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Abstract 

Algorithms and frameworks for distributed machine learning have been widely used 
in numerous artificial intelligence engineering applications. A cloud platform provides 
a large number of resources at a lower cost and is a more convenient method for such 
applications. With the rapid development of containerization, native cloud combina-
tions based on Docker and Kubernetes have provided effective resource support for 
distributed machine learning. However, native Kubernetes does not provide efficient 
priority or fair resource scheduling strategies for distributed machine learning in 
computationally intensive and time-consuming jobs, which easily leads to resource 
deadlock, resource waste, and low job execution efficiency. Therefore, to utilize the 
execution order between multiple jobs in distributed machine learning as well as the 
dependencies between multiple tasks for the same job, considering intra- and inter-
group scheduling priorities, a combined priority scheduling method is proposed for 
distributed machine learning based on Kubernetes and Volcano. Considering the user 
priority, task priority, longest wait time, task parallelism, and affinity and non-affinity 
between the parameter server and worker nodes, a combined priority scheduling 
model of inter- and intra-job priority is proposed, which is mapped into a scheduling 
strategy of inter- and intra-group priorities of pods, enabling the efficient scheduling 
and training of distributed machine learning. The experiment results show that the 
proposed method achieves preferential resource allocation for urgent, high parallelism, 
and high-priority jobs with high-priority users and improves the job execution effi-
ciency. The affinity and anti-affinity settings among pods reduce the time of informa-
tion interaction between the parameter server and worker nodes to a certain extent, 
thereby improving the job completion efficiency. This group scheduling strategy allevi-
ates the problems of resource deadlock and waste caused by insufficient resources in 
cloud computing.

Keywords: Cloud computing, Distributed machine learning, Resource scheduling, 
Prioritization

1 Introduction
Machine learning generally involves a large number of iterative computations, requir-
ing a large amount of resources to perform jobs or handle data [1–3]. The abundance of 
cloud computing resources promote machine learning services on the cloud platform. 
An efficient resource scheduling method for cloud computing is the key to ensuring the 
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execution efficiency of distributed machine learning. A cloud computing service model 
has been proposed for the on-demand scheduling and allocation of distributed com-
puting resources and storage space [4, 5]. Resource management and scheduling meth-
ods for cloud computing have also been studied to improve the system efficiency [6–8]. 
The resource allocation process is divided into three parts, i.e., resource scheduling, 
resource mapping, and resource adjustment, and a new resource allocation manage-
ment framework has been proposed [9]. Distributed machine learning can be classi-
fied into data [10] and model [11] parallel modes. Massive resources are scheduled in 
parallel for training a model based on large-scale data, improving the performance and 
privacy protection of large-scale data training models [12]. A dynamic trend prediction 
ant colony algorithm was proposed to effectively solve the problems of network space 
occupation and a slow response time [13]. To improve the resource utilization and ser-
vice quality of cloud computing, a dynamic resource scheduling system based on par-
ticle swarm optimization (PSO) and a radial basis neural network (RBF) was designed 
[14]. Some effective virtual scheduling schemes have also been proposed to reduce the 
response time [15, 16]. Using k-means resource requirements to predict future tasks, 
a multi-objective resource scheduling algorithm was proposed to minimize the cost of 
virtual machines [17]. A cache-aware scheduling model was also proposed based on a 
neighborhood search, in which jobs are scheduled for nodes with similar capabilities to 
reduce the job execution time [18]. In addition, an elastic cluster and scheduling strat-
egy was optimized to improve the resource utilization and reduce the resource costs 
while ensuring the quality of service (QoS) [19]. The rough set theory has been used to 
solve the load balance problem among servers and improve the overall performance of 
the cluster [20].

A max–min fair scheduling algorithm was proposed to schedule different types 
of resources [21]. An efficient priority task scheduling algorithm was designed to 
satisfy the different priorities and QoS requirements of users [22]. In addition, an 
efficient smallest-height-first dominant resource fairness scheduling algorithm was 
proposed to guarantee near-optimal scheduling and isolation without prior knowl-
edge of the coflow size using the smallest-height-first and the monopolistic domi-
nant resource fairness bandwidth allocation strategy [23]. A task scheduling method 
based on artificial bee foraging optimization that considers four QoS metrics was 
proposed [24]. A method applying a computational efficiency analysis and embed-
ded vectors was proposed to solve the excessively high user data dimensions caused 
by mean shift clustering [25]. Furthermore, a leader election algorithm was pro-
posed for improving the scalability of applications within containers and achieving 
a dynamic resource allocation. This algorithm selects leaders from various nodes in 
a cluster and manages them more effectively through leaders [26]. To achieve load 
balancing and solve the resource allocation issues in a cluster, leader election algo-
rithms and leader-based consistency maintenance mechanisms have been analyzed, 
demonstrating the importance of leader distribution across nodes in a cluster for 
highly scalable load balancing [27].
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There is an execution order between multiple tasks in distributed machine learning, 
and a certain degree of dependency exists between multiple tasks in the same job. To 
solve the problems of resource deadlock, resource waste, and low job execution effi-
ciency caused by computationally intensive and time-consuming jobs without efficient 
priority and fair resource scheduling strategies, intra- and inter-group scheduling pri-
orities should be considered to effectively cope with resource competition. To address 
these issues, a combination priority scheduling method for distributed machine learning 
is proposed herein.

The main contributions of this paper are summarized as follows.

(1) This study examines the factors influencing job and task execution priorities, 
including user priority, job priority, maximum wait time, task parallelism, and affin-
ity and anti-affinity, to comprehensively design the model training of distributed 
machine learning from the job and task levels.

(2) Inter- and intra-group job priorities are constructed based on factors influencing 
the job priority.

