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Abstract 

In cell-free massive multiple-input multiple-output systems, a large number of distrib-
uted wireless access points (AP) simultaneously serve a number of user equipments 
(UEs). This setup has recently been introduced as a promising alternative for the current 
5G cellular networks. The setup has the ability to offer a good quality of service, espe-
cially for the UEs on the cell edges, be it that there is still a need for low-complexity 
signal processing algorithms. In this paper, the problem of optimal power allocation 
combined with uplink receive combining and downlink transmit precoding is tackled 
by providing efficient distributed MMSE-based algorithms. The necessary fronthaul 
communications to estimate the combining/precoding vectors and the necessary 
large-scale channel statistics are reduced to a minimum and rely on in-network sum-
mation that can be accomplished whenever the APs can be arranged into a tree-
topology. Non-weighted max-sum and max–min are used as utilities for the power 
allocation, but the algorithms are not limited to these cases. Simulations show that the 
proposed algorithms outperform heuristic power allocation methods, both in uplink 
and downlink.

Keywords: Cell-free massive MIMO (CFmMIMO), Uplink receive combining, downlink 
transmit precoding, Optimal power allocation, distributed processing, Minimum-mean-
squared-error (MMSE)

1 Introduction
‘multiple-input multiple-output’ (MIMO) technology plays an important role in pre-
sent-day wireless communication standards and networks. It uses multiple antennas 
to transmit and receive multiple data signals simultaneously over one and the same 
radio channel and hence increase spectral efficiency. Massive MIMO (mMIMO) sys-
tems use a large(r) number of antennas, to reap additional benefits in rich scatter-
ing environments. While mMIMO was initially viewed as a promising concept for 
future cellular wireless communication networks, it already became a reality in 2018 
with commercial deployment in several countries [1]. The signal processing methods 
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required to achieve large spectral efficiency gains compared to conventional multi-
user MIMO systems [2] are available and well understood [3]. The spectral efficiency 
gains associated with mMIMO emerge from the higher spatial resolution, its robust-
ness against small-scale fading due to the so-called ‘channel hardening’ effect, and its 
ability to suppress interference even with imperfect channel state information (CSI).

One of the major shortcomings of current cellular wireless communication net-
works, where a user equipment (UE) is served only by the access point (AP) of the cell 
it resides in, is that UEs on the cell edges experience a low channel gain to their serv-
ing AP and a high interference power from nearby cells. Current uplink (UL) receive 
combining and downlink (DL) transmit precoding algorithms do not effectively miti-
gate such interference. To address this issue, the concept of cell-free massive MIMO 
(CFmMIMO) [4–6] has been proposed as a promising alternative for the current 5G 
cellular networks. In CFmMIMO systems a large number of APs are connected to a 
network center (NC) and cooperate via a fronthaul network to serve a large number 
of UEs in the network simultaneously as shown in Fig. 1. The joint operation of the 
APs then allows for implementing interference-rejecting combining and precoding 
algorithms effective for all UEs in the network. CFmMIMO thus effectively eliminates 
cell borders while still reusing the network layout as rolled out previously, which 
offers the potential to spectacularly increase performance as compared to current cel-
lular mMIMO systems.

CFmMIMO has its roots in works on distributed MIMO [7, 8] and coordinated 
multipoint [9, 10], but with the distinction that a UE can be served by several APs, 
instead of only by the one AP serving the cell in which the UE is located and that 
the transmission is coordinated by a NC. To allow for a scalable and low-complex-
ity implementation, CFmMIMO has to operate under the following constraints [6]: 
(a) the time division duplex (TDD) protocol is used, exploiting channel reciprocity 
between UL and DL; (b) UL channel estimates are computed locally at each AP and 
will be used only locally, which means that they are not directly communicated to the 
NC over the fronthaul links; (c) combining/precoding vectors are computed locally at 

Fig. 1 Comparison of a cellular massive MIMO system (left) with a CFmMIMO system (right). In a CFmMIMO 
system, a large number of APs with multiple antennas are connected to a NC, serving a large number of UEs 
in the coverage area
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the APs and not at the NC; (d) the fronthaul network is only used to send data sym-
bols and the necessary channel statistics to perform centralized data decisions.

1.1  Related works

The authors in [4, 11] proposed to use maximum ratio combining and conjugate beam-
forming for UL and DL data transmission in CFmMIMO systems, presented closed-
form expressions for the spectral efficiency in UL and DL for each UE and formulated 
max–min power control algorithms, which were shown to outperform a cellular setup. 
However, using more complicated combining and precoding algorithms combined 
with heuristic power allocation methods [5, 6, 10, 12, 13], are shown to lead to higher 
throughputs. Optimal UL power allocation and receive combining was investigated in 
[14, 15] using minimum-mean-squared error (MMSE) processing by formulating the 
original max–min signal-to-interference-plus-noise ratio problem for the optimization 
of combining vectors at a central point (like the NC). Unfortunately centralized compu-
tations increase the fronthaul communication and are not complying with the scalable 
characteristics of CFmMIMO systems as defined before. Optimal DL power allocation 
was considered in [5] combined with zero-forcing transmit precoding: although the 
gains were significant, the zero-forcing transmit precoding again requires a fully cen-
tralized computation with significant fronthaul communications. In [16], optimal power 
allocation algorithms for local partial zero-forcing were proposed as a scalable coun-
terpart and showed to achieve a performance close to the performance of zero-forcing 
transmit precoding and the centralized regularized zero-forcing transmit precoding, 
which is a benchmark in DL transmit precoding and can be related to MMSE combin-
ing in the UL via UL/DL duality [17, 18]. In [19], a max sum SE problem in an uplink 
CFmMIMO system was also investigated. Artificial neural networks were used, with the 
UE positions as input and the power control policy as the output. An UL CFmMIMO 
system with limited fronthaul was taken into consideration in [20], where zero-forcing 
was employed locally to heuristically estimate the max sum SE power control scheme. 
For single antenna APs, a deep neural network-based power allocation method was pro-
posed in [21].

1.2  Contributions

The missing point in the research field is the fact that (optimal) MMSE-based combin-
ing/precoding in its original form can only be performed at the NC if all antenna signals 
are transmitted to it, which implies a large fronthaul communication overhead. Oth-
erwise, heuristic combining/precoding schemes can be used at the APs, reducing the 
fronthaul communication overhead strongly, but optimal performance can no longer be 
guaranteed. The same can be stated for the UL and DL power allocation. Therefore, in 
this paper an MMSE-based distributed UL receive combing and power allocation algo-
rithm (D-UL-RCPA) and DL transmit precoding and power allocation algorithm (D-DL-
TPPA) are presented that are scalable and yet attain this optimal performance. The 
combining/precoding vectors are computed only at the APs, such that the computation 
are distributed over the network and are not only performed by the NC. The necessary 
fronthaul communications to estimate the combining/precoding vectors and the nec-
essary large-scale channel statistics are reduced to a minimum and rely on in-network 
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summation that can be accomplished whenever the APs can be arranged into a tree-
topology. The reduction in fronthaul communications is especially large when the total 
number of antennas in the network is larger than the total number of UEs.

The algorithms are derived based on general lower bounds of the system achievable 
rate, taking into account the effect of channel estimation errors. Non-weighted max-sum 
and max–min are used as utilities for the power allocation, but the algorithms are not 
limited to these cases. The former power allocation strategy maximizes the proposed 
lower bound for the total system sum rate, while the latter, targeting fairness across 
users, maximizes the minimum spectral efficiency lower bound across all the UEs. Simu-
lations show that the proposed algorithms outperform heuristic power allocation meth-
ods, both in UL and DL.

