performed
manually. Since the vulnerability database CVE does not provide complete vulnerabil-
ity data, the dataset does not contain test cases related to vulnerabilities. Therefore, we

Page 9 of 16Wei et al. J Wireless Com Network (2023) 2023:34

use the corresponding fixing code in the CVE database as the ground truth and employ
the method in [44] to manually check the correctness of the patches generated by Vul-
Rep. That is, it checks whether the final patch code provided by the model has semantic
equivalence with the vulnerability fixing code submitted in the dataset. In order to bet-
ter improve the reliability of this step, two graduate students who study this field con-
duct inspections separately, and the correctness of this patch will be recognized only
when the inspections pass. At the same time, we carried out the consistency evaluation
according to the evaluation standard of Cohen’s Kappa coefficient. For the patch to be
verified, Cohen’s Kappa coefficient is greater than 80%, that is, the consistency strength
is “Almost Perfect.” Therefore, it can be considered that there is almost a perfect agree-
ment between the two participants. Until this point, we recommend approved patches
to developers to fix vulnerabilities. At the same time, the Cohen’s Kappa [47] consistency
check was carried out, and the result was 0.95, which is a high consistency. Until this
point, we recommend approved patches to developers to fix vulnerabilities.

4 Results and discussion
To verify the validity of the proposed approach VulRep, we constructed the correspond-
ing dataset and validated it with two experimental questions. We will describe them in
detail below.

4.1 Dataset

In this approach, we used a total of two datasets for training and testing:
(1) Training dataset The training data was selected as the Transformer model was

used to learn the code changes committed by the vulnerability fixes. The training data
only requires the code before and after the fix, not the commit description of the vulner-
ability. Therefore, the publicly available dataset Big-Vul [48] was chosen as our training
data, containing a total of 3754 vulnerability data.

(2) Testing dataset Bo et al. [32] collected 71 pairs of commits that induced a vulner-
ability due to an incorrect fix, an incomplete fix, or neither an incorrect nor an incom-
plete fix. However, our approach is not limited to these types of data, we also focus on
vulnerabilities that induced by fixing commits. For example, the description of CVE-
2015-62507 is: “simple-php-captcha before commit 9d65a945029c7be7bb6bc893759e74
c5636be694 allows remote attackers to automatically generate the captcha response by
running the same code on the client-side.” It indicates that this vulnerability is caused
by a commit. The reference links in the vulnerability report provide code commit data
in GitHub or other fixing links. We also use some developer comments to determine if
a commit is a fix for a vulnerability. Developers who fix vulnerabilities will leave com-
ments on GitHub or other sites such as Red Hat Bugzilla8 that contain information such
as a commit that introduces or fixes a vulnerability, which may be considered a vul-
inducing commit. Based on this approach, a total of 45 pairs of vulnerability introduc-
tions and fixes were added, resulting in 116 pairs of vul-inducing and vul-fixing commits
as the testing dataset for the experiment.

7 https:// cve. mitre. org/ cgi- bin/ cvena me. cgi? name= CVE- 2015- 6250.
8 https:// bugzi lla. redhat. com/.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-6250
https://bugzilla.redhat.com/

Page 10 of 16Wei et al. J Wireless Com Network (2023) 2023:34

4.2 Research questions

We design experiments to verify the effectiveness of the proposed approach and explore
the performance of the approach on different types of vulnerabilities.

RQ1 Compared with the machine learning generated remediation code, how effective
is the approach VulRep proposed in this paper?

In most of the existing studies, the generation of vulnerability repair code has been
implemented with the help of machine learning approaches. However, our proposed
approach, VulRep, combines the generation of fixing codes using the Transformer with
empirical findings to produce the final fixing code. Therefore, we use experiment to
investigate whether the findings from empirical research can be useful for vulnerability
remediation. The experiments compares VulRep with patch generation using machine
learning (Transformer) alone to see if it yields more effective patches for vulnerability
repair.

RQ2 Which type of vulnerabilities does VulRep fix best?