(3) A combined priority scheduling method is proposed that not only realizes the prior 
scheduling of jobs and tasks by implementing inter- and intra-group priority sched-
uling strategies, but it also solves the problem of resource deadlock and resource 
waste in distributed machine learning by implementing the pod group scheduling 
strategy. Furthermore, the combined priority scheduling method improves the effi-
ciency of resource allocation and shortens the job completion time.

The remainder of this paper is organized as follows. Section  2 describes the related 
studies. Section  3 presents the proposed combined priority scheduling method. Sec-
tion 4 discusses the experiment results. Finally, Sect. 5 concludes the study.

2  Related work
Kubernetes includes numerous resource scheduling methods. A Kubernetes container 
scheduling system is proposed that considers central processing unit (CPU) utilization, 
memory utilization, disk utilization, power consumption, the time required for select-
ing images, and the number of running containers [28]. A scheduling strategy based 
on the Docker cluster of a self-defined Kubernetes scheduler was proposed to improve 
the cluster scheduling fairness [29]. A two-level scheduling framework, i.e., Kuber-
netes-on-EGO (a microservice-oriented management framework developed by Gol-
ang), combines Kubernetes and EGO scheduling systems for improving the resource 
utilization and scheduling efficiency [30]. A cloud computing resource management 
method based on container technology was proposed to balance the use of the over-
all resources [31]. A progress based on the ProCon (a progress-based container place-
ment scheme) container placement scheme (a progress-based container placement 
scheme) considers the real-time and predicted future resource utilization for balancing 
the resource competition in a cluster and reducing the completion time [32]. A new 
preemptive scheduling strategy was proposed to solve the problem of a high scheduling 
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failure rate without sufficient resources [33]. To solve the problem of Kubernetes kill-
ing and discarding important low-priority containers, a scheduling strategy was pro-
posed based on the run level obtained through the resource utilization and runtime 
[34]. A master–slave scheduler was proposed to solve the performance problem of a 
large-scale cluster scheduling system [35]. A scheduler was proposed to monitor the 
requirements and attributes of containers based on multiple prediction models and a 
scheduling framework that is more conducive for container management [36]. An edge 
scheduler was proposed to achieve low-latency resource allocation. The scheduler can 
schedule resources globally, significantly reducing the scheduling latency [37]. An effec-
tive controller was proposed to reduce the energy consumption of a cluster. The con-
troller establishes a multi-objective function by considering such factors as the carbon 
footprint, interference, and emissions that occur through energy consumption. The 
best scheme was selected based on multiple objective functions used to achieve energy-
saving resource allocation [38].

When a cloud platform system adopts a priority scheduling method, the system first 
allocates resources to the highest priority task. There are two classes of priority schedul-
ing methods. The first class is nonpreemptive priority scheduling in which the highest 
priority process allocates resources until it is implemented [39]. The second is preemp-
tive priority scheduling in which the process with the highest priority is first allocated 
to the resource node that is interrupted, and resources are then allocated to other pro-
cesses with a higher priority during the running process. The rationale for the priority 
scheduling approach is the assignment of different priorities to each process, and the 
process with the highest priority preferentially allocates resources. Priority scheduling 
can prioritize important processes, ensuring that important tasks obtain their requested 
resources first [40]. Priority scheduling can be classified into dynamic and static prior-
ity scheduling. The static priority remains constant during the process, which is simple 
and flexible, with a low system overhead. In addition, the priority setting is determined 
based on the scenario. Different influencing factors should be considered when prioritiz-
ing resource scheduling within a specific environment.

3  Methods
3.1  Factors impacting priority

Suppose that a distributed machine learning job to be scheduled in a cluster queue 
is denoted as J = {J1, ..., Ji, ..., Jn} , where the i th job Ji contains one or more tasks 
ti1, ti2, . . . , tij , . . . , tim  and task tij is the j th task of the i th job Ji . Job Ji can-

not run normally until sufficient resources are successfully created for all tasks 
{

ti1, ti2, . . . , tij , . . . , tim
}

 of this job. These tasks can be executed on one or more pods as 

a pod group Pi =
{

pi1, pi2, . . . , pij , . . . , pim
}

 in a Kubernetes cluster. In this paper, task tij 
runs on pod pij . A Kubernetes cloud platform receives a queue of distributed machine 
learning jobs from different users, which require different resources determined by mul-
tiple impact factors including the user priority, job priority, job urgency, job parallelism, 
and affinity and anti-affinity.
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(1) User priority

If a Kubernetes cloud platform receives a queue of distributed machine learning jobs 
J = �J1, Ji, Jn� , these jobs come from multiple users with different priorities. Job Ji comes 
from the i th user, and the user priority is ui(Ji) . The following formula defines the user 
priority U(J ) for job queue J .

The user priority ui(Ji) has a relation ui(Ji) ∈ N  , where N ∗ is a positive integer.

(2) Job priority

Different jobs running on a Kubernetes cloud platform have different job priorities, as 
described in the following.

where B(J ) is a priority of job queue J  . Job priority bi(Ji) is related to bi(Ji) ∈ M∗ , where 
M∗ is a positive integer.

(3) Maximum wait time

User jobs have different degrees of urgency, which determine the longest wait times 
of the jobs. Suppose that the maximum wait time L(J ) of the job queue is defined as 
follows:

There exists a relation Li(Ji) ∈ Q∗ , where Q∗ is a positive integer within a certain range.

(4) Task parallelism

Distributed machine learning Ji contains multiple tasks that are executed using 
a parameter server architecture. This architecture involves a parameter server and 
a worker node. The worker nodes conduct training tasks and push the trained model 
parameters to the parameter nodes. The parameter servers store and update the model 
parameters. The worker nodes pull the updated model parameters and continue with the 
subsequent iterative training. When the distributed machine learning model involves 
massive parameters, model training requires a large number of work nodes to conduct 
tasks in parallel. The task parallelism M(J ) of the job queue J  can be denoted as the num-
ber of worker nodes for each job Ji.