1.3  Paper outline and notation

The paper is organized as follows. The signal model is presented in Sect. 2. In Sect. 3 an 
optimal UL receive combining and power allocation strategy is developed and an effi-
cient distributed algorithm for a CFmMIMO system is presented, A similar algorithm 
is developed in Sect. 4 for DL transmit precoding and power allocation, using UL/DL 
duality. Some further considerations about the power allocation strategies and network 
topologies are presented in Sect.  5. The performance of the proposed algorithms is 
numerically evaluated and compared in Sect. 6. Conclusions and further research direc-
tions are provided in Sect. 7.

Superscripts .T and .H are used to denote the transpose and conjugate transpose opera-
tion. Bold lower case letters b = [b1 . . . bK ]T are used to denote complex vectors and 
bold upper case letters are used to represent complex matrices A = [a1 . . . aK ] . IN is 
the N × N  identity matrix and 0 denotes an all zeros vectors whose dimensions are clear 
from the context. The multi-variate circularly symmetric complex Gaussian distribution 
with correlation matrix R is denoted by NC(0,R) , diag{a1, . . . , aK } is used to denote a 
diagonal matrix with a1, . . . , aK  on its diagonal and Blkdiag{A1, . . . ,AK } is used for a 
block-diagonal matrix with the square matrices A1, . . . ,AK  on the diagonal. Finally ||.|| 
and E{.} denote the Euclidean norm and expected value operator respectively.

2  Signal model
Consider a CFmMIMO system consisting of K single-antenna UEs and L APs, each hav-
ing N antennas and local processing capabilities, that are randomly deployed over the 
coverage area. The APs are connected to a NC via a fronthaul network. This setup allows 
for coherent transmission and reception of data to and from the UEs. In the CFmMIMO 
literature [5, 22] it is often assumed that the number of antennas NL is much larger than 
the number of UEs K and that both L and K are large.

The time-frequency resources are divided into coherence blocks of τc samples during 
which the channels are assumed to remain constant [18]. APs and UEs operate using a 
TDD protocol and a channel coherence interval is divided into three phases: UL chan-
nel estimation, UL data transmission and DL data transmission. These phases consist of 
τp , τu and τd samples respectively, such that τc = τp + τu + τd . Since the TDD protocol is 
used, the UL channel and the DL channel are assumed to be each other’s conjugate due 
to channel reciprocity, so that indeed only UL channel estimation has to be performed. 
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The channel from UE k to AP l is given by hkl ∈ C
N and the channel from UE k to all the 

APs is denoted by hk = [hTk1 . . . hTkL]T ∈ C
NL . The channels hkl are assumed to remain 

constant during a coherence block and drawn from an independent correlated Rayleigh 
fading realization NC(0,Rkl) in each coherence block.1 Rkl ∈ C

N×N is the positive semi-
definite spatial correlation matrix describing the large-scale fading, including geometric 
pathloss, shadowing, antenna gains, and spatial channel correlation [24]. The large-scale 
fading is assumed to remain constant over different coherence blocks. The Gaussian 
distribution models the small-scale fading. Due to the spatial distribution of the APs 
in the network, the channel vectors of different APs are independently distributed, i.e. 
E{hklhHkn} = 0N×N for l  = n , such that channel estimation can be performed indepen-
dently at each AP. A schematic overview of the signal model is provided in Fig. 2.

2.1  UL channel estimation

In the UL channel estimation phase, the UEs send UL pilots to allow for simultane-
ous channel estimation at the APs. There are τp mutually orthogonal pilot signals 
{φ1, . . . ,φτp} ∈ C

τp of τp samples, normalized to have unit power. This implies that φH
i φj 

is equal to τp if i = j and 0 otherwise. Each UE is assigned to a pilot signal when it gains 
access to the network (see [4, 17] for pilot assignment protocols). As K is often much 
larger than τp , the same pilot signal will be assigned to multiple UEs, leading to pilot 
contamination and the associated negative effects on the channel estimation [3, 25, 26]. 
The received signal ypilotl ∈ C

N×τp at AP l is given as:

where ppilotk  is the pilot transmit power of UE k and npilot
l ∈ C

N×τp is thermal noise. 
Let St ⊂ {1, . . . ,K } denote the subset of UEs assigned to the same pilot signal φt for 
t ∈ {1, . . . , τp} . After despreading, i.e. multiplying the signal coherently with φt/||φt || , the 
received signal ypilottl ∈ C

N at AP l is given as

(1)y
pilot
l =

K

k=1

p
pilot
k hklφ

H
k + n

pilot
l

(2)y
pilot
tl =

∑

i∈St

√

τpp
pilot
i hil + n

pilot
tl

Fig. 2 Schematic overview of the signal model with the used symbols

1 One can consider the more general Rician fading channel [23], but this is not considered here for simplicity.
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where the thermal noise npilot
tl  for each pilot signal t is distributed as NC(0,R

pilot
nlnl ) . 

Assuming that AP l is aware of the local large-scale fading correlation matrix Rkl (see 
e.g., [27–30] for correlation matrix estimation methods) of all the UEs, the MMSE esti-
mate of hkl for k ∈ St is

where

The MMSE estimate ĥkl of hkl is an unbiased estimate with estimation error 
h̃kl = hkl − ĥkl . The distribution of both random variables is given by

It is noted that the N × N  matrices 
√

τpp
pilot
k Rkl�

−1
tl  and Ckl can be precomputed for 

complexity reduction at AP k, since they only depend on the channel statistics, which are 
changing slowly throughout the communication.2

2.2  UL data transmission

In the UL data transmission phase, the received signal yULl ∈ C
N at AP l is given by

where sk ∈ C is the signal transmitted by UE k with UL transmit power 
pk = E{sk sHk } and nUL

l ∈ C
N ∼ NC(0,RUL

nlnl
) is an additive Gaussian noise com-

ponent, including thermal antenna noise and quantization noise during UL trans-
mission. Furthermore, Hl = [h1 l . . . hKl] ∈ C

N×K  , s = [s1 . . . sK ]T ∈ R
K  and 

p = [p1 . . . pK ]T ∈ C
K  are the concatenation of the channels from all the UEs to 

AP l, the signals transmitted by all the UEs and the UL transmit powers respectively. 
Stacking the received signals of all APs in yUL = [yUL,T1 . . . yUL,TL ]T ∈ C

NL as well 

as the noise components in nUL = [nUL,T
1 . . . nUL,T

L ]T ∈ C
NL ∼ NC(0,RUL

nn ) where 
RUL
nn = Blkdiag{RUL

n1n1
, . . . ,RUL

nLnL
} , results in the network-wide signal model:

with H = [h1 . . . hK ] = [HT
1 . . . HT

L ]T ∈ C
NL×K .

(3)ĥkl =
√

τpp
pilot
k Rkl�

−1
tl y

pilot
tl

(4)�tl = E
{

y
pilot
tl y

pilot,H
tl

}

=
∑

i∈St

τpp
pilot
i Ril + Rpilot

nlnl
.

(5)ĥkl ∼ NC

(

0, τpp
pilot
k Rkl�

−1
tl Rkl

)

,

(6)h̃kl ∼ NC

(

0,Rkl − τpp
pilot
k Rkl�

−1
tl Rkl

)

� NC(0,Ckl).

