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Abstract 

With the development of modern electronic countermeasure technology, the fight 
between radar jamming and anti‑jamming has become increasingly fierce. Experts 
have done a lot of highly effective work on radar anti‑jamming performance. However, 
the emergence of various new complex interferences has rendered existing methods 
unable to meet the needs. In this manuscript, we consider the measurement and 
evaluation method of radar anti‑jamming effectiveness based on principal component 
analysis and machine learning. Firstly, taking into account the diversity of variables 
in radar countermeasure experiments and the complexity of constraints between 
variables, we propose a bipartite covering array for the experimental scheme, which 
requires that each level combination of any radar parameter and jammer parameter 
occurs at least once, to ensure the rationality of the experiments. Secondly, accord‑
ing to the characteristics of multiple jammers and the analysis of impacts on radar 
performances, we combine the existing indicators and use the principal component 
analysis method to obtain two comprehensive indicators, which better reflect radar 
performances. Finally, we select the best model as a prediction for radar comprehen‑
sive indicators by comparing several machine learning algorithm models, including 
classification and regression tree, random forest, xgboost, and SVM. Additional experi‑
ments verify the effectiveness of the resulted model.

Keywords: Bipartite covering array, Machine learning, Measurement and evaluation, 
Principal component analysis, Radar jamming effectiveness

1 Introduction
Geng et al. [1] pointed out that, as radars are widely used in the military field, anti-radar 
electronic jamming technologies have also become important. In recent years, with the 
rapid development of radar countermeasures, especially anti-jamming, the application 
of radars in modern warfare is becoming increasingly strict. In fact, modern warfare has 
gradually transitioned from mechanization to informatization through the extensive 
application of electronic information technology in the military field, forming a com-
plex electromagnetic environment in which the two sides confront each other; see Best 
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[2] and Guariglia [3]. Hence, military technologists have been conducting scientific and 
technological research on this, proposing solutions to maintain radar reconnaissance 
capabilities. Huang, Zhang, and Xu [4] stated the development status and presumption 
of the anti-jamming capability of the existing electronic instruments. Liu et al. [5] mod-
eled and analyzed the interfering signal data in a complex electromagnetic environment. 
Wang et  al. [6] proposed and analyzed radar countermeasures questions in complex 
electromagnetic environments. In fact, the two sides, the jamming side and the radar 
side, could be unified on the same issue. The jamming side mainly focuses on whether 
the jamming can weaken or even fail the radar detection capability; while the radar side 
is concerned about its working ability under jamming. Both want to know clearly about 
the anti-jamming capability of radars in specific confrontation situations to take corre-
sponding measures in the process of technical research and equipment development. 
Therefore, as argued by Yi and Yuan [7], it is crucial to study the radar anti-jamming 
performance, which represents a change in radar performance under the influence of 
jammers after adopting anti-jamming technology. Simply put, it is the combined result 
of the joint effects of the radar side, the jamming side and the countermeasure envi-
ronment. Researchers are concerned about the relationship between the anti-jamming 
effectiveness and the influencing factors, so that the anti-jamming effectiveness of the 
radar can be predicted and estimated according to the influencing factors. Neverthe-
less, the relevant researchers always encounter the practical problems of ‘impossibility 
of measurement’ and ‘inaccuracy of evaluation’. The focus of this manuscript is to obtain 
a relationship between the anti-jamming effectiveness and the influencing factors, to 
accurately predict or estimate the anti-jamming effectiveness under the presumed influ-
encing factors. The manuscript is mainly divided into the following three parts: the 
radar jamming experiment, the measurement and the evaluation of radar anti-jamming 
effectiveness.

1.1  Radar jamming experiment

The radar jamming experiment can be regarded as the basis for studying the anti-jam-
ming effectiveness evaluation method. Jia et al. [8] called it the highlight of the evalu-
ation methods research. However, it is very difficult to derive the radar anti-jamming 
performance directly from the influencing factor theory. Hence, the study in the evalu-
ation method of anti-jamming capability is generally based on data collected from vari-
ous experiments. Radar jamming experiment methods are mainly divided into external 
field jamming, semi-physical simulation jamming experiments, and full-virtual simula-
tion jamming experiments on a computer. These three have their own characteristics 
and advantages. Among them, as Hohlfeld and Cohen [9] pointed out, the fully virtual 
simulation experiments are favored by researchers owing to their flexibility and ability 
to demonstrate the diversity of adversarial situations. The fully virtual simulation con-
frontation experiment system formed by a variety of high-fidelity simulation models can 
provide relatively reliable experimental results. In this manuscript, we use a fully vir-
tual simulation experiment to propose some experimental schemes of the given radar 
parameters and three kinds of jammer parameters, and give the simulated radar anti-
jamming performance results.
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1.2  Measurement of radar anti‑jamming effectiveness