There exists a relation mi(Ji) ∈ X∗ , where X∗ is a bounded positive integer.

(1)U(J ) = {u1(J1), . . . ,ui(Ji), . . . ,un(Jn)}

(2)B(J ) =
{

b1(J1), . . . , bi(Ji), . . . , bn(Jn)
}

,

(3)L(J ) = {L1(J1), . . . , Li(Ji), . . . , Ln(Jn)}

(4)M(J ) = {m1(J1), . . . ,mi(Ji), . . . ,mn(Jn)}
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(5) Affinity and anti-affinity assays

Numerous data interactions occur between the worker and parameter nodes when 
conducting job Ji using the TensorFlow parameter server architecture. The placement 
of the parameter server and worker nodes on the same server reduces the transmission 
time loss between them and improves the job execution efficiency. When possible, the 
same type of node should not be placed on the same server. Affinity and anti-affinity 
relationships exist among parameter server or worker nodes. The affinity and anti-affin-
ity among the parameter server and work nodes were therefore set as the two factors 
affecting the resource scheduling. Suppose that the worker nodes running job Ji are rep-
resented by the following expression wi1,wi2, . . . ,wij , . . . ,wim . The parameter nodes are 
denoted as variables si1, si2, . . . , sij , . . . , sil . The storage unit Bi = {bi1, bi2, . . . , bij , . . . , bir} 
is set to store tasks with an affinity relationship, such as a set of tasks with an affinity 
relation in storage unit bij.

3.2  Combined priority scheduling method

The involved  factors of the combined priority scheduling (CPS) method is shown in 
Fig. 1. To improve the execution efficiency of different jobs and maximize the resource 
utilization, this method considers the user priority, job priority, job execution parallel-
ism, maximum wait time of the job, and affinity and anti-affinity relations among the 
parameter server and worker nodes in the parameter server architecture. The priority 
of each job is influenced by the user priority, job priority, urgency, and task parallelism. 

Fig. 1 Involved factors of CPS method. This method considers user priority, job priority, job execution 
parallelism, the maximum waiting time of a job and the affinity and anti-affinity relations among parameter 
server and worker nodes in the parameter server architecture to improve the execution efficiency of different 
jobs and maximize the resource utilization. The priority of each job is influenced by user priority, job priority, 
urgency, and task parallelism. Each job contains multiple tasks. The task priority is mapped to the priority of 
resource allocation, with anti-affinity between parameter server nodes and between parameter server and 
work nodes
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Each job is composed of multiple tasks. The task priority is mapped to the priority of 
resource allocation with anti-affinity between the parameter server nodes and between 
the parameter server and work nodes.

Suppose that a job queue of distributed machine learning is denoted as 
J = {J1, . . . , Ji, . . . , Jn} , where the number of jobs is larger than 1, that is, n ≥ 1 . Each job 
Ji contains h tasks {ti1, ti2, . . . , tij , . . . , tih} , where the number of tasks is greater than 1, 
that is, h ≥ 1 . Assume that job Ji has user priority ui(Ji) , job priority bi(Ji) , maximum job 
wait time Li(Ji) , and task parallelism mi(Ji) . The specific process combining these priori-
ties is shown in Fig. 2.

(1) Obtain the task parallelism mi(Ji) of job Ji . Job Ji includes multiple tasks, each of 
which will be executed on one or more worker nodes simultaneously. The task par-
allelism mi(Ji) , that is, the intra-group priority, can be denoted as the number of 
worker nodes Ni as follows:

(2) Obtain job priority bi(Ji) of job Ji [41]. The job priority can be set in the YAML file 
as high, medium, or low for job Ji as follows:

The relations hp ∈ N ∗ , np ∈ N ∗ , and lp ∈ N ∗ exist in which high job priority hp , 
medium job priority np , and low priority lp are expressed by different values from 
large to small, such as hp = 10 , np = 5 , and lp = 1.

(3) Obtain user priority ui(Ji) of job Ji . Kubernetes implements multitenant isolation 
using different names. Different names indicate different priorities. User priorities 
can be set based on the weight of the namespace. A YAML file of the Resource-
Quota type is created, in which a weight value ranging from 1 to 10 indicates user 
priority.

(5)mi(Ji) = Ni.

(6)bi(Ji) = choice (hp, np, lp)

Fig. 2 Combined priority. The combined priority of the job is calculated by comprehensively considering the 
task parallelism, job priority, user priority, and maximum waiting time of the job
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(4) Obtain the maximum wait time Li(Ji) of job Ji and calculate the time-constraint pri-
ority li(Ji) based on the maximum wait time. The shorter the wait time, the higher 
the time-constraint priority of the job. The time-constraint priority li(Ji) of job Ji 
can be calculated based on the wait time Li(Ji) using Eq. (7).

The symbol “⌈⌉” is an upward integral function. The value of this variable is limited 
to within the range of 1 ≤ Li(Ji) ≤ 60 . The maximum wait time is 60  min, and the 
minimum wait time is 1 min. The time-constraint priorities are defined separately as 
1 and 100 for time frames of more than 60 and 1 min, respectively. The value of the 
executed priority li(Ji) is limited to the range [1,100].

(5) Calculate the urgency ei(Ji) of job Ji . The job urgency ei(Ji) is calculated based on 
the user priority, job priority, and time-constraint priority of job Ji , as expressed in 
Eq. (8). The higher the user, job, and time-constraint priorities are, the higher the job 
urgency. This job should be executed preferentially.

There exists a relation ei(Ji) ∈ N ∗ , where symbol N ∗ is a positive integer. The set 
E(J ) = {e1(J1), . . . , ei(Ji), . . . , en(Jn)} is the urgency of all jobs.