(7)yULl =
K∑

k=1

hklsk + nUL
l = Hls+ nUL

l

(8)yUL = Hs+ nUL

2 Changes are due to UE mobility or new scheduling decisions, but these channel statistics changes are typically 50 
times slower than the small scale fading statistics changes, so are assumed negligible for several coherence blocks.
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In network-wide UL receive combining the signal sk is estimated by linearly combining 
the received signal yUL with a combining vector vk ∈ C

NL , i.e. ŝk = vHk yUL . Note that this 
linear combining can be performed in the network if AP l selects the local combining 
vector vkl ∈ C

N in vk = [vTk1 . . . vTkL]T and computes the local estimate vHkl yl . The NC 
then estimates sk by combining the local estimates as:

The goal is then to choose the combining vector vk that provides a good estimate ŝk , but 
where the APs use only local CSI. A popular choice in CFmMIMO literature is max-
imum-ratio (MR) combing with vkl = ĥkl [4, 31, 32]. An alternative heuristic scheme, 
which performs generally better but requires more processing power of the AP is local 
MMSE combining [6]. Network-wide UL power allocation algorithms for MR combin-
ing can be found in [14, 15, 22]. In this paper, network-wide MMSE combining [17] 
and associated power allocation algorithms will be considered, requiring typically net-
work-wide CSI. However this paper shows that if a limited number of parameters can 
be exchanged between the NC and the APs, this network-wide MMSE combining and 
associated power allocation can still be obtained locally at each AP.

2.3  DL data transmission

In the DL data transmission phase, the received signal yDLk  at UE k is given by

where ζk ∈ C is the signal transmitted to UE k with unit DL transmit power, ρk is the 
network-wide DL transmit power allocated to UE k, nDLk ∼ NC

(

0, σ 2,DL
k

)

 is an additive 

Gaussian noise component, wk = [wT
k1 . . .w

T
kL]T ∈ C

NL is the concatenation of the pre-
coding vectors used for UE k. Also denote the DL transmit powers as 
ρ = [ρ1 . . . ρK ]T ∈ R

K  and the predocing matrix as W = [w1 . . . wK ] ∈ C
NL×K  . Again 

the selection of the precoding vector should only depend on local CSI for CFmMIMO. 
The most popular choice is MR precoding with

DL power allocation algorithms for different local precoding schemes can be found 
in [4, 5, 33]. In this paper, network-wide MMSE precoding [34] and associated power 
allocation algorithms will be considered, requiring typically network-wide CSI. How-
ever this paper shows that using a similar approach as for UL data transmission, this 

(9)ŝk =
L∑

l=1

vHkl y
UL
l = vHk hk sk +

∑

i �=k

vHk hisi + vHk nUL.

(10)
yDLk =

L∑

l=1

hHkl

K∑

i=1

wil
√
ρiζi + nDLk

= hHk wk
√
ρkζk +

∑

i �=k

hHk wi
√
ρiζi + nDLk

(11)wkl =
ĥkl

√

E{||ĥkl ||2}
.
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network-wide MMSE precoding and associated power allocation can still be obtained 
locally at each AP.

3  UL receive combing and power allocation
3.1  UL receive combining

A standard lower bound for the ergodic capacity of the UL data transmission for UE k 
can be obtained by rewriting (9) using the estimated channels as

and is given by the achievable UL spectral efficiency (SE) [24, 35]

with the instantaneous effective signal-to-interference-and-noise ratio SINRUL,inst
k  given 

as

where Ci = Blkdiag{Ci,1, . . . ,CiL} . The expectation is with respect to the different chan-
nel realizations.

The UL SE is valid for any combining vector vk . In this paper optimal receive com-
bining is considered and it can be seen from expression (13) that the optimal instan-
taneous combining vector can be obtained by maximizing the generalized Rayleigh 
quotient in the instantaneous SINR in (14). The optimal combining vector is unique 
up to a scalar multiplication, and so to make the solution unique, the solution that 
minimizes the mean-squared error E{|sk − ŝk |2|Ĥ} is chosen. The MMSE combining 
vector for UE k is then given by

with P = diag{p1, . . . , pK } as shown in [27].
The following theorem shows that the MMSE combining vectors for UEs 

k = 1 . . .K  , i.e., the combining matrix VMMSE = [vMMSE
1 , . . . , vMMSE

K ] , can be com-
puted in a way that allows for an efficient distributed implementation.

Theorem 3.1 The MMSE combining matrix VMMSE can be written as

(12)ŝk = vHk ĥk sk + vHk h̃k sk +
∑

i �=k

vHk (ĥi + h̃i)si + vHk nUL

(13)SEUL,1k = τu

τc
E
{

log2

(

1+ SINRUL,inst
k

)}

[bits/s/Hz]

(14)
pk |vHk ĥk |2

∑

i �=k pi|vHk ĥi|2 +
∑K

i=1 piv
H
k Civk + vHk RUL

nn vk
.

(15)vMMSE
k = pk

(

ĤPĤH +
K∑

i=1

piCi + RUL
nn

)−1

ĥk

(16)VMMSE =






X1

...
XL




U = XU
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with

Proof See “Appendix 1”. �
In [27], the network-wide distributed MMSE receive combining (N-DRC) algorithm 

is proposed based on the computation of the MMSE combining vectors in Theorem 3.1. 
The algorithm can be summarized in the following steps for each coherence block: 

1 Each AP l estimates Ĥl and computes Xl as in (18) and XH
l Ĥl . It transmits the com-

bined signals xl = XH
l y

UL
l  and the parameters XH

l Ĥl to the NC.
2 The available links in the network are used efficiently such that the NC obtains the 

in-network sums x =
∑L

l=1 xl and XH Ĥ =
∑L

l=1 X
H
l Ĥl.

3 The NC uses XH Ĥ to compute U = [u1 . . . uK ] as in (17) and computes the esti-
mates ŝk as uHk x for all UEs.

Some important advantages of this distributed algorithm compared to a centralized 
algorithm, i.e. when each AP serves as a receiver that directly transmits its received sig-
nals to the NC, are repeated here:

• The NC only has to invert a K × K  matrix in (17) instead of the LN × LN  matrix in 
(15). However, this requires that each AP inverts an N × N  matrix to compute Xl , 
where the necessary local matrices can be precomputed and kept fixed as long as the 
transmit powers p remain unchanged.

• If the in-network sums in step 2 are computed efficiently exploiting the available net-
work topology, this will reduce the network signaling strongly compared to the trans-
mission of all NL signals.

• The method is also robust against link failures: if the data ( xl and XH
l Ĥl ) from a cer-

tain AP l is not received as a term in the in-network sums, the obtained estimate will 
still be optimal for a network setup with AP l removed.

It is important to note that the MMSE combining vectors depend on the UL trans-
mit powers, the noise statistics and the channel estimation Ĥ , which in turn depends 
on the pilot transmit powers, the pilot assignment strategy and the large-scale statis-
tics. The UL SE in (13) is as a consequence also influenced by these parameters. In the 

(17)U =
(

P−1 + XH Ĥ
)−1

=
(

P−1 +
L∑

l=1

XH
l Ĥl

)−1

,

(18)Xl =
(

K∑

k=1

pkCkl + RUL
nlnl

)−1

Ĥl .
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following subsection a way to improve this achievable bound is provided, based on 
power allocation.

3.2  UL power allocation preliminaries

With UL power allocation3 the UL transmit powers p are set to maximize some utility 
function for some UL receive combining strategy. The problem can be formulated math-
ematically as:

where, for instance, (13) is used for SEk and P is a convex region of allowed UL transmit 
powers p for the UEs, e.g. corresponding to a total power constraint or a per UE power 
constraint. The utility function is assumed to be (quasi-)concave and nondecreasing. In 
this paper, two specific utility functions are considered, but the proposed algorithm is 
not limited to these cases. The channel hardening makes power allocation different in 
CFmMIMO systems compared to single-antenna systems. While the combining vec-
tors vk will be adopted depending on small-scale variations of the channels, p will only 
be adopted to large-scale variations to effectively compute the expectations in e.g. (13). 
Since the expected value operation in the expression for the SE in (13) contains the log-
arithm, finding the optimal power allocation is difficult due to the non-trivial relation 
between p and the SEUL,1k (p, vk) . Therefore a different SE formulation will be considered 
for the UL power allocation, which is obtained under the assumption of channel hard-
ening4. For this, only the part of the desired signal received over the average channel 
E{vHk hk} is treated as the true desired signal, i.e.