After validating the effectiveness of the proposed approach, we also explored which
type of vulnerabilities VulRep is better at fixing. On the one hand, some studies will
focus on the types of vulnerabilities to fix, such as pointer exceptions, missing specified
encoding and other vulnerability types. On the other hand, a statistical study by Bo et al.
[32] shows that the logic error type accounts for 66% of the vulnerability data, so vulner-
abilities may be relatively clustered in the same type. Therefore, in RQ2, we investigate
the correctness of VulRep’s fix patches for different vulnerability types. For the types of
vulnerabilities, we chose the CWE (Common Weakness Enumeration) standard,9 which
is a classification system for software defects and vulnerabilities [26] and can cover most
types of vulnerabilities.

4.3 Evaluation metrics

Since in the process of vulnerability repair, it is necessary to judge whether a generated
patch actually fixes the vulnerability or not. The patching situation contains complete
fixes, partial fixes and incorrect fixes. Therefore, for patches generated using VulRep for
vulnerability repair, two metrics are used in this chapter to evaluate the capability and
quality of the generated patches, Precision and Recall, which are calculated as follows:

where CF denotes the number of completely fixed vulnerabilities, PF denotes the
number of partially fixed vulnerabilities, IF denotes the number of incorrectly fixed

(1)Precision =
CF

CF+ PF

(2)Recall =
CF

CF+ PF+ IF

9 https:// cwe. mitre. org/.

https://cwe.mitre.org/

Page 11 of 16Wei et al. J Wireless Com Network (2023) 2023:34

vulnerabilities, and the sum of the three denotes the total number of vulnerability
samples.

4.4 Experiment results

In this section, we observe, analyze and summarize the relevant experimental results
for two research questions designed.

RQ1 Effectiveness of VulRep

This paper proposes a new repair approach VulRep, that is, learning the difference
between the abstract syntax trees of inducing commit and fixing commit, the code in
inducing code is used for abstract reduction when generating the patch sequence.
Table 2 shows the comparison results of VulRep and Transformer. The Precision of Vul-
Rep is 56.5%, and the Precision of the machine learning approach (Transformer) is 55%.
The former fixes one more vulnerability than the latter. The Recall of VulRep and Trans-
former are 11.2% and 9.48%, respectively. It can be concluded that this chapter proposes
one more partially repaired vulnerability than the machine learning method. This shows
that only using the findings of empirical research can also play a role in repairing some
sentences. From a macro-repair perspective, the approach VulRep proposed in this
paper makes up for the shortcomings of machine learning repair approaches to a cer-
tain extent, and also proves that the approach of combining vul-inducing commits with
machine learning approaches to repair vulnerabilities is effective.

The comparison of the two approaches proves the validity of the rule defined by
the empirical research findings for the vulnerability repair and also verifies the cor-
rectness of the empirical research in Sect. 2. Although the current mainstream
approaches are all based on machine learning, it turns out that empirical analysis of

Table 2 VulRep versus Transformer vulnerability repair performance

Approach Precision Recall

VulFix 13/23 (56.5%) 13/116 (11.2%)

Transformer 11/20 (55.0%) 11/116 (9.48%)

Table 3 Type and number of vulnerabilities in testing dataset

NO. CWE-ID Vul NO. CWE-ID Vul NO. CWE-ID Vul

1 CWE-119 13 7 CWE-369 7 13 CWE-125 6

2 CWE-476 11 8 CWE-79 6 14 CWE-787 5

3 CWE-199 8 9 CWE-200 6 15 CWE-399 5

4 CWE-199 5 10 CWE-189 5 16 CWE-400 4

5 CWE-199 4 11 CWE-416 3 17 CWE-415 3

6 CWE-199 2 12 CWE-120 2 18 CWE-264 3

Page 12 of 16Wei et al. J Wireless Com Network (2023) 2023:34

vulnerability data is equally important and cannot be ignored, and the rich informa-
tion contained in vulnerability submissions is also helpful for vulnerability repair.

Summary of RQ1 Compared to Transformer, VulRep, which is based on vulnerability
introduction, shows better performance in vulnerability repair.

RQ2 Performance of VulRep on different types

First, we counted the CWE types of vulnerabilities in the test set, and the results are
shown in Table 3. It is important to note that a vulnerability may belong to multiple CWE
types. In this table, we have omitted the CWE type with a count of 1 and the 11 vulnerabili-
ties with type none.

