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Abstract 

Ground localization systems based on cellular signals are vulnerable to the hazards of 
signal power attenuation and multipath propagation in urban environments. Non-
coherent accumulation is an effective solution to this problem, but its application to 
cellular localization systems has not been properly discussed. In this paper, we propose 
two cellular time-of-arrival (TOA) estimation methods based on non-coherent accu-
mulation: the “TOA estimation algorithm based on non-coherent accumulation of the 
channel impulse response” (nch-CIR) in the time domain and the “Super Resolution TOA 
Estimation Algorithm based on non-coherent accumulation of the covariance matrix” 
(nch-SRA) in the frequency domain. Among these two methods, the nch-CIR algorithm 
has a lower computational cost and better anti-noise performance, and the nch-SRA 
algorithm has better performance in terms of multipath delay estimation. Through 
theoretical analysis and extensive simulations, we also discuss the influence of mobility 
on these two methods. In addition, experiments are conducted to evaluate the perfor-
mance of the proposed method using real collected cellular signals. The results show 
that both nch-CIR and nch-SRA can achieve a better performance compared with the 
conventional methods.

Keywords: Cellular signals, Position and navigation, Time of arrival, Multipath 
channels, Non-coherent accumulation, Super-resolution algorithm

1 Introduction
Localization service is a significant component of various military and civilian applica-
tions [1]. In the past few decades, global navigation satellite systems (GNSSs) have been 
widely used because of their global, all-weather, high-precision localization capabilities. 
However, GNSS signals are extremely weak and susceptible to occlusion and interference 
[2]. Thus, they are not adequate to meet the increasingly stringent requirements in some 
emerging areas, such as highly automated driving, intelligent transportation systems 
and the Internet of things [3]. In recent years, the advancements in cellular technologies 
with the fifth generation of wireless networks (5G) have once again aroused researchers’ 
interest in localization. The cellular signals possess several desirable characteristics for 
localization applications, including ubiquity, high received power, large bandwidth and 
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low terminal cost, making the integration of localization and cellular communications 
gradually becoming an effective supplement or alternative to GNSS [4, 5].

Long-term evolution (LTE) and new radio (NR) standards provide several reference 
signals that can be used for localization, such as channel state information-reference sig-
nal (CSI-RS), demodulation reference signal (DMRS), positioning reference signal (PRS), 
primary synchronization signal (PSS), secondary synchronization signal (SSS) and cell-
specific reference signal (CRS). CRS is removed in NR to improve spectrum utilization, 
and others are similar in LTE and NR. With these signals, network-based localization 
can be realized with the support of suppliers, and opportunistic localization can be 
realized by downlink signals without accessing the network [6]. Typically, observations 
that can be directly obtained from cellular signals are time of arrival (TOA), direction 
of arrival (DOA) and received signal strength indicator (RSSI) [4, 7, 8]. The hardware 
requirements for TOA acquisition are much lower than DOA, and TOA is more suitable 
than RSSI for localization in unknown outdoor environments. Thus, this paper focuses 
on the TOA estimation.

Research on TOA estimation methods in cellular signal localization has made numer-
ous outstanding progresses. This paper will briefly introduce these methods in three 
categories.

The first category is based on first arrival component detection. These methods con-
duct threshold detection on the time-domain correlation results or the estimated chan-
nel impulse response (CIR) and take the detected first peak as the TOA estimation 
result. It has been widely used in cellular localization as a simple and effective TOA 
estimation algorithm [4, 9, 10]. Recent studies have further optimized the performance 
of threshold-based methods: A first arrival peak detection method based on constant 
false alarm rate (CFAR) detection and a matching pursuit algorithm was proposed in 
[11]. A method that dynamically adjusts the detection threshold according to the chan-
nel characteristics of the received signal was proposed in [12]. A method for multipath 
TOA estimation through a statistical analysis of the cross-correlation was presented in 
[13]. The selection of the TOA candidates can be performed with an adaptive or a fixed 
threshold proposal.

The second category is based on parameter estimation theory. The application and 
performance of the joint channel and time delay estimation were studied in [14]. Space-
alternating generalized expectation–maximization (SAGE) algorithm is proposed in [15] 
and used for channel estimation in [16] to reduce the computation. This method is fur-
ther exploited in [17] to estimate the TOA of LTE signals received on multiple sepa-
rate transmission bands. The super-resolution algorithm (SRA) can also be used in TOA 
estimation [18]. Two typical algorithms are the multiple signal classification (MUSIC) 
proposed in [19] and estimation of signal parameters by rotational invariance techniques 
(ESPRIT) proposed in [20]. ESPRIT was applied in TOA measurements of LTE signals in 
[21, 22], and a method named “ESPRIT and Kalman Filter for Time-of-Arrival Tracking” 
(EKAT) was proposed on this basis.

The third category uses tracking loop to realize continuous TOA estimation. A 
computationally efficient receiver that uses a phase-locked loop (PLL)-aided delay-
locked loop (DLL) to track the received signals was presented in [23]. However, this 
method is susceptible to short-delay multipath signals and may even track the signal 
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components that arrive later. In [24, 25], an improved multipath mitigation technique 
was proposed and further studied for LTE signal TOA estimation in multipath envi-
ronments. The technique adapts the multipath estimating delay lock loop (MEDLL), 
a method originally developed for global localization system (GPS) receivers, to LTE 
signals. Later, in [25], the application of this method was further studied. A matrix 
pencil (MP) approach to jointly estimate the TOA and DOA from LTE signals was 
developed in [26]. A tracking loop is then proposed to refine the estimates and jointly 
track the TOA and DOA changes in [27].

However, in urban environments, the presence of signal fading, multipath domi-
nance over direct signals and non-line-of-sight (NLOS) signals can occur more than 
50% of the time, as evident in the experimental data presented in [11]. As such, 
tracking loop-based TOA estimation can be easily destabilized. In general, non-
coherent accumulation can be used to improve the acquisition sensitivity and param-
eter estimation accuracy of localization systems in weak signal environments [28]. 
Therefore, non-coherent accumulation-based methods can be considered to simulta-
neously overcome the challenges of signal multipath propagation and signal power 
attenuation.

A non-coherent estimator was employed in [29, 30], which non-coherently accumu-
lates the correlation results of different symbols in the LTE received signal to obtain 
the correlation profile. Based on this, an adaptive threshold detection method is used 
to estimate the TOA. However, this method is limited by the sidelobe of the cor-
relation results and its low-resolution characteristics, which leads to the low TOA 
estimation accuracy under multipath propagation conditions. In [22], two TOA esti-
mation methods based on the power delay profile (PDP) were introduced, and the 
PDP can be obtained via CIR non-coherent accumulation. The two methods are the 
“TOA estimation based on the model order selection” (TEMOS) estimator [31] and 
the threshold-to-noise ratio (TNR)-based estimator [32]. They have certain anti-mul-
tipath capabilities and can estimate the TOA of weak cellular signals. However, the 
sidelobes of multipath components lead to a decrease in the TOA estimation accura-
cies of these two methods, so they are not suitable for cellular localization systems. 
In [4], a non-coherent integration was used to improve the probability of detection 
while maintaining a constant false alarm rate. However, the technical details of non-
coherent integration were not discussed further. In addition, the influence of mobility 
on TOA estimation in accumulation time was not discussed in any of the above work.