This results in a deterministic channel under uncorrelated interference and noise for 
which the following SE (also referred to as the use-and-then-forget bound [24]) can be 
derived:

where

(19)
max
p∈P

U(SE1, . . . , SEK )

s.t. SEk = SE(p, vk(p)) ∀k

(20)
ŝk = E

{
vHk hk

}
sk +

(
vHk hk − E

{
vHk hk

})
sk

+
∑

i �=k

vHk hisi + vHk n.

(21)SEUL,2k = τu

τc
log2

(

1+ SINRUL,2
k

)

[bits/s/Hz]

(22)
pk
∣
∣E
{
vHk hk

}∣
∣2

∑K
i=1 piE

{∣
∣vHk hi

∣
∣2
}

− pk
∣
∣E
{
vHk hk

}∣
∣2 + E

{∣
∣vHk n

∣
∣2
}

3 The pilot transmit powers are assumed to remain fixed. The estimation of the quantities Ck and ĥk is thus not depend-
ing on the assigned UL transmit powers. Joint pilot and UL transmit power allocation methods can be found in [36, 37], 
but are not considered here.
4 When the number of antennas per AP is large, the effective channels to the desired UEs are almost deterministic after 
combining/precoding, although the channel responses are random. This phenomenon is called channel hardening and 
can be expressed as v

H

k
hk

NL
→ E{vH

k
hk }

NL
 if NL → ∞.
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defines the signal-to-interference-and-noise ratio SINRUL,2
k  . The expectations are with 

respect to the different channel realizations. The expression is in theory only depending 
on the large-scale fading.

It is intuitively clear that the SEUL,2k  is a less tight lower bound for the ergodic capacity 
than the achievable lower bound given by SEUL,1k  , since the channel estimates are not uti-
lized in the signal estimation, i.e.

However, simulations in [24, Sect. 4.2] show that the bound is still tight for LN ≫ 1 , i.e. 
when channel hardening has its effect. The bound is also tight for a deterministic chan-
nel, i.e. when only 1 channel realization is used to compute the expectations over the 
channel realizations. The simulations also show that the bound is tight for any combin-
ing scheme, but that using the MMSE combining vector leads to a tighter bound than 
any other multiple of this MMSE combining vector, e.g. when a constraint vHk ĥk = 1 is 
used in each coherence block.

Since closed form expressions for the expectations in (22) are difficult to derive for the 
optimal MMSE combining vector (15),5 the next theorem provides a way to estimate the 
expectations without having access to the true channels H.

Theorem 3.2 If the combining vector vk is independent of the instantaneous channel 
estimation error {h̃k}∀k and also independent of the instantaneous UL noise nUL , then the 
expectations can be computed without knowledge of the true channel H:

(23)SEUL,1k ≥ SEUL,2k .

(24)E
{
vHk hk

}
=γk ,

(25)E
{∣
∣vHk hi

∣
∣
2
}

=υki + ξki = υki +
L∑

l=1

ξ lki,

Table 1 Overview of used symbols for power allocation

Symbol Meaning Place of 
computation

γk E{vHk ĥk} NC

υki E{|vHk ĥi |2} NC

ξki E{vHk Civk} NC

νk E{vHk RULnnvk} NC

µk E{vHk vk} NC

ξ lki E{vHklCilvkl} AP

ν lk E{vHklRULnlnlvkl} AP

µl
k

E{vHklvkl} AP

5 There are closed form expressions available in [15, 38] when the number of antennas in the network grows to infinity, 
but these do not allow for an efficient distributed computation.
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The right-hand side symbols are defined in Table 1 and these only depend on the channel 
estimates and the large-scale statistics {Ck}∀k and RUL

nn .

Proof See “Appendix 2”  �
The requirements for Theorem 3.2 are valid for the MMSE combining vector (15), as 

vMMSE
k  only depends on the instantaneous channel estimates Ĥ and the fixed matrices 

{C}∀k and RUL
nn .

The (ergodic) statistics in Table  1 can be estimated using (recursive) time-averaging 
at the NC or in a distributed way using in-network sums for ξki and νk , if each AP l has 
access to the transformation matrix U , since vkl = Xluk.

3.3  UL receive combining and power allocation

To be able to perform the power allocation problem (19) with SE(p, vk(p)) defined as 
SEUL,2k  in (21), the following alternating optimization method is proposed. 

1 Set i ← 0 and initialize p0 randomly such that p0 ∈ P.
2 Determine the combining matrix Vi+1 for each coherence block that maximizes: 

 for fixed transmit powers pi . Since the relation between SEUL,2k (pi, vk) and vk is non-
trivial, (23) is used to obtain a tractable optimization problem: 

 Due to the nondecreasing function U(SE1, . . . , SEK ) , this is equivalent to maximiz-
ing SINRUL,inst

k  in (14) for each k in each coherence block. The solution is thus given 
by (15) and (16).

3 Determine the optimal transmit powers pi+1 that maximize: 

(26)E

{∣
∣
∣vHk nUL

∣
∣
∣

2
}

=νk =
L∑

l=1

νlk .

(27)
max
V

U(SE1, . . . , SEK )

s.t. SEk = SEUL,2k (pi, vk) ∀k

(28)
max
V

U(SE1, . . . , SEK )

s.t. SEk = SEUL,1k

(
pi, vk

)(

≥ SEUL,2k

(
pi, vk

))

∀k .

(29)
max
p∈P

U(SE1, . . . , SEK )

s.t. SEk = SEUL,2k

(

p, vi+1
k

)

∀k .
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4 Set i ← i + 1 and return to step 2.

To following theorem is relevant to determine the convergence of the proposed alternat-
ing optimization method.

Theorem 3.3 Suppose that f (x1, x2) is continuously differentiable over a closed convex 
set X = X1 × X2 . Furthermore, suppose that for each xi ∈ X  , the maximizations

and

are uniquely attained. Let {xi} be the sequence generated from a random initial point 
x0 ∈ X  using the above equations. Then every limit point of {xi} is a stationary point of 
maxx∈X f (x).

Proof The proof is a simplification of the proof in [39, Sect. 2.7] for block coordinate 
descent methods. Only two blocks are considered here and the maximizations in the 
theorem need to be replaced with a minimization of −f (x) to obtain the same result. �

Although not fully applicable to the proposed alternating optimization method, this 
theorem can still be used to show that the alternating optimization method converges 
to a stationary point of (19) when the number of antennas NL goes to infinity. In that 
case, the bound (23) is tight, i.e. SEUL,1k ≈ SEUL,2k  and this implies that step 3 of the 
alternating optimization method is optimizing (19) for a fixed pi . The maximum in 
optimization problems (27) is uniquely attained whenever U is nondecreasing, so it 
still needs to be checked if a unique solution to (29) can be found for the given utility 
function.

Based on this, a distributed UL receive combining and power allocation algorithm 
(D-UL-RCPA) is proposed in Algorithm 1, where the (16)–(18) is used in each coher-
ence block and the statistics to determine SEUL,2k (p, vi+1

k ) are gathered over B coherence 
blocks before a better power allocation is computed. If the channel statistics {Rkl}∀k ,l 
remain constant and the necessary large-scale statistics are estimated without estima-
tion error, i.e. B → ∞ , one can see that the proposed algorithm is basically performing 
the alternating optimization method with (27)–(28). It exhibits the same convergence 
behavior in that case. For a finite window B the large-scale statistics for the power allo-
cation step are only obtained approximately but the algorithm will still provide a good 
performance compared to other methods as will be shown in the simulations sections. 
Simulations show also that p is not changing much after 3 iterations if the large-scale 
statistics remain constant, demonstrating the good tracking performance of the pro-
posed algorithm.