From the results of the RQ1, it can be seen that a total of 13 of the fixes obtained through
VulRep are completely correct. We examined the types of these 13 vulnerabilities, and the
results are shown in Table 4. The experiments show that VulRep performs best in the case
of CWE-119 (Improper Restriction of Operations within the Bounds of a Memory Buffer),
fixing six vulnerabilities of the relevant type, followed by three fixes for vulnerabilities of
CWE-476 (NULL Pointer Dereference). There may be two reasons for this. On the one
hand, CWE-119 type vulnerabilities usually involve data boundary or data type checks, etc.
These code modifications are usually less and relatively easy. On the other hand, the cor-
responding data that needs to be modified is usually mentioned in the commit, and the
code vocabulary involved in this type of vulnerability is also relatively concentrated, such as
length and size. For example, the “body size” in the commit can be mapped to the “body_
size” in the repair code. The rules used by VulRep can use this correspondence to assist in
the repair, so it has a better performance on CWE-119 types excellent. Moreover, it also
fixed a CWE-200 (Exposure of Sensitive Information to an Unauthorized Actor) of vulner-
ability. Three of the vulnerabilities fixed were of type none and are therefore omitted from
the table. By looking at the actual patch generation data for the vulnerabilities, we find that
indeed, as observed in the empirical study in Sect. 2, the introduction of the commit state-
ment for the opposite operation is of importance. Moreover, the experimental results not
only prove the validity of the empirical findings, but also demonstrate that the relation-
ship between vul-inducing and vul-fixing commits can indeed assist in vulnerability repair
effectively.

Summary of RQ2 VulRep is best at fixing vulnerabilities of type CWE-119 (Improper
Restriction of Operations within the Bounds of a Memory Buffer).

Table 4 Types of vulnerabilities fixed by VulRep

Top CWE-ID Vulnerabilities

Top1 CWE-119 6

Top2 CWE-476 3

Top3 CWE-200 1

Page 13 of 16Wei et al. J Wireless Com Network (2023) 2023:34

4.5 Threads to validity

Our findings of experiments are based on the Precision and Recall metrics. Other evalu-
ation metrics may yield different results, these metrics have been widely used to vulner-
ability repair task.

Internal threats (1) The empirical data used in this paper is relatively small. Although
the effectiveness of the summarized repair rules has been demonstrated through experi-
ments, there are some rules being missing inevitably. (2) The proposed approach first
generates a repair patch based on machine learning, but it cannot be sure whether it
has learned the correct repair pattern. Our approach does not use predefined patterns,
which makes fixing certain types of vulnerabilities less effective. (3) After getting the vul-
nerability patch, this paper uses manual verification to check the correctness, which may
be subject to certain degree. However, we verify the validity of the test by calculating
Cohen’s Kappa coefficient to reduce the threat.

External threats (1) During the evaluation of the experiments, we only collected 116
pairs of data with the introduction of vulnerabilities as a testing dataset. We will expand
the dataset in the future to meet the new needs of developers. (2) We use the dataset
Big-Vul to learn vulnerability code fixes, the number and types of which are still limited,
and it may be difficult to meet the training requirements of the model (e.g., the size and
number of types of dataset Big-Vul) are not large enough, resulting in the model is dif-
ficult to achieve fitting. In the future, we will try to manually expand Big-Vul to achieve
better fitting.