(6) Normalize the task parallelism mi(Ji) and job urgency ei(Ji) of job Ji . Task parallelism 
is normalized using the following formula, where M(J )max indicates the maximum 
value of task parallelism M(J ) for all jobs, M(J )min indicates the minimum value of 
task parallelism M(J ) for all jobs, and mi(Ji)n indicates the normalized value of task 
parallelism mi(Ji).

The job urgency ei(Ji) is normalized as shown in Eq. (9), where M(J )max indicates the 
maximum value of job urgency E(J ) for all jobs, E(J )min indicates the minimum value 
of job urgency E(J ) for all jobs, and ei(Ji)n indicates the normalized value of job urgency 
ei(Ji).

(7) Calculate the combined priority of job Ji , that is, the inter-group priority of the pod 
group created for a job from the job queue using Eq. (11). Specifically, Vi is the com-
bination priority of job Ji , k ′ is the expansion coefficient, ei(Ji)n indicates the nor-
malized job urgency, and mi(Ji)n indicates the normalized task parallelism.

(7)li(Ji) =

⌈

100

Li(Ji)

⌉

(8)ei(Ji) = ui(Ji)+ bi(Ji)+ li(Ji)

(9)mi(Ji)n = (mi(Ji)−M(J )min)/(M(J )max −M(J )min)

(10)ei(Ji)n = (ei(Ji)− E(J )min)/(E(J )max − E(J )min)

(11)Vi = k ′ × (mi(Ji)n + ei(Ji)n)
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(8) Map the combined priority of job Ji to the priority of the pod group 
Pi = {pi1, pi2, . . . , pij , . . . , pih} , which corresponds to h tasks. The affinity relation-
ships between the pods as parameter nodes and the pods as worker nodes, and the 
anti-affinity relationships among the pods as parameter nodes, are shown in Fig. 3.

If the priorities of the parameter server nodes pi1, pi2 are higher than those of the 
worker nodes pi3 . . . pim , the resources of the parameter server nodes pi1, pi2 are prefer-
entially allocated to the worker nodes pi3 . . . pim . Affinity and anti-affinity relationships 
are not mandatory. If a server has insufficient resources for the parameter server nodes, 
other servers that may violate the relations can allocate resources to these parameter 
server nodes.

3.3  Algorithm design for CPS method

The algorithm used by the CPS method (i.e., the CPS algorithm) is designed based on 
the Volcano scheduling framework, which provides basic scheduling modules and algo-
rithms through plugins and can combine various scheduling algorithms. In this study, the 
algorithm design of the CPS method was completed, and to implement the algorithm, a 
plugin module called mypriority.go was developed. The algorithm design includes two 
main parts: inter- and intra-group priorities. Different priorities were defined for some 
YAML files. The mypriority.go plugin integrated into the Volcano scheduling framework 
calls these priorities to implement the inter- and intra-group priorities. The main steps 
of intra-group priority (i.e., job priority in a job queue) are as follows:

(1) Set and obtain the user priory of a job. Kubernetes enables multitenant isolation 
through different names. User priority can differ using different weights for the user 
names. The weight indicating the user priority of a job can be set within the range 
of (1, 10) in a ResourceQuota type YAML file.

Fig. 3 Affinity and anti-affinity among pods as parameter and worker nodes. The affinity relation between 
the pods as parameter nodes and the pods as worker nodes and the anti-affinity relation among the pods as 
parameter nodes
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(2) Obtain the job priority. The job priority is set to a high, medium, or low value in a 
job configuration YAML file and can be obtained by calling the “jobinfo” structure 
in the opensession function.

(3) Obtain the maximum wait time for a job. The SLA plugin supports the user in 
defining the maximum wait time to preferentially schedule resources for jobs in 
the Volcano scheduler. A user can assign an annotation called “sla-waiting-time” 
to define the maximum expected wait time for a job. The queue and allocated 
action plugins compare the difference between the actual and maximum expected 
wait times. The JobOrderFn function determines the ranking of the job scheduling 
based on the differences in the jobs. The maximum wait time of a job is obtained 
directly by calling the “jobinfo” structure in the opensession function.

The time-constraint priority li(Ji) can be calculated using Eq. (7).

(4) Obtain the job task parallelism. Task parallelism is set as the number of worker 
nodes in the parameter server architecture, which can be acquired by rewriting the 
application programming interface (API) of the scheduling controller and the cor-
related functions and interfaces of the scheduler cache.

(5) Obtain the affinity and anti-affinity relationships among job tasks. First, the affinity 
and anti-affinity relations are observed according to the topology among pods in 
the parameter server architecture and are defined in the job configuration YAML 
file.

(6) Calculate the job urgency. The job urgency is calculated according to the obtained 
user priority, job priority, and time-constraint priority using Eq. (8).

(7) Calculate the combined priority of a job. Job urgency and task parallelism are nor-
malized to calculate the combined priority of a job, that is, the intra-group priority.

The inter-group priority, that is, the priority among tasks from a job, considers the 
affinity between parameter server pods and worker pods, and the anti-affinity among 
parameter server pods. The main steps are as follows:

(1) Obtain the job task information. Task information, including the task name, is 
obtained by calling the functions and interfaces of the Volcano controller compo-
nents.

(2) Determine whether it is running on a parameter server pod, that is, if it is marked 
as a “ps” type. If so, it is preferentially placed in the task queue. Otherwise, it enters 
into the priority judgment procedure.

(3) Place the task in a storage unit bucket. A bucket is created for the first task. If the 
second task has an affinity relationship with the task in the first bucket, it is placed 
in the first bucket. If an anti-affinity relationship exists between them, another 
bucket is created for the task. This process stops when all tasks are traversed. The 
time complexity of the intra-group priority of a job is assumed to be O(h) . Thus, 
the total time complexity of the intra-group priority of all jobs is O(n · h) . The time 
complexity of the inter-group priority between two jobs is O(n) , and thus the time 
complexity of the inter-group priority for the job queue is O(n · (n− 1)).
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4  Results and discussion
Experiments were conducted on the inter- and intra-group priorities and the group 
scheduling under different scenarios.