(30)xi+1
1 = arg max

z1∈X1

f
(

z1, x
i
2

)

(31)xi+1
2 = arg max

z2∈X2

f
(

xi+1
1 , z2

)
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Algorithm 1 also has the advantages listed in Sect. 3.1: The NC only has to deal with 
K × K  matrices, the communications over the fronthaul network can be done effi-
ciently using in-network sums and the algorithm is robust against link failures. The 
extra communication of U and the parameters {ξki, νk}∀k ,i are only necessary for the 
power allocation step, so whenever the performance of the estimation task at hand is 
sufficient, these steps can be removed to save network resources. Furthermore, it can 
be seen as an adaptive algorithm, since is adapts to slow changes in the channel statis-
tics over time.
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4  DL transmit precoding and power allocation
4.1  DL power allocation preliminaries

When a precoding vector wk is used to encode data for UE k, the desired signal is received 
at UE k propagates with a gain of hHk wk . The UE k does not know this gain a priori, but it 

can estimate its mean value E{hHk wk} , which is a common approach in massive MIMO sys-
tems. The received DL signal can then be expressed as

Here E{hHk wk} represents a deterministic channel and the other terms represent uncor-
related interference and noise. The following achievable SE can then be obtained using 
the hardening bound [4, 5, 24]:

with SINRDL
k  given as

Here the assumption E{||wk ||2} = 1 is not implied, while this is the case in [4, 5, 24]. The 
total transmit power allocated to UE k is still given by ρkE{||wk ||2} , which is no longer 

only determined by ρk , but is also influenced by the statistics of E{||wk ||2}.
The DL power allocation problem with a per AP total power constraint, is finally for-

mulated as

with Pl
t the maximum transmit power of AP l and

4.2  UL–DL duality

Instead of solving the primal problem (42) directly, it is proposed to solve the dual prob-
lem using a dual subgradient descent procedure. The dual problem to (42) can be found 
by introducing L dual variables σ = [σ1 . . . σL]T for the L power constraints and an 
extra common dual variable � resulting in

(39)
yDLk = E

{
hHk wk

}√
ρkζk +

(
hHk wk − E

{
hHk wk

})√
ρkζk

+
∑

i �=k

hHk wi
√
ρiζi + nDLk .

(40)SEDL,2k = τd

τc
log2

(

1+ SINRDL
k

)

[bits/s/Hz]

(41)
ρk |E{wH

k hk}|2
∑K

i=1 ρiE{|wH
i hk |2} − ρk |E{wH

k hk}|2 + σ
2,DL
k

.

(42)

max
ρ≥0

U( SE 1, . . . , SE K )

s.t. SE k = SEDL,2k (ρ,W(ρ)) ∀k ,
K∑

k=1

ρkµ
l
k ≤ Pl

t ∀l

(43)µl
k = E

{
wH
klwkl

}
.

(44)min
σ v≥0,�≥0

max
ρ≥0,W

LDL(ρ,W, σ v , �)
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where the Lagrangian LDL(ρ,W, σ v , �) is given as

For some specific cases with deterministic channels (e.g. [40, 41]), it is possible to show 
that the duality gap between the primal and dual problem is zero, so that solving the 
dual problem will result in a primal optimal solution. Unfortunately this is not the case 
for the general CFmMIMO DL power allocation problem in (42), so convergence to a 
global optimum can not be guaranteed. However, the proposed algorithm will provide 
an efficient way of obtaining a set of locally optimal DL power allocation and precoding 
vectors.

To be able to find the optimal precoding strategy for W , a change of variables is intro-
duced. SEDL,2

k  in (42) is replaced with the expression for the SE of a virtual UL network 

SEUL,v
k = τd

τc
log2(1+ SINRUL,v

k ) , depending on the newly introduced variables pv , which 
will replace the DL transmit powers ρ . The virtual UL network SINRUL,v

k  depends on pv ,W 
and σ and is defined as:

In order to show that this results in the same allowed region for SE k , it can be shown 
that any set of DL SEs {SEDL,2k }∀k obtained with specific DL transmit powers ρ ≥ 0 can 

also be obtained as UL SEs {SEUL,vk }∀k with specific virtual transmit powers pv ≥ 0 and 
visa versa. Equating the virtual UL SE expression SEUL,vk  with the DL SE expression SEDL,2k  
for all UEs, as done in expression (47),

result in the following relation between the UL and DL transmit powers:

with

The matrix M is real-valued with positive diagonal elements and non-positive off-diago-
nal elements, and is column diagonally dominant. Therefore, M is an M-matrix [42]. As 

(45)U
(

SEDL,21 , . . . , SEDL,2K

)

− �

L∑

l=1

σ v
l

(
K∑

k=1

ρkµ
l
k − Pl

t

)

.

(46)

pvk

∣
∣E
{
wH
k hk

}∣
∣2

∑K
i=1 p

v
i E

{∣
∣wH

k hi
∣
∣2
}

− pvk

∣
∣E
{
wH
k hk

}∣
∣2 +

∑L

l=1
σ v
l µ

l
k

︸ ︷︷ ︸
νk

.

(47)

(48)ρ =
(
M(pv ,W, σ v)

)−1
diag

{

σ
2,DL
1 , . . . , σ 2,DL

K

}

pv

(49)[M]ki =







�

i �=k p
v
i E

��
�wH

k hi
�
�2
�

+ νk if k = i,

−pvkE
��
�wH

i hk
�
�2
�

if k �= i.
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M-matrices are inverse positive, it is clear that for each pv ≥ 0 , solving (48) will yield DL 
transmit powers ρ ≥ 0 . Similar results can be shown for the inverse relation, where pv is 
computed from ρ.

Summing all left- and right-hand sides of (47) for all UEs, results in the following relation 
between the virtual UL transmit powers and DL transmit powers:

As such the dual problem (44) can be written as

where the Lagrangian LUL,v(pv ,W, σ v , �) is given as

If the expressions for estimating the statistics in Theorem 3.2 are used in (46) and the 
expectations are replaced by immediate channel estimations, an expression for the vir-
tual instantaneous SINRUL,v,inst

k  is obtained as

with RUL,v
nn = Blkdiag{σ v

1 IN , . . . , σ
v
L IN } . Again the optimal value for wk that maximizes 

this Rayleigh quotient is given by a closed form formula similar to (15), but with p and 
RUL
nn  replaced by pv and RUL,v

nn .
This instantaneous expression for SINRUL,v,inst

k  can again be used to define a SEUL,v,1k  as

which provides as before a tight upper bound for the virtual SEUL,vk  , i.e.:

and this bound is tight for LN ≫ 1.
Taking the equivalence defined above into account, the combined DL transmit precod-

ing and power allocation problem can be formulated as

with the optimal value for ρ defined using (48).

(50)
K∑

k=1

ρk

L∑

l=1

σ v
l µ

l
k =

K∑

k=1

pvkσ
2,DL
k .

(51)min
σ v≥0

min
�≥0

max
pv≥0,W

LUL,v(pv ,W, σ v , �)

(52)U(SEUL,v1 , . . . , SEUL,vK )− �

(
K∑

k=1

pvkσ
2,DL
k −

L∑

l=1

σ v
l P

l
t

)

.