Since the tracking loop-based TOA estimation method can be easily destabilized in 
urban environments, this paper focuses on the first two categories of methods to dis-
cuss the application of non-coherent accumulation. To meet the requirements of dif-
ferent cellular localization systems, two stable and effective TOA estimation methods 
based on non-coherent accumulation are proposed.

The main contributions of this paper are as follows:

1. A received signal model considering receiver motion in the ground localization sce-
nario is established. On this basis, the influence of mobility on non-coherent accu-
mulation is discussed by theoretical analysis and simulations. The conclusions are 
briefly summarized as follows: (1) Mobility does not affect the availability of non-
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coherent accumulation-based methods. (2) The delay variation is the main factor of 
TOA estimation deviation caused by mobility.

2. A “TOA estimation algorithm based on non-coherent accumulation of the channel 
impulse response” (nch-CIR) is proposed. In this method, CIRs are obtained from 
zero-padded channel frequency responses (CFRs) and a multipath stripping algo-
rithm is designed to eliminate the influence of the sidelobes of non-coherent accu-
mulated CIR.

3. The “Super Resolution TOA Estimation Algorithm based on non-coherent accu-
mulation of the covariance matrix” (nch-SRA) is proposed. The accumulation of 
covariance matrices is used to realize the super-resolution algorithm across orthogo-
nal frequency division multiplexing (OFDM) symbols, and the effectiveness of this 
accumulation processing is proved in this paper considering receiver mobility. In 
addition, a covariance matrix dimension reduction method is used to overcome the 
underestimation problem in multipath number estimation.

4. The computational complexity analysis of the two methods is presented. On this 
basis, we explain the parameter selection strategy and propose a zero-padding 
parameter selection formula for nch-CIR to improve computational efficiency.

5. Experimental results are presented. The two methods proposed in this paper can 
achieve high-precision TOA estimation and satisfactory environmental adaptability. 
In addition, they are also compared against two methods: (1) a cell-averaging CFAR 
(CA-CFAR)-based path delay estimation method in [4] and (2) a MEDLL for LTE 
TOA estimation proposed in [24].

The remainder of the paper is as follows: In Sect. 2 , we introduce the reference signal 
structure and the received signal model, and a theoretical analysis of the mobility effects 
is also included in this section. In Sect. 2.2, the effect of non-coherent accumulation pro-
cessing on the TOA estimation is analyzed, and the Cramér–Rao lower bound (CRLB) 
of the non-coherent accumulation-based TOA estimation is presented. In Sects. 2.3 and 
2.4, nch-CIR and nch-SRA are introduced in detail, respectively. In Sect. 3.1, the per-
formance of the two proposed methods and the influence of mobility are analyzed by 
simulation results. In Sect.  2.4.2, the computational complexities of the two methods 
are analyzed, the parameter selection strategy is discussed and a zero-padding param-
eter selection formula for nch-CIR to improve computational efficiency is proposed. In 
Sect.  3, we present the experimental results of the real received signal. In Sect.  4, we 
present the conclusions.

Notation: Matrices and vectors are denoted as uppercase and lowercase boldface let-
ters, respectively, A ∈ C

M×N denotes an M by N matrix, and a ∈ C
M denotes a vector 

with length M. IM denotes an M-dimensional identity matrix, and 0M×N is an M by N 
matrix with zero elements. The operators (·)T , (·)−1 , and (·)H denote the transpose, the 
Hermitian transpose and the inverse of a matrix, respectively. The operator A = diag{a} 
denotes the diagonal matrix formed from a . Int(·) denotes the rounding operation. The 
operators |a|, arg{a} and a∗ are the absolute value, the argument and the conjugate of a 
complex number a, respectively. X ∼ CN (µ, σ 2) denotes that X is a complex Gaussian 
random variable with expectation µ and variance σ 2 . The operators argmin{f [x]} and 
argmax{f [x]} take the x that minimizes and maximizes f[x], respectively.
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2  Methods
2.1  Signal model

Since the reference signals in cellular signals are similar, we use LTE CRS as an example 
to establish the received signal model in this paper. Although there is no CRS in NR, it 
still has a good prospect as a wideband, always-on signal in localization applications. The 
generalization to other reference signals is straightforward.

2.1.1  LTE frame structure and CRS

Without loss of generality, the received signal model is established according to an LTE 
system using the frequency division duplexing (FDD) scheme, normal cyclic prefix (CP), 
and one-antenna-port configuration. A detailed description of these concepts can be 
found in the standard provided by the 3rd Generation Partnership Project (3GPP).

LTE system uses the OFDM modulation scheme for downlink data transmission, and 
the transmitted symbols are mapped to subcarriers with a spacing of �f = 15KHz. 
The total number of subcarriers is denoted as Nc , and the sampling interval is defined 
as Ts = 1/(Nc ×�f ) . As shown in Fig. 1, the transmitted serial data symbols Si[k] are 
grouped by length Nr and mapped to different subcarriers, where Ncp denotes the length 
of cyclic prefix. To reduce the interference between the transmission signals, there is a 
guard band on both sides of the Nr subcarriers, and no data are transmitted on these 
subcarriers. In addition, there is no data transmission on the direct current (DC) sub-
carrier. After symbol mapping, the inverse fast Fourier transform (IFFT) can be used to 
obtain a time-domain OFDM symbol si[n] . Finally, a cyclic prefix is added to alleviate 
multipath interference.

Every 10 ms OFDM signal is delimited into one frame, where each frame has 10 sub-
frames and 20 slots (each subframe contains two slots). The frame structure is shown in 

Fig. 1 OFDM modulation scheme for LTE downlink data transmission
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Fig. 2. In the normal cyclic prefix configuration, each slot contains 7 OFDM symbols. 
The definitions of resource grids (RGs), resource blocks (RBs) and resource elements 
(REs) are also shown in this figure.

The CRS sequence is a Gold sequence defined according to the cell ID, antenna port, 
slot and symbol indices. Figure 2 shows the distribution of the CRS pilot tones on the 
resource block. The CRS transmitted on the symbol i = 1 and 4 in each slot and k-th 
subcarrier, where k = m�CRS+ νi , �CRS = 6 , vi is a constant offset depending on the 
cell ID and the symbol number i, m = 0, · · ·M − 1 and M is the total number of CRS 
pilot tones in an OFDM symbol. Then, the CRS sequence of the i-th OFDM symbol can 
be denoted as Si[m�CRS+ νi] . According to the standard, |Si[m�CRS+ νi]|

2 = 1.

2.1.2  Received signal model

After acquiring baseband signals, the system needs to conduct a cell search and rough 
frame synchronization through the PSS and SSS. The specific process can be found in 
[4]. If the frame timing error is less than the length of the cycle prefix, then the cycle pre-
fix can be removed, and the received symbols in the frequency domain can be obtained 
by the fast Fourier transform (FFT) as

where k = 0, 1, · · · ,Nc − 1 , Hi[k] is the CFR of the i-th OFDM symbol, Wi[k] is a com-
plex Gaussian random variable representing the overall noise in the received signal, and 
Wi[k] ∼ CN(0, σ 2) , where σ 2 is the noise power. In addition, Wi[k] between different 
symbols and subcarriers is not correlated.