Measurement of radar anti-jamming effectiveness is the process of establishing the 
evaluation indicators for radar anti-jamming effectiveness, and the basis of anti-jam-
ming effectiveness evaluation. It obtains a specific anti-jamming effect according to the 
change in radar performance before and after jamming, also known as the quantification 
process of anti-jamming performance; see Kumar et al. [10].

Actually, the anti-jamming capability is not a real quantity that can be directly meas-
ured, so it is generally necessary to select the best indicators reflecting the change in 
the working capability according to the function of the radar, and then use a compre-
hensive treatment on these indicators to obtain the anti-jamming capability of the radar. 
Experts have done a lot of highly effective work in the evaluation of indicators of anti-
jamming performance. Zhang et  al. [11] provided an end-to-end anti-jamming target 
detection method based on CNN. Aziz, Maud, and Habib [12] proposed a radar anti-
jamming technology based on reinforcement learning, which greatly improved the radar 
anti-jamming performance. However, the emergence of various new complex interfer-
ences has rendered existing methods unable to meet the needs. Moreover, as new types 
of radars continue to emerge, radar countermeasures are increasingly diversified and the 
complex electromagnetic environment where radars are located has also undergone new 
changes. All these ask for more quantitative and systematic evaluation solutions. Under 
this background, it is imminent to establish a scientific and reasonable evaluation system 
to guide radar anti-jamming performance evaluation.

There are many criteria for measuring the effectiveness of anti-jamming, which reflect 
the degree of change in radar performances before and after the jamming from differ-
ent aspects, including power criterion, information criterion, and efficiency criterion. 
Through these criteria, many anti-jamming evaluation indicators can be selected, but 
selecting a single indicator has many deficiencies in radar performance evaluation. For 
example, there are repeated evaluations of certain anti-jamming performance because 
of too many evaluation methods, and the objectivity and the operability still need to 
be improved. Given the above-mentioned deficiencies and based on the characteristics 
of various jammers and the impact analysis on radar performance, we use the princi-
pal component analysis method and combine the above-mentioned existing criteria to 
extract two comprehensive indicators. This method avoids the one-sidedness that the 
past radar evaluation indicator can evaluate only one anti-jamming performance.

1.3  Evaluation of radar anti‑jamming effectiveness

Evaluation of radar anti-jamming effectiveness is a modeling process of comprehensively 
evaluating the radar anti-jamming effect according to the real data and obtained indica-
tors. It is a complex area of research. As pointed out by Meng, Zhang and Fan [13], on 
the one hand, the diversity of radar countermeasures, including the diversity of radars 
and the jammers, makes the prediction methods of anti-jamming ability flourish. On 
the other hand, it leads to the complexity of the evaluating problem that, the subject 
of the evaluation is the person and the evaluation results are closely related to the pur-
pose of evaluation, the evaluation perspective, and other various benefits. Both lead to 
the lack of comprehensive and unified practice standards and methods. Moreover, there 
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are many factors that affect the radar anti-jamming capability, so that the number of 
countermeasures composed of many influencing factors is huge. In this case, insufficient 
training samples cause poor prediction results for traditional methods.