4.1  Preparation

A Kubernetes cloud environment is constructed using a virtual machine (VM) cluster 
for the experiment. The VM cluster has 10 VM nodes, including 1 master node and 
9 computing nodes, as shown in Fig. 4. These nodes install Kubernetes components 
such as kubeadm, kubelet, kubectl, and docker. In the experiment, different numbers 
of computing nodes were used to validate the different scenarios. The node configura-
tions are listed in Table 1.
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The public MNIST dataset was used in the experiment. The TensorFlow and Mind-
Spore frameworks were applied to train the model using the MNIST dataset. The 
experiment verified the priority scheduling between multiple jobs and the priority 
scheduling of tasks within a job. To analyze the effectiveness and applicability of the 
CPS algorithm under different impact factors, various experimental scenarios were 
established, as listed in Tables 2, 3 and 4. Table 2 presents the experimental scenarios 
with different impact factors for multiple jobs. In Scenario S1, multiple jobs have dif-
ferent job priorities but the same user priority, maximum wait time, and task parallel-
ism. Scenario S2 indicates that multiple jobs have different maximum wait times but 
the same job priority, task parallelism, and user priorities. Scenarios S3 and S4 were 
similar to scenarios S1 and S2, respectively.

Table 3 presents the experimental setup for intra-group priority scheduling, includ-
ing seven groups. Groups 1–4 use the same number of virtual machine nodes, train-
ing framework, and workers to verify the priority effectiveness of the CPS algorithm 
under different scenarios. Group 5 verifies whether the priority effectiveness of the 

Fig. 4 Kubernetes cloud environment for the experiment. The Kubernetes cloud environment required by 
the experiment is built by virtual machine (VM) clusters. VM cluster has 10 VM nodes, including 1 master node 
and 9 computing nodes

Table 1 Experimental cluster node settings

Nodes Master number Node number Master configuration Node configuration

3 nodes 1 2 4CPU8GB 8CPU16GB

6 nodes 1 5 4CPU8GB 8CPU16GB

10 nodes 1 9 4CPU8GB 4CPU8GB

Table 2 Impact factor settings of multiple jobs

Job priority Maximum wait time Task parallelism User priority

S1 Difference Same Same Same

S2 Same Difference Same Same

S3 Same Same Difference Same

S4 Same Same Same Difference
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CPS algorithm is affected by the training framework compared to group 3. Groups 6 
and 7 verify whether the priority effectiveness is affected by the number of VM nodes.

Table  4 presents the experimental setup used for inter-group priority scheduling, 
including six of the groups. Each group reflects the state of the job execution. For exam-
ple, group 1 uses the TensorFlow training framework, two parameter server pods, and 
six worker pods to execute multiple tasks. The Kubernetes cloud environment operates 
on six nodes: one master node and five computing nodes. Experiments 1 and 2 were 
conducted to verify whether the priority effectiveness of the CPS algorithm is affected 
by the number of VM nodes on the Kubernetes cloud platform. The group 3 experiment 
verified whether the priority effectiveness of the CPS algorithm is affected by the train-
ing framework compared with the group 2 experiment. Similarly, the group 4 experi-
ment was conducted to verify whether the priority effectiveness of the CPS algorithm 
is affected by different numbers of worker pods compared to the group 2 experiment. 
The built-in priority and CPS algorithm plugins in the Volcano scheduler were sepa-
rately used to conduct resource scheduling experiments. Groups 2, 5, and 6 were used 
to verify whether the priority effectiveness of the CPS algorithm is affected by the pod 
configuration.

4.2  Results and comparison of intra‑group job scheduling

The job parameters of distributed machine learning are listed in Table 5. By combining 
these parameters into different scenarios, the experiment results validate the idea that 
the final job priority is influenced by the four impact factors.

Because a job runs on a pod group in the Volcano scheduler, the priority among 
jobs is mapped to the scheduling order of the pod groups. The initial job priority is 
set to 1 for a low level, 50 for a normal level, and 100 for a high level. Under sufficient 

Table 3 Experiment setting for intra-group priority scheduling

Training framework Number of worker 
nodes

Number of VM 
Nodes

Scenarios

Group 1 TensorFlow 5 3 S1

Group 2 TensorFlow 5 3 S2

Group 3 TensorFlow 5 3 S3

Group 4 TensorFlow 5 3 S4

Group 5 MindSpore 5 3 S3

Group 6 TensorFlow 5 6 S3

Group 7 TensorFlow 5 10 S3

Table 4 Experiment setting for inter-group priority scheduling

Framework Number of pods Number of VM 
nodes

Pod configuration

Group 1 TensorFlow 2ps6worker 6 2CPU2GB

Group 2 TensorFlow 2ps6worker 10 2CPU2GB

Group 3 MindSpore 2ps6worker 10 2CPU2GB

Group 4 TensorFlow 2ps10worker 10 2CPU2GB

Group 5 TensorFlow 2ps6worker 10 1CPU1GB

Group 6 TensorFlow 2ps6worker 10 4CPU4GB
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resources, the built-in priority scheduling and CPS algorithm plugins of the Volcano 
scheduler are implemented for five jobs. The scheduling order of the pod groups cre-
ated on the resource nodes is obtained using the system log and timestamp.

The group 1 experiment conducted five distributed machine learning jobs using the 
same MNIST dataset under the TensorFlow framework and a Kubernetes cluster with 
three nodes. These five jobs were configured as the combined conditions of rows 1, 
4, 5, and 7 in Table 5, that is, the corresponding scenario S1 in Table 2 with different 
job priorities and other identical parameters. Table 6 lists the scheduling order of the 
pod groups for these five jobs using the built-in priority and combined priority algo-
rithms, for which each algorithm is implemented five times.