The channel parameters in Hi[k] can be treated as unknown constants in a short 
duration, such as the length of an OFDM symbol [22]. However, the TOA estimation 

(1)Ri[k] = Si[k]Hi[k] +Wi[k],

Fig. 2 LTE frame structure and mapping of CRS pilot tones
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methods proposed in this paper are based on non-coherent accumulation. Let the 
non-coherent accumulation duration be Tnch . The channel parameter variation 
between OFDM symbols in Tnch must be considered when establishing the received 
signal model. Such a channel model is shown in Fig. 3.

The CFR of the first OFDM symbol received within Tnch (symbol 0) can be expressed 
as

where L is the number of multipath components, and αo, l , φl and τl correspond to the 
amplitude, phase and delay of the l-th path (path l) associated with symbol 0, respec-
tively. The first arrival path is denoted as path 0.

Then, the CFR of the i-th OFDM symbol (symbol i) is given as

where �Ni is the sampling point difference between the beginning of symbol i and sym-
bol 0, and �N0 = 0 . εu = fu/�f  , where fu is the frequency bias unrelated to mobility, 
such as clock drift and oscillator mismatch. The notations αi,l , φl + 2π�Ni(εl + εu)/Nc 
and τl +�τi,l correspond to the amplitude, phase and delay of path l associated with 
the symbol i, respectively. Since the acceleration of the receiver carriers (e.g., vehicles 
and pedestrians) and scatterers is relatively small in urban environments, the Doppler 
frequency is assumed to be constant over the non-coherent accumulation duration. 
Therefore, εl = fl/�f  , where fl is the frequency bias due to the Doppler frequency of 
path l, and �τi,l is the delay offset of path l associated with symbol i caused by receiver 
movement.

Since εu is independent of multipath transmission, the phase difference caused by εu 
will be eliminated by non-coherent accumulation. Therefore, we only focus on εl and 
�τi,l . Considering a case where the vehicle is running at a high speed of 30 m/s, Tnch is 
taken as 50 ms, the sampling rate is 30.72 MHz and the carrier frequency is 1.8 GHz. 

(2)H0[k] =

L−1

l=0

α0,le
jφl e

−j2πk
τl/Ts
Nc ,

(3)Hi[k] =

L−1
∑

l=0

αi,le
j
(

φl+2π
�Ni(εu+εl )

Nc

)

e
−j2πk

(τl+�τi,l )/Ts
Nc ,

Fig. 3 The channel model considering mobility
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The phase deviation caused by εl can be up to 18π . The Doppler frequency difference 
between each arrival path cannot be neglected. In contrast maximum phase deviation 
caused by �τi,l is only 0.09π . Therefore, in the subsequent theoretical analysis in this 
paper, we will assume that �τi,l ≈ 0 . In the simulations presented in Sect. 3.1, we will 
consider all possible parameter variations (e.g., �τi,l ) to analyze how mobility causes 
TOA estimation errors.

2.1.3  CFR estimation

CFR is estimated by using CRS. Therefore, the symbol i is further defined as the i-th 
OFDM symbol containing CRS, and the input of TOA estimation methods is all of these 
Nnch CFRs estimated from CRS during Tnch.

Since |Si[m�CRS+ νi]|
2 = 1 , the CFR of symbol i can be estimated as follows:

where k = m�CRS+ νi , i = 0, · · · ,Nnch − 1 , W ′
i[k] is the noise term, and 

Wi
′[k] ∼ CN(0, σ 2) . The CFR estimation results can be further written as

And the simplified parameters are

where φi corresponds to the phase that is only related to i, while φi,l is the phase related 
to both symbol number i and path number l. Since τl ≪ NcTs , e−j2πτl/(TsNc) ≈ 1 , the 
influence of the DC subcarrier on TOA estimation has been ignored [24].

2.2  Non‑coherent accumulation for cellular signals

In this section, we analyze the necessity of non-coherent accumulation and give the Cra-
mér–Rao lower bound (CRLB) of TOA estimation based on non-coherent accumulation.

2.2.1  Necessity of non‑coherent accumulation

Figures 4a and 5a show the CIR obtained from real received signals in urban environ-
ments. In Fig. 4a, although the peak of the CIR is significant, the line-of-sight (LOS) sig-
nal component required by the TOA estimation is submerged in the noise. In Fig. 5a, the 
entire signal is submerged in the noise, making it impossible for the TOA estimation.

Obviously, it is not feasible to use only one OFDM symbol to estimate the phase and 
delay of the first arrival path in these channel environments. Since the Doppler fre-
quency difference between each arrival path cannot be neglected, the gain of coherent 
accumulation will decrease rapidly with the increase in accumulation time. Therefore, 
non-coherent accumulation becomes the most suitable method to solve the TOA esti-
mation problem in these environments.

(4)Ĥi[k] = Si ∗ [k]Ri[k] = Hi[k] +W ′
i [k],

(5)Ĥi[m] = Hi[m] +W ′
i [m] = ejφi

L−1
∑

l=0

α′
i,le

−j2πm
�CRSτl/Ts

Nc +W ′
i [m].

(6)

φi = 2π�Niεu/Nc,

α′
i,l = αi,le

jφi,l ,

φi,l = φl + 2π(�Niεl − νiτl/Ts)/Nc,
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Figures 4b and 5b show the non-coherent accumulation of CIRs. The LOS signal com-
ponent significantly exceeds the noise. As a result, misdetection of LOS signals can be 
corrected, and the number of stations available for localization can be enriched.

2.2.2  Necessity of non‑coherent accumulation

Let τ = [τ0, · · · , τL−1]
T be the parameter vector to be estimated. Then, form Hi[m] in (5) 

into vector Hi ∈ C
M and let Hi = Zai , where

(7)
Z = [z0, z1, · · · , zL−1] =









1 · · · e
−j2π(M−1)

�CRSτ0/Ts
Nc

...
. . .

...

1 · · · e
−j2π(M−1)

�CRSτL−1/Ts
Nc









T

∈ C
M×L,

ai =
�

ejφiα′
i,0, e

jφiα′
i,1, · · · , e

jφiα′
i,L−1

�T
∈ C

L.

(a) (b)
Fig. 4 Comparison of the CIR with and without non-coherent accumulation, scenario 1

(a) (b)
Fig. 5 Comparison of the CIR with and without non-coherent accumulation, scenario 2
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Let Ad,i = diag{ai} , dl = ∂zl/∂τl , and Dτ = [d0, · · · ,dL−1] . According to [33], the CRLB 
of time delay estimation based on non-coherent accumulation can be expressed as

When only a LOS signal is received, the CRLB can be simplified as

In the next two sections, two TOA estimation methods based on non-coherent accu-
mulation are proposed to make full use of the benefits brought by non-coherent 
accumulation.