Nowadays, the widely used evaluation methods mainly include: the evaluation factor 
method, the fuzzy comprehensive evaluation method, and machine learning methods 
based on neural networks. Long, Zhang, and Lin [14] argued a comprehensive evalua-
tion criterion of radar ECCM performance based on an electronic effect matrix. Yang, Li, 
and Zhang [15] studied the radar countermeasure training and simulation system based 
on HLA. Lei et al. [16] provided an efficiency evaluation method for radar countermeas-
ure equipment joint netting operation based on the AHP-cloud model. Wang, Sun and 
Wang [17] deeply studied the radar active jamming recognition through the convolu-
tional neural network. Bu et al. [18] provided a radar seeker anti-jamming performance 
prediction and evaluation method based on the improved grey wolf optimizer algorithm 
and support vector machine. Li et al. [19] innovatively provided an experimental evalua-
tion method for interference suppression distance of networked radar. Cheng et al. [20] 
applied deep learning architectures to 5 G IoT systems. Raheja et al. [21] used machine-
learning diffusion models to predict coronavirus-19 outbreaks. This manuscript uses 
multiple machine learning methods to evaluate the radar anti-jamming effectiveness. 
Besides the innovative experiments, this manuscript also focuses on machine learning 
algorithms and their application in the evaluation of anti-jamming effectiveness. The for-
mer is based on the application requirements to select the appropriate algorithm model, 
and to solve the problem of model parameter selection and feature selection, while the 
latter is to find the best model as a prediction for radar comprehensive indicators by 
comparing several algorithm models.

The remainder of this manuscript is organized as follows: Sect.  2 states the existing 
analytical methods used in this manuscript. Section 3 proposes a reasonable construc-
tion of the experiment scheme. In Sect. 4, the principal component analysis is applied 
to provide comprehensive radar evaluation indicators. Based on the actual data and 
the obtained indicators, Sect. 5 provides four machine learning algorithms to establish 
regression models to achieve the evaluation of the radar anti-jamming effectiveness. In 
Sect. 6, the additional experiments verify the reliability of our proposed ideas and meth-
ods. Section 7 summarizes the full manuscript.

In this work, the first, fourth, and fifth authors put forward the overall research ideas. 
The second and third authors completed

the virtual simulation experiments and data collection. The first and fourth authors 
obtained two comprehensive indicators through data analysis, and completed the meas-
urement of radar anti-jamming effectiveness. The first and fifth authors constructed 
models to achieve the evaluation of radar anti-jamming effectiveness, and wrote and 
revised the manuscript.

2  Methods
In addition to the three research methods described in the Introduction, ‘Radar jam-
ming experiment’, ‘Measurement of radar anti-jamming effectiveness’ and ‘Evaluation of 
radar anti-jamming effectiveness’, we will also introduce the existing data analysis meth-
ods mainly applied in the following sections as follows.
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2.1  PCA

Principal component analysis (PCA) is a common data dimensionality reduction 
method. It transforms a set of potentially correlated variables into a set of linearly 
uncorrelated variables through orthogonal transformation, and this transformed set 
is called the principal components.

This manuscript will use this method to obtain two comprehensive indicators for 
the anti-jamming effectiveness measurement in Sect. 4.

2.2  Four machine learning algorithms

In the evaluation of radar anti-jamming effectiveness, machine learning algorithms 
play a vital role. According to the quantitative characteristics of radar anti-jamming 
performance evaluation, it can be regarded as a regression problem. Therefore, here 
we introduce four different machine learning algorithms used in Sect. 5 to solve the 
evaluation of radar anti-jamming performance, namely Classification and regression 
tree (CART), random forest, Xgboost and support vector machine (SVM), as follows.

(i) CART 

Classification and regression tree (CART) is a widely used machine learning method 
for both classification and regression, which consists of feature selection, tree genera-
tion, and pruning. CART is a learning method to output the conditional probability 
distribution of the random variable Y under the condition of the given input random 
variable X. It assumes that the decision tree is a binary tree, and the values of the 
internal node features are ’yes’ and ’no’. The left branch is that with value of ’yes’, while 
the right one is that with value of ’no’. Such a decision tree is equivalent to recursively 
dicing each feature. It divides the input feature space into finite units, and determines 
the probability distribution of prediction on these units. The CART algorithm con-
sists of the following two steps: 

(1) Generation of decision tree: Generate the decision tree based on the training data.
(2) Pruning of decision tree: Prune the generated tree with the test data set and select 

the optimal subtree. Generally, the minimum loss function is used as the criterion 
for pruning.

 (ii) Random forest

Random forest is a machine learning algorithm that contains multiple decision 
trees. Denote the number of samples as N, and that of features as M. Then the ran-
dom forest builds decision trees according to the following steps:

(1)  Sampling N samples with replacement from the N training samples to train a deci-
sion tree (i.e. bootstrap sampling), and use the unselected samples as the test set to 
evaluate the error of the model.