5 Related work
In recent years, a large number of automatic repair techniques for program defects have
been proposed, which can be roughly divided into four categories: automatic repair
techniques based on heuristic search, statistical analysis, manual fixing templates, and
semantic constraints [20]. Zhang et al. [49] applied the idea of search-based program
repair to the field of heterogeneous computing and proposed HeteroGen, which takes
C/C++ code as input and automatically generates a version of HLS with test behav-
ior retention and better performance. Li et al. [50] designed a novel fault location (FL)
technique for multi-block, multi-statement repair that combines traditional spectrum-
based (SB) FL with deep learning and data flow analysis. Chi et al. [26] provided a novel
approach called SeqTrans to exploit historical vulnerability fixes to provide suggestions
and automatically fix the source code. It leveraged data-flow dependencies to construct
code sequences and feed them into the state-of-the-art transformer model, to capture
the contextual information around the vulnerable code. Liu et al. [51] constructed an
APR tool, TBar, by surveying the literature to collect, summarize and label frequently
used repair patterns, which integrates a rich set of repair templates from previous
authors, and experimental results show that it can correctly repair a wider range of
bugs. Ke et al. [52] proposed SearchRepair, a defect repair technique based on semantic
search of code, and built a database of code fragments. The above methods need to col-
lect a large number of patches to learn their repair modes. Chen et al. [27] proposed an
approach for repairing security vulnerabilities named VRepair which is based on trans-
fer learning. VRepair is first trained on a large bug fix corpus and is then tuned on a

Page 14 of 16Wei et al. J Wireless Com Network (2023) 2023:34

vulnerability fix dataset, which is an order of magnitude smaller. This approach allevi-
ates the problem of dataset scarcity to some extent. However, existing approaches guide
patch generation by analyzing the patch code and manually defining templates or pro-
gram rules, but this is often incomplete and lacks generalizability and flexibility. Differ-
ent from them, VulRep combine the vul-inducing commit with the machine learning
method through the empirical research on the vulnerability introduction and correct the
generated code according to the rules to obtain the final patch. The approach is not lim-
ited to a certain type of vulnerability and can be more effectively tailored to the charac-
teristics of the vulnerability itself, making it widely available and more flexible.

6 Conclusion
In this paper, the empirical research findings based on vulnerability introduction
are combined with machine learning to perform vulnerability repair, and a vulner-
ability repair approach based on vulnerability introduction (VulRep) is proposed. This
approach processes the vulnerability repair submission as a sequence, then inputs it
into the Transformer model, and generates a recommendation list through beam search,
abstracts and fills the abstract code in the recommendation list, and combines it with
the rules defined by empirical research findings to get the final patch. The experimental
results show that VulRep can effectively improve the effect of repairing the vulnerability,
and it performs best in the inappropriate operation restriction (CWE-119) within the
scope of the vulnerability type memory buffer, and completes the repair work better.

In the future, we will further expand the existing dataset to meet follow-up research.
Furthermore, we will consider automatically extracting the content of vulnerability text
to assist machine learning methods in vulnerability repair.

Abbreviations
AVR Automatic vulnerability repair
CVE Common vulnerabilities and exposures
CWE Common weakness enumeration
Vul-inducing Vulnerability inducing
Vul-fixing Vulnerability fixing

Acknowledgements
None.

Author contributions
In this paper, YW conceived, designed and wrote the study. LB, XW, XS and BL provided valuable advice on the method-
ology of the study and participated in the revision of the manuscript. YL and ZY participated in the data collection and
manually checked the correctness of the experimental results. All authors read and approved the final manuscript.

Funding
This paper is supported by the National Natural Science Foundation of China (Nos. 61972335, 61872312, 62002309);
the Six Talent Peaks Project in Jiangsu Province (No. RJFW-053), the Jiangsu “333” Project; the Open Funds of State Key
Laboratory for Novel Software Technology of Nanjing University (No. KFKT2022B17), the Yangzhou University Interdisci-
plinary Research Foundation for Animal Husbandry Discipline of Targeted Support (No. yzuxk202015), the Yangzhou city
- Yangzhou University Science and Technology Cooperation Fund Project (Nos. YZ2021157, YBK202207) and Yangzhou
University Top-level Talents Support Program (2019).

Data availability
The datasets used and/or analyzed during the current study are confidential and not public.

Declarations

Competing interests
The authors declare that they have no competing interests.

Page 15 of 16Wei et al. J Wireless Com Network (2023) 2023:34

Received: 3 January 2023 Accepted: 1 April 2023

References
 1. B. Li, Y. Wei, X. Sun, L. Bo, D. Chen, C. Tao, Towards the identification of bug entities and relations in bug reports.