(53)
pvk |wH

k ĥk |2
∑

i �=k p
v
i |wH

k ĥi|2 +
∑K

i=1 p
v
iw

H
k Ciwk + wH

k RUL,v
nn wk

(54)SEUL,v,1k = τd

τc
E
{

log2

(

1+ SINRUL,v,inst
k

)}

[bits/s/Hz]

(55)SEUL,vk ≤ SEUL,v,1k

(56)
min

σ v ≥ 0
� ≥ 0

max
pv ≥ 0
W

U(SE1, . . . , SEK )− �

(
K∑

k=1

pvkσ
2,DL
k −

L∑

l=1

σ v
l P

l
t

)

s.t. SEk = SEUL,vk (pv ,wk , σ
v) ≤ SEUL,v,1k (pv ,wk , σ

v) ∀k
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4.3  DL transmit precoding and power allocation

Since the dual problems (56) is convex in σ v , it can be solved via a subgradient projec-
tion algorithm, where the subgradient for σ v can be found using the proposed UL-DL 
duality. A subgradient can be derived from (45) as

where ρ⋆(σ v), �⋆(σ v) and W⋆(σ v) are the optimal solutions of min�≥0

maxρ≥0,W LDL(ρ,W, σ v) and can also be obtained using the optimal solutions of 
min�≥0 maxρ≥0,W LUL,v(pv ,W, σ v) and using (48) to obtain ρ⋆(σ v) . By inspecting 
min�≥0 maxpv≥0,W LUL,v(pv ,W, σ v) , it can be shown that this is the dual problem of the 
following virtual UL problem:

The optimal solutions for ρ⋆(σ v) and W⋆(σ v) can alternatively be found from this virtual 
UL problem, which is a particular instance of problem (19) and can thus be solved using 
Algorithm 1.

However, as computing the required maximization for (57) in the CFmMIMO 
setup will require multiple iterations of Algorithm  1 over different coherence 
blocks, this will result in a slow tracking speed. Therefore, it is proposed to use 
the solutions after one iteration of the alternating optimization method to update 
the dual variables. Also all the subgradients (57) are scaled with a common fac-
tor �⋆(σ v) , which can be compensated by the stepsize, so its computation can be 
avoided. The simulations in Sect. 6 will show that the convergence behavior is not 
affected.

The proposed algorithm to solve the DL transmit precoding and power allocation 
problem can thus be summarized as follows: 

1. Set i → 0 and initialize pv,0 ≥ 0, σ v,0 ≥ 0 randomly
2. Determine the precoding matrix Wi+1 for each coherence block that maximizes: 

 for a fixed transmit power pv,i and σ v,i by using the virtual quantities in the MMSE-
expression (15) or (16).

3. Determine the optimal transmit powers pv,i+1 that maximizes: 

(57)�
⋆(σ v)

(

Pl
t −

K∑

k=1

ρ⋆
k (σ

v)E
{

w⋆,H
kl (σ v)w⋆

kl(σ
v)

}
)

(58)

max
pv≥0,W

U
(

SEUL,v1 , . . . , SEUL,vK

)

s.t.

K∑

k=1

pvkσ
2,DL ≤

L∑

l=1

σ v
l P

l
t .

(59)
max
W

U(SE1, . . . , SEK )

s.t. SEk = SEUL,v,1k

(

pv,i,wk , σ
v,i
)

∀k
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 and compute ρi+1 using (48).
4. Update the dual variables with stepsize ti using the current estimate for the subgradi-

ent: 

5. Set i ← i + 1 and return to step 2.

Algorithm 2 presents the corresponding distributed DL tranmsit beamforming and 
power allocation algorithm (DL-D-DTTP). Algorithm 2 also has the advantages of 
Algorithm  1, since the communications over the fronthaul network and the local 
computations are similar. The introduction of the dual variables σ and the virtual 
uplink network allows to make abstraction of the DL transmit power constraints 
in (44) and transforms them into a virtual noise source using RUL,v

nn  . The virtual 
uplink problem has only one constraint related to the virtual uplink powers and can 
then be efficiently solved using Algorithm 1. The dual subgradient method is used 
to update the dual variables, which can be done efficiently and locally at each AP, 
without requiring the transmission of the transmit precoder Wl = XlU to the other 
APs or NC.

It is possible for an AP to include additional constraints on its antenna powers. 
Examples are per-antenna power constraints or per-cluster constraints when an 
AP is a concatenation of different antenna arrays with local power amplifiers. The 
proposed algorithm can be extended by introducing an additional dual variable 
σ v
l,m for each additional constraint locally at AP l and redefining νlk as 

∑

m σ v
l,mν

l,m
k  

where the sum is over all the local constraints and νl,mk  is the measured power rel-
evant for the m-th constraint. The dual variable update can be extended in a simi-
lar way. The virtual noise correlation matrix RUL,v

nlnl
 in (62) should then include the 

extra dual variables on the corresponding positions. The introduction of the addi-
tional constraints at an AP increases the computational load of an AP, but not of 
the NC.6

(60)

max
pv≥0

U(SE1, . . . , SEK )

s.t. SEk = SEUL,vk

(

pv ,wi+1
k , σ v,i

)

∀k
K∑

k=1

pvkσ
2,DL
k ≤

L∑

l=1

σlP
l
t

(61)σ i+1
l = max

(

σ i
l − ti

(

Pl
t −

K∑

k=1

ρi+1
k µ

l,i+1
k

)

, 0

)

∀l.

6 Note that the per-AP power constraint will only hold upon convergence of the subgradient algorithm. Therefore, it 
may be necessary to rescale the DL transmit powers locally at each AP l such that 

∑
K

k=1
ρklµ

l

k
≤ P

l
t before transmitting 

the DL signal. This will not influence the convergence of the algorithm.
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5  Further considerations
5.1  Examples of power allocation strategies

In this subsection, two different utility functions are introduced, which will be used for 
the simulations in Sect. 6. It is repeated that the requirements are that the utility func-
tion is monotonically nondecreasing in each argument SEk and that the power allocation 
problem in (29) and (60) have a unique maximum that can be obtained. The details of 
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the algorithms used to obtain the optimal solution for (29) and (60) can be found in the 
provide references.

The first utility function is the non-weighted max-sum SE, which represents the total 
number of bits per second that are transmitted without considering how these bits are 
assigned between the UEs. The max-sum SE problem can be expressed as

Note that the above problem is usually not convex in p or ρ for given combining/pre-
coding matrices Vi+1,Wi+1 and, hence, it is hard to obtain the optimal solution [43]. 
There exist global optimization methods [44, 45], but their computational complexity is 
unsuitable for real-time applications. A pragmatic solution is to instead settle for a local 
optimum. Common approaches for finding a local optimum to the max-sum SE prob-
lem are the weighted MMSE method [46] or successive convex optimization [47], which 
result in iterative algorithms. Schemes using machine learning can potentially find bet-
ter solutions [20, 21], but require some off-line training and will not provide guaranteed 
convergence to the optimal solution. Therefore, successive convex optimization [47] will 
be used for the simulations in Sect. 6.

The max-sum SE intrinsically provides a higher SE for users with good channel condi-
tions, while leaving users with worse channel conditions at a disadvantage. Therefore the 
goal of the second utility function is to provide uniform fairness for all users. The aim of 
the non-weighted max–min SE fairness is to maximize the minimum SE among all the 
UEs in the network:

Since the SE of UE k is an increasing function of the effective SINRUL,2 or SINRUL,v 
respectively, maximizing the minimum SE is the same as maximizing the minimum 
effective SINR among all the UEs. This quasi-concave problem can be solved using the 
epigraph trick [48] combined with a bisection method [4, 5, 47, 49] or using fixed-point 
algorithms [50]. Since all these algorithms converge to a global maximum, the methods 
in [5] is chosen for the simulations in Sect. 6.

Other utility functions that result in convex optimization problems for fixed combin-
ing/precoding matrices Vi+1,Wi+1 [44], are for example the weighted geometric mean 
∏

k SE
wk

k  and the weighted harmonic mean (
∑

k wk/SEk)
−1 for some positive weights 

{wk}∀k.