It can be seen from Table 6 that pod groups 3 (podg3) and 4 (podg4) were prefer-
entially created owing to their higher job priority compared to other jobs. The pod 
group podg5 is created last because it has the lowest job priority. The results show 
that both the built-in and CPS algorithms can be prioritized according to their job 
priorities.

The results of group 2 were similar to those of group 1. Five jobs were set as the com-
bined conditions for rows 1, 3, 3, 5, and 8 in Table 5. The maximum wait time for the 
jobs differed, and the other parameters were the same, corresponding to scenario S2 in 
Table 2. To ensure sufficient resources, the built-in priority and combined priority algo-
rithms were tested five times. Table 7 lists the scheduling orders for the pod groups.

Table 5 Job parameters of distributed machine learning

Sequence Parameter Job1 Job2 Job3 Job4 Job5

1 User priority 5 5 5 5 5

2 User priority 9 7 5 3 1

3 Job priority Normal Normal Normal Normal Normal

4 Job priority Normal Normal High High Low

5 Task parallelism 6 6 6 6 6

6 Task parallelism 8 6 4 3 2

7 Maximum wait time 20 20 20 20 20

8 Maximum wait time (min) 20 30 40 50 60

Table 6 Scheduling order of pod groups in group 1 experiment

Algorithm Order1 Order2 Order3 Order4 Order5

Built-in priority podg4 podg3 podg2 podg1 podg5

podg4 podg3 podg2 podg1 podg5

podg3 podg4 podg2 podg1 podg5

podg3 podg4 podg1 podg2 podg5

podg4 podg3 podg2 podg1 podg5

Combined priority podg4 podg3 podg2 podg1 podg5

podg3 podg4 podg1 podg2 podg5

podg4 podg3 podg2 podg1 podg5

podg4 podg3 podg2 podg1 podg5

podg3 podg4 podg2 podg1 podg5
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The maximum wait time increases from pod groups podg1 to podg5. The built-in 
priority algorithm of the Volcano scheduler cannot allocate resources in advance 
for jobs with a long wait time, whereas the CPS algorithm can preferentially allocate 
resources to jobs with the shortest wait time. Pod group podg1 preferentially allocates 
resources because it has the shortest wait time, followed by pod groups podg2, podg3, 
podg4, and podg5, the latter of which has the longest wait time.

The five jobs in group 3 were configured using the combined conditions of rows 1, 
3, 6, and 7 in Table 5. These jobs have a different task parallelism and identical param-
eters, which correspond to scenario S3 in Table 2. The task parallelism of the five jobs 
decreased from job1 to job5. Thus, the pod group for job1 will be allocated resources 
first, followed by pod groups podg2, podg3, podg4, and podg5 in the CPS algorithm. 
The experiment results show that the CPS algorithm starts the pod groups from large 
to small according to the task parallelism, whereas the built-in priority scheduling 
order is random and unaffected by the task parallelism, as shown in Table 8.

The five jobs in the group 4 experiment were set as the combined conditions of rows 
2, 3, 6, and 7 in Table 5 with different user priorities and other identical parameters, 
corresponding to scenario S4 in Table  2. The scheduling order of the pod groups 
under an experimental procedure similar to those of groups 1 and 2 is shown in 

Table 7 Scheduling order of pod groups in group 2 experiment

Algorithm Order1 Order2 Order3 Order4 Order5

Built-in priority podg4 podg3 podg1 podg2 podg5

podg4 podg2 podg1 podg3 podg5

podg3 podg5 podg1 podg4 podg2

podg1 podg5 podg2 podg4 podg3

podg5 podg3 podg1 podg4 podg2

Combined priority podg1 podg2 podg3 podg4 podg5

podg1 podg2 podg3 podg4 podg5

podg1 podg2 podg3 podg4 podg5

podg1 podg2 podg3 podg4 podg5

podg1 podg2 podg3 podg4 podg5

Table 8 Scheduling order of pod groups in group 3 experiment

Algorithm Order1 Order2 Order3 Order4 Order5

Built-in priority podg5 podg3 podg1 podg2 podg4

podg4 podg2 podg1 podg3 podg5

podg3 podg1 podg5 podg4 podg2

podg1 podg5 podg2 podg4 podg3

podg2 podg3 podg4 podg1 podg5

Combined priority podg1 podg2 podg3 podg4 podg5

podg1 podg2 podg3 podg4 podg5

podg1 podg2 podg3 podg4 podg5

podg1 podg2 podg3 podg4 podg5

podg1 podg2 podg3 podg4 podg5
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Table 9. The scheduling order of the built-in priority algorithm is random and unaf-
fected by the user priority, whereas the scheduling order of the CPS algorithm is 
arranged from large to small according to the user priority.

For group 5, the MNIST dataset was used to conduct five jobs of distributed 
machine learning under the MindSpore framework, which were configured using the 
combined conditions in rows 1, 3, 5, and 8 in Table  5. That is, the maximum wait 
times of the five jobs were different, and the other parameters were identical. It can 
be seen from the experiment results in Table 10 that the scheduling order of the pod 
groups for the five jobs is random, whereas pod group podg1 with the shortest wait 
time is preferentially scheduled, followed by pod groups podg2 and podg5, with the 
longest wait time created last. These results are similar to the scheduling of the Ten-
sorFlow framework, which indicates that the scheduling priority is unaffected by the 
distributed machine learning framework.