2.3  Nch‑CIR algorithm

The flowchart of the “TOA estimation algorithm based on non-coherent accumulation of 
the channel impulse response” (nch-CIR) is shown in Fig. 6. To improve the resolution of 
CIR, the CFR will be extended to length N = kzpM via kzp-fold zero-padding, where kzp 
is an integer greater than or equal to 1 and M is the total number of CRS pilot tones in an 
OFDM symbol. The parameter selection will be introduced in Sect. 2.4.2 based on compu-
tational complexity analysis. After selecting kzp , the CIRs and their non-coherent accumu-
lation will be computed and used to estimate TOA by a multipath stripping algorithm.

2.3.1  Non‑coherent accumulation on CIR

Firstly, a kzp-fold zero-padding CFR can be obtained as

where k = 0, 1, · · · ,N − 1 , N = kzpM . Taking the inverse discrete Fourier transform 
(IDFT) of Ĥ ′

i[k] and multiplying it by N/M, the normalized zero-padding CIR is

(8)σ̂
2
τ ,CRLB =

σ 2

2







Nnch−1
�

i=0

Re
�

A
H
d,iD

H
τ

�

I− Z(ZH
Z)

−1
Z
H
�

DτAd,i

�







−1

∈ C
L×L

(9)
σ̂ 2
τ0,L=1,CRLB =

6σ 2

(

2π�CRS�f
)2
M(M2 − 1)

Nnch
∑

i=0

∣

∣α′
i,0

∣

∣

2

(10)Ĥ ′
i[k] =

{

Ĥi[k], k = [0,M − 1]

0 , otherwise

(11)

ĥi[n] = hi[n] + wi
′[n] = ejφi

L−1
∑

l=0

α′
i,le

jπ(M−1)Tl [n]s(Tl[n])+
1

M

M−1
∑

m=0

Wi
′[m]ej2πmn/N ,

Fig. 6 Flowchart of nch-CIR
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where n = 0, 1, · · · ,N − 1 , wi
′[n] is the noise term. Since the samples in Wi

′[m] are 
independent of each other, wi

′[n] ∼ CN(0, σ 2/M) . The function s(τ ) and Tl[n] can be 
expressed as

Then, the non-coherent accumulation of Nnch CIRs, which can also be called the power 
delay profile (PDP), can be expressed as

Since the sample in ĥi[n] is a Gaussian random variable, the sample in pnch[n] obeys a 
non-central chi-square distribution with 2Nnch degrees of freedom, and its expectation 
and variance can be written as

2.3.2  Multipath stripping algorithm

In the CIR of an OFDM symbol, the multipath component cannot be expressed as a Dirac 
delta function but as the function defined in (12). After non-coherent accumulation, the 
sidelobes of these components will be highlighted and seriously affect the TOA estimation. 
Therefore, we designed a multipath stripping algorithm for time-domain non-coherent 
accumulation, and it is summarized in Algorithm 1.

In this algorithm, ĥi[n] and pnch[n] are denoted as the CIR estimated from symbol i and 
the non-coherent accumulation result before one iteration. With each iteration, the highest-
power path is established and stripped from each CIR. Then, the updated CIRs and the new 
non-coherent accumulation result are denoted as ĥ′i[n] and [p′nch[n] . When Algorithm  1 
estimates path p, the calculation of each parameter is summarized as follows:

The estimated time delay of path p computed from pnch[n] can be expressed as

The estimated time delay of path p computed from ĥi[n] can be expressed as

(12)s(τ ) =







1

M

sin(Mπτ)

sin(πτ)
, τ �= 0

1, τ = 0

(13)Tl[n] =
n

N
−

�CRSτl/Ts

Nc
.

(14)pnch[n] =
1

Nnch

Nnch−1
∑

i=0

∣

∣

∣
ĥi[n]

∣

∣

∣

2
.

(15)

µnch[n] =
σ 2

M
+

1

Nnch

Nnch−1
∑

i=0

∣

∣hi[n]
∣

∣

2
,

σ 2
nch[n] =

σ 4

M2Nnch
+

2σ 2

MN 2
nch

Nnch−1
∑

i=0

∣

∣hi[n]
∣

∣

2
.

(16)τ̂nch,p =
NcTs

N�CRS
argmax{pnch[n]}.

(17)τ̂i,p =
NcTs

N�CRS
arg max

{

∣

∣

∣
ĥi[n]

∣

∣

∣

2
}

.
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The estimated complex coefficient of path p computed from ĥi[n] can be expressed as

The multipath component can be established by τ̂i,p and α̂′
i,p as

The non-coherent accumulation after one iteration can be computed as

Finally, the TOA estimation can be obtained as

To improve the robustness of the algorithm, the maximum tolerable delay estimation 
error is defined as ετ ,max , which is a design parameter. Let sτ ,p represent the standard 
deviation of τ̂i,p , which can be written as

If sτ ,p > ετ ,max , it is considered that the time delay of this path cannot be obtained from 
a single OFDM symbol. At this point, the signal on this transmission path has been sub-
merged under noise. τ̂i,p is invalid and will lead to unavailability of nch-CIR, while τ̂nch,p 

(18)α̂′
i,p = ĥi

[

N�CRS

NcTs
τ̂i,p

]

.

(19)hi,p[n] = α̂′
i,ps

(

n

N
−

�CRSτ̂i,p/Ts

Nc

)

.

(20)p′nch[n] =
1

Nnch

Nnch−1
∑

i=0

∣

∣

∣
ĥ′i[n]

∣

∣

∣

2
.

(21)τ̂0 = min{τ̂nch,0, τ̂nch,1, · · · , τ̂nch,p, · · · }.

(22)sτ ,p =

√

∑Nnch−1

i=0

[

τ̂i,p −

(

∑Nnch−1

i=0
τ̂i,p

)

/Nnch

]2

.
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is estimated based on non-coherent accumulation, so it is still available. Thus, τ̂i,p should 
be replaced by τ̂nch,p , so that the nch-CIR algorithm can work in low SNR scenarios.

Threshold-based path detection is applied in line 18 of Algorithm 1. This problem can 
be modeled as a binary hypothesis test, which has been discussed in detail in [4]. By set-
ting a constant false alarm rate (CFAR), the threshold can be obtained based on the Ney-
man–Pearson lemma, and the distribution of sample points in pnch[n] can be obtained 
based on (15). The multipath stripping iteration is shown in Fig. 7. In our practice, the 
false alarm rate is set to 0.01

2.4  Nch‑SRA algorithm

According to the discussion in [14, 34, 35], since a multipath channel frequency response 
can be represented as a harmonic model, the SRA can be applied to TOA estimation. It 
has a better multipath estimation capability than the first-peak detection algorithm.

In this section, we introduce the “Super Resolution TOA Estimation Algorithm based 
on non-coherent accumulation of the covariance matrix” (nch-SRA). The effectiveness of 

Fig. 7 The multipath components are stripped to eliminate the influence of sidelobes on TOA estimation
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this non-coherent accumulation processing will be proved. In addition, a covariance matrix 
dimension reduction method is used to overcome the underestimation problem of the 
minimum descriptive length (MDL) estimator, which will be used for multipath number 
estimation.