5.2  Network topologies

The proposed algorithms have been described as if the network has a tree topol-
ogy, where all the APs are connected and the NC is the root node. However, they are 
applicable to any network topology since selecting a tree topology is always possible 
whenever all the APs are connected [51]. The tree topology allows for an efficient way 
of computing the required in-network sums in D-UL-RCPA and D-DL-TPPA by start-
ing from the leaf nodes and summing up all the required data when moving towards 
the root node. Therefore, many current technologies like radio-stripes [52], very large 

(70)U(SE1, . . . , SEK ) =
K∑

k=1

SEk .

(71)U(SE1, . . . , SEK ) = min
k

SEk .
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aperture mMIMO [53], distributed mMIMO [54], etc. can be used to realize the pro-
posed algorithms.

Table 2 provides an overview of the required communications in one iteration i of the 
proposed algorithms compared to a network-wide setup, where each AP merely trans-
mits its received signals to the NC. Note that quantities like XH

l Ĥl are Hermitian sym-
metric, so only transmitting the upper blockdiagonal part suffices. The big advantage of 
the proposed algorithms is that the training signals do not need to be transmitted to the 
NC and that only K signals are broadcast over the different links instead of NL. Therefore 
the gain in fronthaul communication can be expressed as O(NLK ) . Another advantage of 
the proposed algorithms is that the required large-scale statistics Rkl have to be available 
only at AP l and that the processing requirement of the NC is relaxed, i.e. it only has to 
invert K × K  matrices instead of NL× NL matrices.

6  Numerical simulations
Numerical simulations are used in this section to demonstrate the performance and 
convergence properties of the proposed algorithms. The parameters used for the setup 
are presented in Table 3. The propagation model in [24, Sec. 4.1.3] with spatially cor-
related fading is used. τu = 190 and τd = 190 are used respectively when evaluating 

Table 2 Number of complex scalars communicated over each fronthaul link (either from AP to NC 
or from NC to AP) during B coherence blocks

Channel 
estimation

UL signal estimation UL power 
allocation

DL data transmission DL power 
allocation

Network-wide SEPA and 
DTPA

BτpNL BτuNL – B(τdK + NL) –

D-UL-SEPA and D-DL-
DTPA

– B(τuK + K2) K2 + K BτdK + K2 K2 + K

Table 3 Key parameters of considered simulation setup, based on [17]

Parameter Value

Network area 1 km × 1 km

Number of APs L = 50

Number of antennas per AP N = 2, 4, 8, 16

Frounthaul communication gain O( NL
K
) O(2),O(4),O(8),O(16)

Bandwidth 20 MHz

Noise model R
UL
nn = σ 2

IM , σ 2,DL

k = σ 2 ∀k
Noise power σ 2 = −94 dBm

Maximum UL transmit power 100 mW

Maximum DL transmit power Pt = 1000 mW

Samples per coherence block τc = 200

Channel gain at 1 km − 140.6 dB

Pathloss exponent 3.67

Height difference between AP and UE 10 m

Standard deviation of shadow fading 4

Number of coherence block B = 100

Number of Monte Carlo simulations 50
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the SE expressions for UL and DL. A per UE transmit power constraint is used for UL 
power allocation and a per AP transmit power constraint for DL power allocation. The 
presented figures and tables are the results averaged over 50 Monte Carlo simulations. 
The APs and UEs are distributed uniformly at random over the area with a wrap-around 
technique to determine the shortest distance between a UE and the APs in each Monte 
Carlo simulation. B = 100 channel realizations are used to estimate the expectations and 
to estimate the large-scale statistic of Table 1.

6.1  Numerical simulations UL

6.1.1  Estimation method

The first UL simulations are conducted to investigate the validity of Theorem 3.2 and the 
tightness of (23). This is done for a scenario where all UEs are transmitting with maxi-
mum power pk = 100 mW∀k and MMSE-based combining is used. The results for dif-
ferent numbers of antennas per AP are shown in Fig. 3.

SEUL,2
k  and the SEUL,2

k  (true), which is the result obtained when the true channel is used 
in the expectation, are almost perfectly overlapping for all the considered setups. This 
shows that when a sufficiently large number of samples are used to estimate the quanti-
ties of Theorem 3.2, the required assumptions hold for the MMSE-based combining vec-
tor. Here B = 100 samples are used for the expectations, so this provides already a good 
estimate of the average channel statistics.

Regarding the tightness of the bound in (23) which can be observed by comparing 
SEUL,1

k  and the SEUL,2
k  , it can be observed that SEUL,2

k  is always a lower bound for SEUL,1
k  , 

but this bound becomes tighter as the number of antennas per AP increases. For the 
setup with N = 16 , there is almost no difference between the different SEs, which vali-
dates the assumption of equality in the proposed algorithms.

6.1.2  Convergence behavior

To investigate the convergence behavior of D-UL-RCPA, the utility function over differ-
ent iterations is plotted in Fig. 4, both for max-sum and max–min power allocation. The 

Fig. 3 Different UL SE for MMSE combining with fixed UE transmit power
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iterations are started from a random feasible power allocation p0 ≥ 0 . The results are 
plotted for both SEUL,1

k  and SEUL,2
k  and for different numbers of antennas.

As expected, both 
∑K

k=1SEUL,1
k  and 

∑K
k=1 SEUL,2

k  for max-sum power allocation and 
minkSEUL,1

k  and mink SEUL,2
k  for max–min power allocation are monotonically increas-

ing and reach an equilibrium point after 3 iterations for each setup. This is even the case 
for the max-sum power allocation, although the power allocation problem is here only 
solved to local optimality. The fast convergence and significant performance improve-
ment are desirable properties of D-UL-RCPA.

6.1.3  Performance

The performance of the combining vectors and power allocation obtained after conver-
gence of D-UL-RCPA is compared with heuristic distributed combining methods, 
namely MR combining and Local MMSE (LMMSE) combining. In MR combining, the 
local combining vector is chosen as vkl = ĥkl for UE k at AP l. In LMMSE, the combin-
ing vector is chosen to minimize the local MMSE criterion E{||sk − vHkl yl ||2|Ĥl} and is 

given as vkl = pk

(

ĤlPĤ
H
l +

∑K
i=1 piCil + RUL

nlnl

)−1
ĥkl . The optimal power allocation 

for both combining schemes is chosen similar as in D-UL-RCPA, but with U fixed to an 
identity matrix IK  . The optimal power allocation for MR combining is then found in one 
iteration, since vkl is independent of p . For LMMSE combining this will result in an iter-
ative algorithm, but convergence is here also observed after 3 iterations. The cumulative 
distribution function (CDF) of the UL SE per UE is provided in Fig.  5 for 3 kinds of 
power allocation: uniform power allocation (where each UE transmits with maximal 
power), max-sum and max–min power allocations and for setups with either N = 4 
antennas per AP or N = 16 antennas per AP. The values of the utility function compared 
to uniform power allocation are given in Table 4 for max-sum and Table 5 for max–min 
power allocation.

It is clear that the proposed power allocation algorithm improves the utility function 
for all the presented receive combining methods. MR combining requires no inversion, 
but its performance is always inferior to LMMSE combining. Even though LMMSE 

Fig. 4 Convergence behavior of 
∑K

k=1 SEk  and mink SEk  for D-UL-RCPA over different iterations with max-sum 
(upper figure) and max–min (lower figure) power allocation and a per UE transmit power constraint
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combining requires an inversion of an N × N  matrix in each coherence block at each AP, 
while for MMSE-based combining this inversion only has to be performed after B coher-
ence blocks at an AP l, its performance is always inferior to MMSE-based combining.