To conduct the experiments in the TensorFlow framework, groups 6 and 7 used 6 
and 10 VM nodes, respectively. Except for the training framework, the five jobs were 
configured under the same conditions as in group 5. The experiment results are pre-
sented in Tables 11 and 12. The experiment results are similar to those for the cluster 

Table 9 Scheduling order of pod groups in group 4 experiment

Algorithm Order1 Order2 Order3 Order4 Order5

Built-in priority podg5 podg1 podg3 podg2 podg4

podg4 podg2 podg1 podg3 podg5

podg5 podg1 podg3 podg4 podg2

podg1 podg5 podg2 podg4 podg3

podg1 podg2 podg4 podg3 podg5

Combined priority podg1 podg2 podg3 podg4 podg5

podg1 podg2 podg3 podg4 podg5

podg1 podg2 podg3 podg4 podg5

podg1 podg2 podg3 podg4 podg5

podg1 podg2 podg3 podg4 podg5

Table 10 Scheduling order of pod groups in group 5 experiment

Algorithm Order1 Order2 Order3 Order4 Order5

Built-in priority podg4 podg3 podg1 podg2 podg5

podg4 podg2 podg1 podg3 podg5

podg3 podg5 podg1 podg4 podg2

podg1 podg5 podg2 podg4 podg3

podg5 podg3 podg1 podg4 podg2

Combined priority podg1 podg2 podg3 podg4 podg5

podg1 podg2 podg3 podg4 podg5

podg1 podg2 podg3 podg4 podg5

podg1 podg2 podg3 podg4 podg5

podg1 podg2 podg3 podg4 podg5
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with three VM nodes, indicating that the built-in priority and CPS algorithms are 
unaffected by the cluster size.

In conclusion, the CPS algorithm can effectively solve the priority scheduling prob-
lem among multiple jobs by preferentially allocating resources to jobs with shorter wait 
times, large task parallelism, higher user priority, and higher job priority. The training 
framework of distributed machine learning and the cluster size cannot affect the effec-
tiveness of a priority scheduling algorithm.

4.3  Results and comparison of inter‑group job scheduling

Six groups of experiments were conducted using the MNIST dataset, and each group 
was executed 20 times. The experiment results are listed in Table 13.

The inter-group priority scheduling success rate of the CPS algorithm exceeded 
80%. The two task priorities were compared before the pods were created. The task 
information was obtained before comparing the priorities. If a task belongs to the “ps” 
type, this parameter sever pod will be unconditionally scheduled. Otherwise, it enters 
a normal-priority comparison program. Owing to the randomness of the task prior-
ity comparison, the parameter sever pod cannot be scheduled first every time. The 
CPS algorithm first increases the scheduling probability of the parameter server pods 

Table 11 Scheduling order of pod groups in group 6 experiment

Algorithm Order1 Order2 Order3 Order4 Order5

Built-in priority podg4 podg3 podg1 podg2 podg5

podg5 podg2 podg1 podg3 podg4

podg3 podg5 podg1 podg4 podg2

podg1 podg5 podg2 podg4 podg3

podg5 podg3 podg1 podg4 podg2

Combined priority podg1 podg2 podg3 podg4 podg5

podg1 podg2 podg3 podg4 podg5

podg1 podg2 podg3 podg4 podg5

podg1 podg2 podg3 podg4 podg5

podg1 podg2 podg3 podg4 podg5

Table 12 Scheduling order of pod groups in group 7 experiment

Algorithm Order1 Order2 Order3 Order4 Order5

Built-in priority podg3 podg4 podg1 podg2 podg5

podg4 podg2 podg1 podg3 podg5

podg3 podg5 podg1 podg4 podg2

podg1 podg5 podg2 podg4 podg3

podg5 podg3 podg1 podg4 podg2

Combined priority podg1 podg2 podg3 podg4 podg5

podg1 podg2 podg3 podg4 podg5

podg1 podg2 podg3 podg4 podg5

podg1 podg2 podg3 podg4 podg5

podg1 podg2 podg3 podg4 podg5
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by determining the pod type created for a task. Second, this algorithm places worker 
nodes in the corresponding storage unit according to their affinity with the param-
eter server nodes when it is placed in a storage unit, which can prevent many worker 
nodes from being placed into a storage unit owing to a lack of affinity or anti-affinity 
relations between worker nodes. This ensures that the placement of pods is more rea-
sonable in the cluster server and further improves the efficiency of job completion by 
optimizing the distance of the information interaction between the parameter server 
and worker nodes. The average job implementation time of the CPS algorithm is less 
than that of the built-in algorithm. The job implementation time of the CPS algo-
rithm is more than 6% shorter than that of the built-in algorithm. It is unaffected by 
the cluster size or pod configuration. The job completion time of the group 5 experi-
ment with 2ps6worker pods and all pods with a 1CPU1GB memory configuration is 
nearly double that of groups 1 and 2. The job completion time of the group 6 experi-
ment with 2ps6worker pods and all pods with the 4CPU4GB memory configuration 
was greatly reduced to only 36.3 s. To further analyze the effectiveness of parameter 
server priority scheduling and job execution in detail, the experiment results of the 
randomly selected group 2 experiment are shown in Fig. 5. The scheduling order of 
the parameter server pods in the CPS algorithm clearly precedes the built-in prior-
ity algorithm in the Volcano scheduler. In 20 of the experiments, the CPS algorithm 
achieved the later scheduling order of the parameter server pods only three times and 
the same order as the built-in priority algorithm five times. In the ten experiments 
that recorded the job completion time shown in Fig.  6, the job completion time of 
the CPS algorithm was lower than that of the built-in priority algorithm 9 times. The 
remaining time gap was extremely small, i.e., 224 s for the CPS algorithm and 222 s 
for the built-in priority algorithm. The job completion time is reduced by setting the 
affinity or anti-affinity relations between the parameter server and worker pods in the 
CPS algorithm.

Group 5 conducted distributed machine learning on 2ps6worker pods under the 
TensorFlow framework, where each pod was allocated one CPU core and 1  GB of 
memory, and there were 10 VM nodes in the Kubernetes cloud environment. Group 
6 uses a pod with four CPU cores and 4 GB of memory. The experiment results are 
presented in Figs. 7 and 8.