Autom. Softw. Eng. 29(1), 1–31 (2022)
 2. Z. Ni, L. Bo, B. Li, T. Chen, X. Sun, X. Wu, An approach of method-level bug localization. IET Softw. 16, 422–437 (2022)
 3. J. Lu, X. Sun, B. Li, L. Bo, T. Zhang, Beat: considering question types for bug question answering via templates. Knowl.

Based Syst. 225, 107098 (2021)
 4. S. Cao, X. Sun, L. Bo, R. Wu, B. Li, C. Tao, Mvd: memory-related vulnerability detection based on flow-sensitive graph

neural networks. arXiv preprint arXiv: 2203. 02660 (2022)
 5. Y. Wei, X. Sun, L. Bo, S. Cao, X. Xia, B. Li, A comprehensive study on security bug characteristics. J. Softw. Evol. Process

33(10), 2376 (2021)
 6. T. Zhou, X. Sun, X. Xia, B. Li, X. Chen, Improving defect prediction with deep forest. Inf. Softw. Technol. 114, 204–216

(2019)
 7. X. Sun, X. Peng, K. Zhang, Y. Liu, Y. Cai, How security bugs are fixed and what can be improved: an empirical study

with Mozilla. Sci. China Inf. Sci. 62(1), 1–3 (2019)
 8. Z. Zhou, L. Bo, X. Wu, X. Sun, T. Zhang, B. Li, J. Zhang, S. Cao, Spvf: security property assisted vulnerability fixing via

attention-based models. Empir. Softw. Eng. 27(7), 1–28 (2022)
 9. S. Cao, X. Sun, L. Bo, Y. Wei, B. Li, Bgnn4vd: constructing bidirectional graph neural-network for vulnerability detec-

tion. Inf. Softw. Technol. 136, 106576 (2021)
 10. Y. Yin, Y. Li, H. Gao, T. Liang, Q. Pan, FGC, GCN based federated learning approach for trust industrial service recom-

mendation. IEEE Trans. Ind. Inform. 19(3), 3240–3250 (2022)
 11. H. Gao, W. Huang, T. Liu, Y. Yin, Y. Li, Ppo2: location privacy-oriented task offloading to edge computing using rein-

forcement learning for intelligent autonomous transport systems. IEEE Trans. Intell. Transp. Syst. 1–14 (2022)
 12. Q.-V. Dang, Improving the performance of the intrusion detection systems by the machine learning explainability.

Int. J. Web Inf. Syst. 17(5), 537–555 (2021)
 13. H. Gao, J. Huang, Y. Tao, W. Hussain, Y. Huang, The joint method of triple attention and novel loss function for entity

relation extraction in small data-driven computational social systems. IEEE Trans. Comput. Soc. Syst. 9(6), 1725–1735
(2022)

 14. A.K.Y.S. Mohamed, D. Auer, D. Hofer, J. Küng, A systematic literature review for authorization and access control:
definitions, strategies and models. Int. J. Web Inf. Syst. (ahead-of-print) (2022)

 15. X. Ma, H. Xu, H. Gao, M. Bian, W. Hussain, Real-time virtual machine scheduling in industry iot network: a reinforce-
ment learning method. IEEE Trans. Ind. Inf. 19(2), 2129–2139 (2022)

 16. M. Monperrus, Automatic software repair: a bibliography. ACM Comput. Surv. (CSUR) 51(1), 1–24 (2018)
 17. C. Le Goues, T. Nguyen, S. Forrest, W. Weimer, Genprog: a generic method for automatic software repair. IEEE Trans.

Softw. Eng. 38(1), 54–72 (2011)
 18. X. Sun, T. Zhou, R. Wang, Y. Duan, L. Bo, J. Chang, Experience report: investigating bug fixes in machine learning

frameworks/libraries. Front. Comput. Sci. 15(6), 1–16 (2021)
 19. H. Cao, Y. Meng, J. Shi, L. Li, T. Liao, C. Zhao, A survey on automatic bug fixing, in 2020 6th International Symposium on

System and Software Reliability (ISSSR) (IEEE, 2020), pp. 122–131
 20. C.J. Jiang JiaJun, X. Yingfei, Survey of automatic program repair techniques. J. Softw. 32(9), 2665–2690 (2021)
 21. S. Forrest, T. Nguyen, W. Weimer, C. Le Goues, A genetic programming approach to automated software repair, in

Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation (2009), pp. 947–954
 22. C. Le Goues, M. Dewey-Vogt, S. Forrest, W. Weimer, A systematic study of automated program repair: fixing 55 out of

105 bugs for \$8 each, in 2012 34th International Conference on Software Engineering (ICSE) (IEEE, 2012), pp. 3–13
 23. J. Jiang, Y. Xiong, H. Zhang, Q. Gao, X. Chen, Shaping program repair space with existing patches and similar code, in

Proceedings of the 27th ACM SIGSOFT International Symposium on Software Testing and Analysis (2018), pp. 298–309
 24. R. Gupta, S. Pal, A. Kanade, S. Shevade, Deepfix: fixing common c language errors by deep learning, in Thirty-First

AAAI Conference on Artificial Intelligence (2017)
 25. Z. Chen, S. Kommrusch, M. Tufano, L.-N. Pouchet, D. Poshyvanyk, M. Monperrus, Sequencer: sequence-to-sequence

learning for end-to-end program repair. IEEE Trans. Softw. Eng. 47(9), 1943–1959 (2019)
 26. J. Chi, Y. Qu, T. Liu, Q. Zheng, H. Yin, Seqtrans: automatic vulnerability fix via sequence to sequence learning. IEEE

Trans. Softw. Eng. 49, 554–585 (2022)
 27. Z. Chen, S. Kommrusch, M. Monperrus, Neural transfer learning for repairing security vulnerabilities in c code. IEEE

Trans. Softw. Eng. 49(1), 147–165 (2022)
 28. D. Kim, J. Nam, J. Song, S. Kim, Automatic patch generation learned from human-written patches, in 2013 35th

International Conference on Software Engineering (ICSE) (IEEE, 2013), pp. 802–811
 29. J. Hua, M. Zhang, K. Wang, S. Khurshid, Towards practical program repair with on-demand candidate generation, in

Proceedings of the 40th International Conference on Software Engineering (2018), pp. 12–23
 30. J. Xuan, M. Martinez, F. Demarco, M. Clement, S.L. Marcote, T. Durieux, D. Le Berre, M. Monperrus, Nopol: automatic

repair of conditional statement bugs in java programs. IEEE Trans. Softw. Eng. 43(1), 34–55 (2016)
 31. S. Mechtaev, J. Yi, A. Roychoudhury, Angelix: scalable multiline program patch synthesis via symbolic analysis, in

Proceedings of the 38th International Conference on Software Engineering (2016), pp. 691–701
 32. L. Bo, Y. Li, X. Sun, X. Wu, B. Li, Vulloc: vulnerability localization based on inducing commits and fixing commits. Front.

Comput. Sci. 17(3), 1–3 (2023)
 33. Z. Ni, B. Li, X. Sun, T. Chen, B. Tang, X. Shi, Analyzing bug fix for automatic bug cause classification. J. Syst. Softw. 163,

110538 (2020)

http://arxiv.org/abs/2203.02660

Page 16 of 16Wei et al. J Wireless Com Network (2023) 2023:34

 34. C. Zhou, B. Li, X. Sun, L. Bo, Why and what happened? aiding bug comprehension with automated category and
causal link identification. Empir. Softw. Eng. 26(6), 1–36 (2021)

 35. S. Karaivanov, V. Raychev, M. Vechev, Phrase-based statistical translation of programming languages, in Proceedings
of the 2014 ACM International Symposium on New Ideas, New Paradigms, and Reflections on Programming & Software
(2014), pp. 173–184

 36. A.T. Nguyen, T.T. Nguyen, T.N. Nguyen, Divide-and-conquer approach for multi-phase statistical migration for source
code (t), in 2015 30th IEEE/ACM International Conference on Automated Software Engineering (ASE) (2015). IEEE, pp.
585–596

 37. A.T. Nguyen, H.A. Nguyen, T.T. Nguyen, T.N. Nguyen, Statistical learning approach for mining api usage mappings
for code migration, in Proceedings of the 29th ACM/IEEE International Conference on Automated Software Engineering
(2014), pp. 457–468