2.4.1  Non‑coherent accumulation in the frequency domain

According to [36], to utilize the SRA, the CFR of each OFDM symbol should be con-
structed into an input matrix X̂i as

where P is a design parameter, which has to be larger than the path number L, and 
K = M − P + 1 . Let Xi be the ideal input matrix

In addition, let Wi be the noise matrix

Then, the estimated covariance matrix R̂i of symbol i can be calculated from X̂i as

where XiX
H
i  is denoted as the signal covariance matrix, and WiW

H
i  is denoted as the 

noise covariance matrix. Since the samples in W ′
i[m] are independent of each other, the 

other two terms in R̂i , XiW
H
i  and WiX

H
i  are negligible. Then, the SRA can be used to 

estimate τ = [τ0, τ1, · · · , τL−1] by estimating the signal subspace from R̂i.
In urban environments, the delay of the LOS signal may not be estimated from a single 

OFDM symbol. Therefore, the accumulation of covariance matrix R̂i is used to realize 
the non-coherent accumulation in the frequency domain, and it can be expressed as

Obviously, the averaging process will significantly reduce the variance of the noise 
covariance matrix, the second term of R̂nch in (27), and weaken the influence of noise on 
SRA. The amplitude and phase changes of the noise covariance matrix before and after 
accumulation are shown in Fig. 8, where k is the row and p is the column of the noise 
covariance matrix. When k  = p , the amplitude of the noise covariance matrix elements 

(23)X̂i =











Ĥi[0] Ĥi[1] · · · Ĥi[K − 1]

Ĥi[1] Ĥi[2] · · · Ĥi[K ]
...

...
. . .

...

Ĥi[P − 1] Ĥi[P] · · · Ĥi[M − 1]











∈ C
P×K ,

(24)Xi =









Hi[0] Hi[1] · · · Hi[K − 1]
Hi[1] Hi[2] · · · Hi[K ]
...

...
. . .

...
Hi[P − 1] Hi[P] · · · Hi[M − 1]









∈ C
P×K .

(25)Wi =









W ′
i[0] W ′

i[1] · · · W ′
i[K − 1]

W ′
i[1] W ′

i[2] · · · W ′
i[K ]

...
...

. . .
...

W ′
i[P − 1] W ′

i[P] · · · W ′
i[M − 1]









∈ C
P×K .

(26)R̂i = X̂iX̂
H
i = (Xi +Wi)(Xi +Wi)

H ≈ XiX
H
i +WiW

H
i ∈ C

P×P ,

(27)R̂nch =
1

Nnch

Nnch−1
∑

i=0

R̂i ≈
1

Nnch

Nnch−1
∑

i=0

XiX
H
i +

1

Nnch

Nnch−1
∑

i=0

WiW
H
i .
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obviously decreases. This weakens the influence of noise on the SRA algorithm. When 
k = p , the elements represent the noise power. Their variances are significantly reduced, 
but the expectation does not change. This means that (27) only obtains a more accurate 
estimation of the covariance matrix and therefore does not change the noise power.

In the next subsection, we will prove that the signal subspace of R̂nch is the same 
as that of R̂i , thus demonstrating the effectiveness of the non-coherent accumulation 
processing in (27).

2.4.2  Effectiveness of non‑coherent accumulation

According to (5), for a P-dimensional vector space, the span of the following vectors

is the signal subspace. The noise subspace can be established by the span of P − L vectors 
{n0,n1, · · · ,nP−L−1} that are orthogonal to each other and orthogonal to {l0, · · · , lL−1} . 
Then, let

Each column vector in U can be regarded as a basis for the entire P-dimensional vector 
space.

Let

(28)

l0 = [1, · · · , exp(−j2π(P − 1)
�CRSτ0

TsNc
)]T ∈ C

P

l1 = [1, · · · , exp(−j2π(P − 1)
�CRSτ1

TsNc
)]T ∈ C

P

· · ·

lL−1 = [1, · · · , exp(−j2π(P − 1)
�CRSτL−1

TsNc
)]T ∈ C

P

(29)U = [l0, · · · , lL−1,n0,n1, · · · ,nP−L−1] ∈ C
P×P .

Fig. 8 The amplitude and phase changes of the noise covariance matrix before and after the accumulation
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where Ei (L×L) is a diagonal matrix and let

and the ideal input matrix can be decomposed as

Next, the signal covariance matrix of R̂i can be expressed as

where Ei,(L×L)KK
H
E
H
i,(L×L) is a full rank matrix. Therefore, in the eigendecomposition 

of XiX
H
i  , the span of L eigenvectors with nonzero eigenvalues is the same as that of 

{l0, · · · , lL−1}.
In the same way, the signal covariance matrix of R̂nch can be expressed as

The span of L eigenvectors with nonzero eigenvalues obtained from (34) is also the same 
as the span of {l0, · · · , lL−1} . Therefore, the signal subspace of R̂nch is the same as that of 
R̂i . Since ejφi and α′

i,l are not contained in {l0, · · · , lL−1} , the phase deviation caused by 
the system frequency offset fu and the Doppler frequency fl does not change the signal 
subspace. The accumulation of the estimated covariance matrices can remove the inter-
ference phase information while retaining the phase information needed for time delay 
estimation.

In addition, the phase component removed by calculating the covariance matrix is ejφi , 
the same as the phase component removed by square accumulation in nch-CIR. There-
fore, nch-SRA is regarded as a TOA estimation method based on non-coherent accumu-
lation in this paper.

2.4.3  ESPRIT implementation and improved multipath number estimation

After the non-coherent accumulation is completed, the SRA can be used to realize the 
multipath delay estimation. In this paper, the ESPRIT algorithm is applied since it has 
been commonly used in LTE TOA estimation [22–24].

To utilize the ESPRIT, the eigenvalues and eigenvectors of R̂i are first obtained 
by R̂i = Û�

2
Û

H . �2 is a diagonal matrix, and its diagonal elements are the 

(30)Ei =















α′
i,0 0 · · · 0
0 α′

i,1 · · · 0
...

...
. . .

...
0 0 · · · α′

i,L−1
0(P−L)×L















=

�

Ei (L×L)

0(P−L)×L

�

∈ C
P×L,

(31)K =











1 e−j2πτ0�CRS/(TsNc) · · · e−j2πτ0�CRS(K−1)/(TsNc)

1 e−j2πτ1�CRS/(TsNc) · · · e−j2πτ1�CRS(K−1)/(TsNc)

...
...

. . .
...

1 e−j2πτL−1�CRS/(TsNc) · · · e−j2πτL−1�CRS(K−1)/(TsNc)











∈ C
L×K ,

(32)Xi = ejφiUEiK.