The left sides of Figs. 7 and 8 show that the scheduling order of most of the param-
eter sever pods of the CPS algorithm was lower than that of the built-in priority 

Table 13 Experiment results of inter-group job scheduling

Experimental 
group

Inter‑group priority 
scheduling success rate of 
CPS algorithm (%)

Average job 
implementation time of 
built‑in algorithm (s)

Average job 
implementation time of CPS 
algorithm (s)

Group 1 80 257.4 241.2

Group 2 90 250.5 233.9

Group 3 90 189.0 182.8

Group 4 85 221.2 209.2

Group 5 95 472.1 445.7

Group 6 85 37.8 36.3
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algorithm. The job completion time of the CPS algorithm was shorter than that of the 
built-in priority algorithm in most of the experiments. These two situations indicate 
that the CPS algorithm is more effective than the built-in priority algorithm for prior-
ity scheduling. This phenomenon is more evident when a task requires a smaller pod 
resource. For example, when the tasks request one CPU core and a 1-GB memory 
pod resource, the job completion time increases when applying the CPS or built-in 

Fig. 5 Scheduling order of parameter server pods. In order to further analyze the effectiveness of priority 
scheduling and job execution of the parameter server, the experimental results of the second group of 
randomly selected experiments show that the scheduling order of the parameter server pod in the CPS 
algorithm is obviously better than the built-in priority algorithm in the Volcano scheduler

Fig. 6 Job completion time. In ten experiments of recording job completion time, the job completion time 
of CPS algorithm is 9 times shorter than that of the built-in priority algorithm
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priority algorithm, and their difference is large, with a maximum value of 32  s, as 
shown in Fig. 7. When the tasks requested four CPU cores and a 4-GB memory pod 
resource, the job completion time reduced the performance of the CPS or built-in 
priority algorithm, and their difference was small, with an average value of 1.5  s, as 
shown in Fig. 8.

4.4  Results and comparison of group scheduling

To verify the effectiveness of the CPS algorithm in avoiding resource deadlock and 
waste, an experiment was conducted on five distributed machine learning jobs using 
the parameters listed in Table 14. Here, job5 was configured with 2ps6worker pods, and 
job1, job2, job3, and job4 were configured with 2ps4worker pods. Each pod requested 
two CPU cores and 2  GB of memory. The number of VMs for the Kubernetes cloud 
environment was set to three. The experiment results are shown in Figs. 9 and 10.

Fig. 7 Experiment result of group 5. The group 5 experiment performs a job of distributed machine 
learning on 2ps6worker pods under TensorFlow framework, where each pod is allocated 1 CPU core and 
1 GB memory and the number of VM nodes in Kubernetes cloud environment is 10. It can be seen that 
the scheduling order of most parameters of the CPS algorithm server pod is lower than the built-in priority 
algorithm

Fig. 8 Experiment result of group 6. The group 6 experiment uses the pod with 4 CPU cores and 4 GB 
memory. It can be seen that the scheduling order of most parameters of the CPS algorithm server pod is 
lower than the built-in priority algorithm
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Table 14 Job parameters of distributed machine learning

Parameter Job1 Job2 Job3 Job4 Job5

User priority 1 3 5 7 9

Job priority High High Normal Normal Low

Task parallelism 4 4 4 4 6

Maximum wait time (min) 60 50 40 30 20

Fig. 9 Scheduling order of pod groups of the built-in priority algorithm. The experimental results of 
scheduling order of pod groups of the built-in priority algorithm under the experimental conditions that the 
2ps6worker pod is configured in job 5, and the 2ps4worker pod is configured in job 1, job 2, job 3, and job 4

Fig. 10 Scheduling order of pod groups of the CPS algorithm. The experimental results of scheduling 
order of pod groups of the CPS algorithm under the experimental conditions that the 2ps6worker pod is 
configured in job 5, and the 2ps4worker pod is configured in job 1, job 2, job 3, and job 4
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The scheduling of pod groups under the built-in priority algorithm in the Volcano sched-
uler was podg1, podg2, podg3, podg4, and podg5. Pod group podg5 with a higher user pri-
ority cannot be created because of insufficient resources, which can result in a longer job 
completion time and resource usage. However, job5 had a higher combined priority owing 
to its high user priority, high task parallelism, and shortest wait time. Therefore, podg5 pref-
erentially allocates resources to conduct job5. Pod group podg1 does not allocate resources 
to conduct job1 owing to its low combined priority. This experiment verifies that the CPS 
algorithm works together with the group scheduling strategy for distributed machine learn-
ing jobs.

5  Conclusions
Model training used in distributed machine learning is generally computationally intensive 
and time-consuming, which can waste resources and generate deadlock problems owing to 
an inefficient priority scheduling. A combined priority scheduling method for preferentially 
scheduling jobs or tasks with high priorities was proposed herein. This method comprehen-
sively considers the impact factors of user priority, job priority, maximum wait time, task 
parallelism, and affinity and anti-affinity for constructing a combined priority that includes 
intra- and inter-group scheduling priorities. These priorities are mapped to the priorities 
of the pod groups and pods. A plugin for the combined priority scheduling method was 
developed and integrated into the Volcano scheduling framework. The experiment results 
show that the CPS method not only realizes the affinity, anti-affinity, and group schedul-
ing mechanisms for alleviating resource waste and deadlocks to a certain extent, but it also 
preferentially allocates resources to jobs with high parallelism, user priority, and urgency, 
thereby improving the job execution efficiency. This method is suitable for deep learning 
using the TensorFlow framework. At present, many jobs involving machine learning work-
flows are more complex, with different resource requirements, more priorities, and more 
complex correlations between tasks. It is therefore necessary to further study and establish 
a more complex combinatorial priority model for realizing an efficient resource scheduling 
of workflow tasks.
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