6.2  Numerical simulations DL

6.2.1  Convergence behavior

D-DL-TPPA is run for 40 iterations using a stepsize of ti = min(1, 10/i) and initialized 
with virtual UL powers pv,0k = 100 mW ∀k and a random feasible DL power allocation 
ρ0 ≥ 0 . The utility function over different iterations is plotted in Fig. 6, both for max-
sum and max–min power allocation. To verify if the constraints in all the APs are satis-
fied, the maximal constraint variation maxl

∑K
k=1 ρkE{wH

klw
H
kl } is shown in Fig. 7 over 

the different iterations. The per AP transmit power constraints are satisfied when this is 
below 1000 mW.

While difficult the observe in Fig.  6, the utility function is no longer monotoni-
cally increasing since the proposed method is based on a dual subgradient projection 
algorithm. However, the objective remains approximately constant after 4 iterations. 

Fig. 5 UL SE of SEUL,1 (–) and SEUL,2 (- -) for different combining schemes with uniform, max-sum and max–
min power allocation

Table 4 
∑K

k=1SEk  after convergence of D-UL-RCPA (uniform power allocation | max-sum power 
allocation)

L = 50, N = 8, K = 50 L = 50, N = 16, K = 50 L = 100, N = 8, K = 50

SEUL,2 SEUL,1 SEUL,2 SEUL,1 SEUL,2 SEUL,1

MR 42.5|55.1 – 82.0|104.1 – 89.2|121.3 –

LMMSE 122.3|129.3 127.7|135.0 184.7|197.4 187.0|199.7 195.5|206.6 198.3|209.7

MMSE 248.0|285.2 257.7|295.4 371.6|417.8 375.0|421.2 389.0|441.3 393.4|447.0

Table 5 minkSEk  after convergence of D-UL-RCPA (uniform power allocation | max–min power 
allocation)

L = 50, N = 8, K = 50 L = 50, N = 16, K = 50 L = 100, N = 8, K = 50

SEUL,2 SEUL,1 SEUL,2 SEUL,1 SEUL,2 SEUL,1

MR 0.0|0.8 – 0.0|1.4 – 0.0|1.6 –

LMMSE 0.7|2.3 0.7|2.4 2.0|3.4 2.1|3.4 2.2|3.7 2.3|3.7

MMSE 1.2|4.0 1.3|4.0 3.2|6.4 3.2|6.4 3.5|7.0 3.5|7.1
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Looking at the constraint violation in Fig. 7, it can be observed that only for N = 4, 8, 16 
and max-sum power allocation convergence is reached after 40 iterations. For N = 2 
is fluctuating around 1100 mW, probably because the APs have a lower degree of free-
dom (fewer antennas) so need more iterations with smaller stepsizes to converge. The 
constraint violations for max–min power allocation are converging very slowly, which is 
typical for dual subgradient methods. However, as will be shown in the next subsection, 
the performance after 40 iterations is still superior even when the DL transmit powers 
are normalized to satisfy the constraints.

6.2.2  Performance

Finally, the performance of the precoding vectors and power allocation obtained after 40 
iterations of D-DL-TPPA is again compared to MR precoding and LMMSE precoding. 
To make sure that the per AP transmit power constraint is not violated during the evalu-
ation, the DL transmit powers are normalized at the APs where this constraint is vio-
lated. The heuristic power allocation method proposed in [17] is used to determine the 
DL transmit powers for full power transmission. The cumulative distribution function 

Fig. 6 Convergence behavior of 
∑K

k=1 SEDL,2k  and mink SEDL,2k  for D-DL-TPPA over different iterations with 
max-sum (upper figure) and max–min (lower figure) power allocation and a per AP transmit power constraint

Fig. 7 Convergence behavior of maximal constraint violation maxl
∑K

k=1 ρkE{w
H
klw

H
kl} of D-DL-TPPA over 

different iterations with max-sum and max–min power allocation and a per AP transmit power constraint
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(CDF) of the DL SE per UE are provided in Fig. 8 for 3 different power allocations: full 
power transmission, max-sum and max–minpower allocation, and for setups with either 
N = 4 antennas per AP or N = 16 antennas per AP. The values of the utility function 
compared to full power transmission are given in Table 6 for max-sum and Table 7 for 
max–min power allocation.

Similar observations as for the UL simulations can be made concerning the perfor-
mance of D-DL-TPPA. The proposed power allocation algorithm improves the utility 
function for all the presented precoding methods, MR combining requires less compu-
tational effort, but its performance is inferior and MMSE-based combining outperforms 
LMMSE combining.

7  Conclusion
This paper has presented distributed MMSE-based receive combining, transmit beam-
forming and power allocation strategies for both UL as well as DL data transmission in 
CFmMIMO systems. The necessary fronthaul communications to estimate the combin-
ing/precoding vectors and the necessary large-scale channel statistics are reduced to a 
minimum and rely on in-network summation that can be accomplished whenever the 

Fig. 8 a Full power transmission. b Max-sum power allocation. c Max–min power allocation

Table 6 
∑K

k=1SEDL,2 after convergence of D-DL-TPPA (full power transmission | max-sum power 
allocation)

L = 50, N = 8, K = 50 L = 50, N = 16, K = 50 L = 100, N = 8, K = 50

MR 59.8|65.7 111.3|124.2 124.4|145.0

LMMSE 162.0|128.0 297.2|197.4 325.9|216.3

MMSE 214.3|278.0 336.0|412.5 369.7.0|453.2

Table 7 minkSEDL,2 after convergence of D-DL-TPPA (full power transmission | max–min power 
allocation)

L = 50, N = 8, K = 50 L = 50, N = 16, K = 50 L = 50, N 
= 16, K 
= 50

MR 0.4|0.8 0.9|1.4 1.0|1.5

LMMSE 0.4|2.4 1.4|3.5 1.6|3.9

MMSE 0.9|4.0 2.6|6.5 2.8|7.2
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APs can be arranged into a tree-topology. The computations are also distributed over the 
different APs and the NC. It is shown that the MMSE-based algorithms reach optimal 
performance.

In this paper it is assumed that all APs serve all the UEs in the network and the data of 
all the UEs is transmitted to one central NC. This is not scalable when the network size 
and the number of UEs grow larger. Therefore in future work, the current algorithms will 
be used as benchmark algorithms when designing future scalable algorithms in which 
not all APs serve all users and certain APs take some of the functiona;ity of the NC. To 
not revert to cellular systems, a user-centric approach [17, 32] will be followed, in which 
each UE can determine its serving APs.

Appendix 1: Proof of Theorem 3.1

Proof The combining matrix VMMSE = [vMMSE
1 ...vMMSE

K ] can be written as

The matrix VMMSE can further be written as

with Xk and XH Ĥ defined in (18) and (17) respectively. In (73) the Sherman-Morrison-
Woodbury formula is used together with the fact that T is a block-diagonal matrix. �

Appendix 2: Proof of Theorem 3.2

Proof By using hk = ĥk + h̃k with ĥk and h̃k independent random variables, the 
required expectations for Theorem 3.2 can be written as:

(72)VMMSE =









ĤPĤH +
K�

i=1

piCi + RUL
nn

� �� �

T









−1
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where in (74) and (75) independence between vk and the zero-mean channel estimate h̃k 
is used. Similarly, it is possible to rewrite the last expectation as

where this time independence between vk and the additive uplink noise vector nUL is 
used. �
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}

,

(75)

E
{∣
∣vHk hi

∣
∣
2
}

=E

{

vHk

(

ĥi + h̃i

)(
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∣
∣
∣

2
}

+ E

{
L∑

l=1

vHklCilvkl

}

=E

{∣
∣
∣vHk ĥi
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