(33)XiX
H
i = U

(

EiKK
H
E
H
i

)

U
H = U

[

Ei,(L×L)KK
H
E
H
i,(L×L) 0L×(P−L)

0(P−L)×L 0(P−L)×(P−L)

]

U
H ,

(34)
1

N

N−1
�

i=0

XiX
H
i = U





1
N

N−1
�

i=0

Ei,(L×L)KK
H
E
H
i,(L×L) 0L×(P−L)

0(P−L)×L 0(P−L)×(P−L)



U
H .
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eigenvalues of R̂i . These eigenvalues are arranged from large to small in �2 , denoted as 
�nch = {�0, �1, · · · , �P−1} . Û ∈ C

P×P is a Hermitian matrix containing eigenvectors.
Then, the MDL estimator can be used to estimate the number of multipath compo-

nents L as

where ξ = 0, · · · ,P − 1 . The derivation of (35) can be found in [37]. Then, L̂ can be 
obtained according to

However, the MDL criterion may estimate L inaccurately when the input signal has cer-
tain characteristics. Before non-coherent accumulation, the noise eigenvalues extracted 
from R̂i have large dispersion. Therefore, the MDL tends to overestimate L [38], and it 
may cause ESPRIT to produce TOA outliers.

After non-coherent accumulation, the dispersion of the noise eigenvalues decreases, 
and the gap between the signal and the noise eigenvalues increases. This improves the 
performance of the MDL estimator. However, P in (23) is usually taken as a large value 
to improve SRA performance (for example, P = M/2 [24]), resulting in P ≫ L . In such 
scenarios, MDL tends to underestimate L [39]. As a result, ESPRIT’s accuracy may be 
reduced, and it may even be unable to estimate the TOA of the weak LOS signal.

To solve this problem, the dimension of the covariance matrix used by MDL can be 
reduced to P′ , P′ > L . Let

the new covariance matrix can be then obtained as

Benefit from P′ > L and the small dispersion of the noise eigenvalues extracted from 
R̂nch , the signal subspace of R̂MDL will be same as that of R̂nch and {�L, �L+1, · · · , �P′−1} 
can be approximated as the estimation of noise variance. Therefore, MDL estimator can 
achieve multipath number estimation according to R̂MDL , and it can be realized by sub-
stituting the following equation into (35) as

Once P′ satisfies P′ ≪ P and P′ > L , the size of P′ has little effect on the performance of 
MDL. So, the selection of P′ is relatively loose.

There are also some channel order estimation methods which are suitable for any sce-
narios but require a lot of calculation [40, 41].

(35)MDL[ξ ] = log

(

∏P−1
l=ξ �

1/(P−ξ)

l

1/(P − ξ)
∑P−1

l=ξ �l

)−K (P−ξ)

+
1

2
ξ(2P − ξ) logK ,

(36)L̂ = arg min{MDL[ξ ]}.

(37)
Ûd = [IP′ 0P′×(P−P′)]Û ∈ C

P′×P ,

�
′
nch = {�0, �1, · · · , �P′−1},

�
′2 = diag{�′nch},

(38)R̂MDL = Û
′
�

′2
Û

′H .

(39)
P = P′,

�nch = {�0, �1, · · · , �P′−1}.
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After the number of multipath components is determined, the eigenvectors corre-
sponding to the maximum L̂ eigenvalues in Û are taken. Us = Û[IL̂0L̂×(P−L̂)]

T ∈ C
P×L̂ ; 

ESPRIT’s rotation matrix is then calculated as

By calculating the eigenvalue ψl of � , where l = 0, 1, · · · , L̂− 1 , the estimated results of 
the multipath delay can be obtained as

Finally, the TOA estimation of the received signal can be obtained by taking the mini-
mum value of all estimated τ̂l.

3  Results and discussion
3.1  Simulation results

In this section, the performance of the proposed two methods will be evaluated through 
Monte Carlo simulations. To reflect the characteristics of the two methods more 
clearly, the simulation results of two-path channels will be presented first, which can be 
regarded as simple channel environments. The two methods in two-path channels are 
also compared with the MEDLL. Next, the simulation results in complex channel envi-
ronments are given to further analyze the performance of the two proposed methods.

Common configurations in different channel environments are shown in Table 1. In 
addition, some key points in simulation settings are as follows:

(1) Ground localization scenarios in urban environments are considered, and the 
receiver speed within 50 ms will be regarded as constant.

(2) Assuming that the system does not know the speed information, the mobility error 
will not be corrected in the estimation process. The estimated TOA is considered 
the TOA of the first OFDM symbol, which can better reflect the influence of mobil-
ity on these algorithms.

(3) The direction of the arrival path will affect the delay variation between OFDM sym-
bols and the Doppler frequency. Each individual simulation has a different configu-
ration for the direction of each arrival path.

(40)

Us1 = [IP−1 0(P−1)×1]Us ∈ C
(P−1)×L̂,

Us2 = [0(P−1)×1 IP−1]Us ∈ C
(P−1)×L̂,

� = (UH
s1Us1)

−1
U

H
s1Us2 ∈ C

L̂×L̂.

(41)τ̂l = −
1

πTs�f�CRS
arg{ψl}.

Table 1 Common parameters settings of simulations

Parameter Simulation setting

Nc 2048

CFRs/1 frame 40 (FDD)

Number of independent simulations 400

SNR range [−30 dB, 0 dB]
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3.1.1  The results in the two‑path channel

The simulation results of three methods, MEDLL, nch-CIR and nch-SRA, in two-path 
environments are presented in this subsection. The simulation configurations are sum-
marized in Table 2.

The simulation results are shown in Figs. 9, 10 and 11. To make the figure clearer, the 
y-axis is the root-mean-square error (RMSE) after taking the logarithm. To ensure the 
fairness of the comparison, all the estimated results obtained by MEDLL during the 
accumulation time were averaged and recorded in the figure as Avg. MEDLL. For CIR-
based method, when paths with different phases are superimposed, the delay estimation 
result of the first path may lead or lag, and the envelope of this error is shown in Fig. 12. 
Such errors are noted as multipath error. In addition, we define the mobility error as

which is represented by an orange dotted line.
From the simulation results in Figs.  9, 10 and 11, the following conclusions can be 

drawn as:

1. In low SNR scenarios, signals may be submerged in noise, resulting in rapid deg-
radation of MEDLL performance. On the contrary, benefiting from non-coherent 
accumulation, the weak signal estimation ability of the two methods proposed in this 
paper is obviously better than that of MEDLL. Then, a signal that originally loses the 
ranging ability can now be used for localization, and the performance of the localiza-
tion system can be effectively improved.

 To analyze this issue further, we take the maximum tolerable delay estimation error 
defined in Sect.  2.3 as ετ ,max = 20m/c , where c is the speed of light. When the 
TOA estimation error is less than ετ ,max , the LOS signal is considered to have been 
detected, and its probability is defined as the probability of detection (PD). Figure 13 
shows the PDs of the two methods proposed in this paper and MEDLL in Simula-

(42)ετ ,mobility =
1

Nnch

Nnch−1
∑

i=0

�τi,0,

Table 2 Simulation configurations in two-path channels

Simulation 1 Simulation 2 Simulation 3

Path separation 50 m 50 m 50 m

Accumulation time 10 ms 10 ms 50 ms

MDR 3 dB 3 dB 3 dB

Speed 10 m/s 30 m/s 10 m/s

Results figure Fig. 9a Fig. 9b Fig. 10a

Simulation 4 Simulation 5 Simulation 6

Path separation 50 m 50 m 50 m

Accumulation time 50 ms 50 ms 50 ms

MDR 3 dB −10 dB −10 dB

Speed 30 m/s 10 m/s 30 m/s

Results figure Fig. 10b Fig. 11a Fig. 11b
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tions 1 and 3. The PDs of the two proposed methods are significantly improved com-
pared with that of MEDLL at low SNRs. In addition, the PD of each method will 
decrease sharply below a certain SNR. At this point, the RMSEs will increase sharply.