 38. X. Chen, C. Liu, D. Song, Tree-to-tree neural networks for program translation, in Advances in Neural Information
Processing Systems, vol. 31 (2018)

 39. P. Zhou, W. Shi, J. Tian, Z. Qi, B. Li, H. Hao, B. Xu, Attention-based bidirectional long short-term memory networks for
relation classification, in Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, ACL
2016, August 7–12, 2016, Berlin, Germany, Volume 2: Short Papers (The Association for Computer Linguistics, 2016)

 40. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, Ł. Kaiser, I. Polosukhin, Attention is all you need,
in Advances in Neural Information Processing Systems, vol. 30 (2017)

 41. Wang, W., Zhang, Y., Zeng, Z., Xu, G.: Transˆ 3: a transformer-based framework for unifying code summarization and
code search. corr abs/2003.03238 (2020). arXiv preprint arXiv: 2003. 03238 (2020)

 42. M. Ahmed, M.R. Samee, R.E. Mercer, Improving tree-LSTM with tree attention, in 2019 IEEE 13th International Confer-
ence on Semantic Computing (ICSC) (IEEE, 2019), pp. 247–254

 43. M. Freitag, Y. Al-Onaizan, Beam search strategies for neural machine translation. arXiv preprint arXiv: 1702. 01806
(2017)

 44. V. Raychev, M. Vechev, E. Yahav, Code completion with statistical language models, in Proceedings of the 35th ACM
SIGPLAN Conference on Programming Language Design and Implementation (2014), pp. 419–428

 45. W. Zaremba, I. Sutskever, O. Vinyals, Recurrent neural network regularization. arXiv preprint arXiv: 1409. 2329 (2014)
 46. X. Shi, Z. Chen, H. Wang, D.-Y. Yeung, W.-K. Wong, W.-c. Woo, Convolutional LSTM network: a machine learning

approach for precipitation nowcasting, in Advances in Neural Information Processing Systems, vol. 28 (2015)
 47. J.R. Landis, G.G. Koch, The measurement of observer agreement for categorical data. Biometrics 33, 159–174 (1977)
 48. J. Fan, Y. Li, S. Wang, T.N. Nguyen, Ac/c++ code vulnerability dataset with code changes and cve summaries, in

Proceedings of the 17th International Conference on Mining Software Repositories (2020), pp. 508–512
 49. Q. Zhang, J. Wang, G.H. Xu, M. Kim, Heterogen: transpiling c to heterogeneous hls code with automated test genera-

tion and program repair, in Proceedings of the 27th ACM International Conference on Architectural Support for Program-
ming Languages and Operating Systems (2022), pp. 1017–1029

 50. Y. Li, S. Wang, T.N. Nguyen, Dear: a novel deep learning-based approach for automated program repair. arXiv pre-
print arXiv: 2205. 01859 (2022)

 51. K. Liu, A. Koyuncu, D. Kim, T.F. Bissyandé, Tbar: revisiting template-based automated program repair, in Proceedings of
the 28th ACM SIGSOFT International Symposium on Software Testing and Analysis (2019), pp. 31–42

 52. Y. Ke, K.T. Stolee, C. Le Goues, Y. Brun, Repairing programs with semantic code search (t), in 2015 30th IEEE/ACM
International Conference on Automated Software Engineering (ASE) (IEEE, 2015), pp. 295–306

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

http://arxiv.org/abs/2003.03238
http://arxiv.org/abs/1702.01806
http://arxiv.org/abs/1409.2329
http://arxiv.org/abs/2205.01859

	VulRep: vulnerability repair based on inducing commits and fixing commits
	Abstract
	1 Introduction
	2 Preliminaries and motivation
	2.1 Preliminaries on models
	2.2 Motivation

	3 Methods
	3.1 Vulnerability code tree generation
	3.2 Code abstraction and serialization
	3.3 Prediction model training
	3.4 Fixed patch generation
	3.5 Fixed patch verification

	4 Results and discussion
	4.1 Dataset
	4.2 Research questions
	4.3 Evaluation metrics
	4.4 Experiment results
	4.5 Threads to validity

	5 Related work
	6 Conclusion
	Acknowledgements
	References