(a) (b)
Fig. 9 RMSE results of a Simulation 1 and b Simulation 2

(a) (b)
Fig. 10 RMSE results of a Simulation 3 and b Simulation 4
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 However, it should be noted that these two methods are not optimal estimation 
methods. Thus, they cannot achieve the CRLB even in high SNR scenarios.

2. With the increase in SNR, the RMSE of each method approaches the CRLB, mul-
tipath error and mobility error. Among the two methods, the nch-CIR has a better 
weak signal estimation ability. As shown in Fig.  13, with the increase in SNR, the 

(a) (b)
Fig. 11 RMSE results of a Simulation 5 and b Simulation 6

Fig. 12 The multipath error envelope
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PD of nch-CIR can reach nearly 100% 3 dB earlier than that of nch-SRA in both 10 
ms and 50 ms non-coherent accumulation scenarios. In contrast, as a subspace algo-
rithm, the nch-SRA does not suffer from CIR function distortion. Therefore, the nch-
SRA has better multipath estimation ability than nch-CIR.

3. The mobility does not affect the availability of the non-coherent accumulation meth-
ods, and the influence on TOA estimation mainly comes from the delay variation 
between OFDM symbols. As seen from Figs. 9, 10 and 11, with the increase in SNR, 
the RMSE of nch-SRA will approach the mobility error defined by (42), while the 
RMSE of nch-CIR will approach the larger one of multipath error and mobility error.

4. Increasing the non-coherent accumulation time will not only improve the weak sig-
nal estimation ability but also increase the mobility error. After providing the analysis 
of computational complexity, the selection of accumulation times will be discussed in 
detail.

3.1.2  The results in the complex multipath channel

Through the simulation results of the previous subsection, it can clearly see the 
respective characteristics of the two methods. However, the real channel is much 
more complex than the two-path channel, and the simulations in the previous subsec-
tion cannot reflect the influence of the estimated path number L̂ on the TOA estima-
tion of the nch-SRA. Therefore, two complex multipath environments are established 
according to the real received signals. The configurations of these two channels are 
shown in Table 3. In these simulations, the speed of the receiver is set as 10 m/s, and 
the non-coherent accumulation time is set as 50 ms.

The simulation results are shown in Fig.  14. The performance comparison of the 
nch-CIR, the nch-SRA without covariance matrix dimension reduction (DR) and the 
nch-SRA with DR in complex multipath environments is given. It can be seen that 
without DR, the performance of the nch-SRA will degrade significantly. After matrix 

Fig. 13 Comparison of signal detection probabilities of different non-coherent accumulation durations and 
methods
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dimension reduction, the weak signal estimation ability of nch-SRA is improved by 
approximately 6 dB.

In addition, in complex multipath environments, the advantage of nch-CIR’s anti-
noise ability will be highlighted, but its multipath error will also be increased.

3.2  Parameter optimization

Considering the requirements of low power consumption and miniaturization for prac-
tical applications, it is necessary to reduce the computational complexity. Therefore, 
in this section, the computational complexity of the two methods is analyzed, and the 
parameter selection strategy for the two methods is explained.

It is necessary to point out that the computational complexity in this paper is defined 
as the total computational complexity of a TOA estimation divided by the CFR number 
Nnch . In addition, the reduction of computational complexity is carried out on the prem-
ise of ensuring TOA estimation accuracy.

Table 3 Multipath configuration of the simulations

Configuration 1 Configuration 2

Path separations 25 m, 61 m, 91 m 25 m, 120 m, 
146.2 m, 170 m, 
263.5 m, 331.5 m

MDRs −1 dB, −3 dB, −5 dB −1 dB, 2.6 dB, 
1.2 dB, 0.8 dB, 
−3 dB, −5 dB

(a) (b)
Fig. 14 Comparison of the TOA estimation performance of nch-CIR and nch-SRA with and without 
eigenvalue correction
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The computational complexity of the nch-CIR algorithm is analyzed as follows. First, cal-
culating each CIR requires O(kzpM log(kzpM)) multiplications. Then, assuming that the 
number of paths to be estimated is L̂ , O((2L̂+ 1)NnchkzpM) multiplications are needed for 
a TOA estimation. In summary, the equivalent computational complexity of nch-CIR is

Next, the computational complexity of the nch-SRA algorithm is analyzed as follows. 
First, O

(

KP2
)

 multiplications are needed to estimate each covariance matrix. Then, 
completing one SRA when P ≫ L̂ takes approximately O

(

P2(K + 2L̂)
)

 multiplications. 

Since K ≫ (K + 2L̂)/Nnch , in summary, the computational complexity of the nch-SRA 
algorithm is

A comparison of the computational complexity of the two methods and MEDLL under 
the assumption that Nc = 2048 is shown in Fig. 15. The complexity analysis of MEDLL 
can be found in [24]. The computational complexity of nch-CIR is much lower than that 
of nch-SRA.

Based on (43) and (44), the discussion of the parameter selection strategy is presented as 
follows.

For nch-CIR, kzp is an adjustable parameter related to computational complexity, and it 
also determines the resolution of the CIR �τ . When �τ is sufficient to meet the TOA esti-
mation requirements, as

where σTOA,LB is the lowest possible standard deviation of TOA estimation of the cur-
rent received signal, a further increase in kzp will lead to a waste of computing resources. 
However, during the parameter setting process, the system does not know the channel 
characteristics. Therefore, it is assumed that no multipath is present in the received sig-
nal. This hypothesis will only lead to a larger value of kzp and will not reduce the TOA 
estimation accuracy. Then, σTOA,LB can be replaced as σ̂τ0,L=1,CRLB , and the criterion for 
kzp selection is as follows

Then, kzp is minimized as

where SN̂Ri=0 can be obtained according to [42], as
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and σ̂ 2 can be estimated as

where ĥi=0,kzp=1[n] is the CIR in (11) when i = 0 , kzp = 1 . Ncp , Nr and Nc have been 
introduced in Sect. 2.1.

For nch-SRA, P is the only tunable parameter. However, in practice, we found that the 
ESPRIT algorithm is very sensitive to the selection of P, and improper selection will sig-
nificantly increase the TOA estimation error. Therefore, the adjustment of P should give 
priority to the TOA estimation accuracy.

In addition, based on simulations and computational complexity analysis, the selec-
tion of accumulation times should consider hardware performance, carrier dynamics 
and accuracy requirements. For low dynamic carriers, such as pedestrians and vehicles 
in cities, the number of accumulation times can be promoted as much as possible within 
the hardware performance. For highly dynamic carriers, such as vehicles on highways 
and high-speed trains, the mobility error should not exceed the maximum error that can 
be tolerated.

3.3  Experimental results

To evaluate the TOA estimation performance of the proposed methods, real signal rang-
ing experiments were conducted. Aimed at TOA estimation in weak LOS environments 
discussed in this paper, three segments of the received signal reflecting three typical sig-
nal transmission environments are extracted. The base station locations and the move-
ment trajectories obtained by GPS corresponding to three received signal segments are 
summarized in Fig. 16. The actual configurations of the LTE system in the experimental 
environments are shown in Table 4.

(49)σ̂ 2 =
N

(

N − 2N ′
cp

)

N−N ′
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n=N ′
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∣
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∣

∣
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2
, N ′

cp = Int{
3N

Nc
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Fig. 15 Computational complexity comparison between the nch-CIR and the nch-SRA
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In addition, two methods are selected for comparison: the threshold method based on 
CA-CFAR used in [4] and the MEDLL we used in Sect. 3.1. To ensure fairness, (1) all the 
results are unfiltered. (2) The threshold-based method takes the non-coherent accumu-
lated CIR as the input. (3) The MEDLL takes the average value of the TOA estimation 
results within the non-coherent accumulation time as the output.

Figure  17 shows the ranging results obtained from the signal segments shown in 
Fig. 16 based on the two methods proposed in this paper and the two comparison meth-
ods. The offset in Fig. 17 is defined as the offset of the distance between the receiver and 
the base station since time 0, and the GPS offset is obtained by calculating the distance 
between the localization result given by GPS and the base station. In Fig. 17, the cumula-
tive distribution functions (CDFs) of the TOA estimation error are given for quantitative 
analyses of the experiments. Furthermore, the 50% circular error probability (CEP), 95% 
radius (R95) and PD of each method in each signal segment are summarized in Table 5.

After CIRs are non-coherently accumulated, the sidelobe of their function will be 
highlighted. When TOA estimation is carried out by the traditional threshold method 
in this scenario, using a high threshold will lead to a missed LOS signal, and using a low 
threshold may misjudge the sidelobe as the LOS signal. As shown in Fig. 17, the thresh-
old method based on CA-CFAR cannot provide continuous and accurate TOA estima-
tion in any signal segment. In contrast, the nch-CIR can achieve reliable TOA estimation 
in all signal segments due to the avoidance of sidelobe influence.

(a)  Received signal 1 (c)  Received signal 3(b)  Received signal 2 
Fig. 16 Experimental environments

Table 4 LTE configuration in experimental environments

Parameter Configuration

Transmission type Time division duplex (TDD)

Cyclic prefix config Normal ( NDL
symb = 7)

Uplink-downlink config 2

Nc 2048 or 1536

CFRs/1 frame 24

Antenna port config Two-antenna-port
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In the first signal segment, with an increasing influence of the multipath propaga-
tion and the signal power attenuation caused by the directionality of the base station 
antenna in the second half of the trajectory, the signal transmission channel gradually 
meets the weak LOS characteristics. As shown in Fig.  17a, the performance of the 
Avg. MEDLL decreases significantly, while the performance of the nch-CIR method 
also decreases slightly with the increased multipath influence. It can be seen from 
Table 5 that the performance degradation of the Avg. MEDLL at the end of the trajec-
tory leads to its R95 being significantly higher than the two methods proposed in this 
paper.

In the second segment, occlusion sometimes occurs between the base station and 
the receiver. This results in the LOS signal being heavily attenuated and drowned in 
noise. Figure 17b shows that the performance of Avg. MEDLL is poor in this environ-
ment, and the fading LOS signal component is seldom extracted. Therefore, the error 
CDF of the Avg. MEDLL shown in Fig. 18b increases rapidly at approximately 50 m. 
In contrast, the two methods proposed in this paper can extract the LOS channel 
components correctly, and the ranging results are close to the GPS results. In addi-
tion, the large delay between the paths makes the nch-CIR method estimate the TOA 
accurately. The error CDFs of the two proposed methods are similar.

The signal in the third segment is subject to serious multipath interference and 
power attenuation. As seen from Figs.  17c and  18c, the performance of the Avg. 
MEDLL and nch-CIR methods in this signal segment is similar, and both of them 
have high estimation errors. Among them, the error of Avg. MEDLL is mainly due to 
the signal power attenuation which leads to the missed detection of the LOS signal, 
while the error of nch-CIR is mainly due to the complex multipath transmission. In 
comparison, the performance of nch-SRA is significantly better than the above two 
methods.

In conclusion, the two non-coherent accumulation-based methods proposed in this 
paper can achieve high-precision TOA estimation and satisfactory environmental 
adaptability. Among them, the estimation accuracy of nch-SRA is better in complex 
multipath propagation environments because nch-CIR is limited by CIR function 
distortion.

(a) (b) (c)

Fig. 17 The comparison between the ranging results of different methods and the GPS results
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(a) (b) (c)
Fig. 18 The CDF calculated according to the experimental results

Table 5 Statistics of experimental results

95% radius (m) 50% Circular error probability 
(m)

Probability of 
detection (%)

Received signal 1

CA-CFAR > 100 > 100 8.0

Avg. MEDLL 39.8 3.46 90.9

nch-CIR 16.8 3.98 97.3

nch-SRA 10.1 3.09 100

Received signal 2

CA-CFAR > 100 57.5 23

Avg. MEDLL > 100 2.10 83.1

nch-CIR 8.50 1.30 99

nch-SRA 11.2 1.38 99.8

Received signal 3

CA-CFAR > 100 35.5 35

Avg. MEDLL 47.3 11.2 75.5

nch-CIR 38.0 9.77 85.8

nch-SRA 31.6 5 93
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4  Conclusion
To solve the problem that the ground localization system based on cellular signals is vul-
nerable to the hazards of signal power attenuation and multipath propagation in urban 
environments, we discuss the utilization of non-coherent accumulation for cellular TOA 
estimation using LTE CRS as an example. Two TOA estimation algorithms based on 
non-coherent accumulation were proposed. The first is the “TOA estimation algorithm 
based on non-coherent accumulation of the channel impulse response” (nch-CIR), and 
the second is the “Super Resolution TOA Estimation Algorithm based on non-coherent 
accumulation of the covariance matrix” (nch-SRA). Through theoretical analysis and a 
large number of Monte Carlo simulations, we discuss the influence of mobility on these 
two methods. In addition, ground localization experiments are carried out using real 
collected LTE signals. The results show that the two non-coherent accumulation-based 
methods proposed in this paper can achieve high-precision TOA estimation and sat-
isfactory environmental adaptability. (Compared with MEDLL, the CEP of nch-SRA is 
reduced by 10.7%−44.6%, and the PD of nch-SRA is increased by 9.1%−17.5%.) Among 
these two methods, the nch-CIR algorithm has a lower computational cost and better 
anti-noise performance, and the nch-SRA algorithm has better performance in terms of 
multipath mitigation. This work will enhance the opportunistic localization approach for 
cellular downlink signals in urban environments.
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