(2) When each node of the decision tree needs to be split, randomly select m features 
from these M ones, where m should be much smaller than M. Then use a certain 
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strategy (such as information gain) on these m features to select one as the split fea-
ture of the node.

(3) In the process of decision tree formation, each node must be split according to step 
2 until it can no longer be split. Note that there is no pruning during the entire 
decision tree formation process.

(4) Follow steps 1 to 3 to build a large number of decision trees, which constitute a ran-
dom forest.

 (iii) Xgboost

Xgboost, proposed by Dr. Chen Tianqi, is a massively parallel Boosted tree. It was 
developed on the basis of Gradient boosting decision tree (GBDT). Since its introduc-
tion, Xgboost has received a lot of attention in the Kaggle community competition. In 
the same situation, its speed is more than 10 times faster than other similar algorithms 
and it supports parallelization.

GBDT is a combination of decision tree and boosting method. Each decision tree of 
GBDT trains the errors in the result of the previous one. The training process is linear, 
and each iteration is the optimization goal. Compared with the traditional GBDT algo-
rithm, Xgboost has a lot of progress. Xgboost uses the second derivative information 
by performing the second-order Taylor expansion of the loss function, instead of using 
only the first derivative information as the traditional GBDT. In addition, Xgboost adds 
the complexity of the model as a regular term into the objective function to optimize 
the model, and the pruning into the later stage. A method of shrinkage and column sub-
sampling also used in Xgboost to avoid overfitting easily. Moreover, Xgboost takes the 
segmentation search algorithm, which automatically uses the sparseness of features to 
learn the parallelization tree, so it can handle higher-dimensional sparse matrices rela-
tive to GBDT.

 (iv) SVM

Support vector machine (SVM) is a supervised generalized linear classifier, which can 
handle both regression and classification problems well. SVM is sought after by many 
researchers because of its advantages such as the ability to process high-dimensional 
data, to obtain global optimal solutions, and not easy to overfit.

For linear separable samples, SVM commits to find an decision boundary to classify 
the n input data X = {x1, · · · , xn} into positive and negative classes. This boundary is 
also known as the optimal hyperplane H : wTX + b = 0 , where w is the normal vector 
and b is the intercept. It not only accurately separates the samples, but also maximizes 
the classification interval, which is the distance between the upper and lower interval 
boundaries H1 and H2 , as shown in Fig. 1. While for nonlinear separable samples, SVM 
obtains linear separation by applying a kernel function to map the sample space into a 
higher-dimensional feature space.

2.3  K‑fold cross validation

K-fold cross-validation is a common method to prevent overfitting. It splits the initial 
sampling set into K sub-sample sets, where a single sub-sample set is kept as the test set 
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to validate the model, and the other K − 1 sub-sample sets are used for training. Cross-
validation is repeated K times, once for each sub-sample set, and the results are finally 
averaged over K times to get a relatively accurate estimate. For a K-fold cross-validation, 
the root-mean-square error (RMSE) as the regression model performance measure, gen-
erally defined as

and

where ni is the number of elements in the i-th sub-sample set, and f (xj) and yj are, 
respectively, the prediction result and the true value of the j-th sample in the i-th sub-
sample set. Note that in the formula (2), Ei(f ) is the RMSE of the i-th sub-sample set, 
while E(f) in the formula (1) is the RMSE of the total data.

In the evaluation of radar anti-jamming effectiveness, we will use a 6-fold cross vali-
dation to prevent over-fitting. Then the RMSE of the total data naturally becomes 
E(f ) = 1

6

6
i=1 Ei(f ).

3  Construction of experiment scheme
Li et al. [22] argued that, according to the actual combat requirements, it is becoming 
more and more important to understand the various skills of measuring equipment 
under different parameters combined through experiments. It is the most authentic and 
reliable to obtain results by the corresponding data from a large number of confrontation 
tests, and radar anti-jamming performance evaluated according to its performance eval-
uation index. In reality, however, due to the constraints of various factors, it is impos-
sible to exhaust all the combinations that are opposed to each other; see Guariglia and 
Silvestrov [23]. Therefore, the design of experiment becomes necessary. As Chen and Lei 
[24] pointed out that, an outstanding construction scheme in the radar countermeas-
ure experiment contributes to the accuracy of the later evaluation of radar anti-jamming 
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Fig. 1 Optimal hyperplane in SVM; The basic purpose of SVM is to find an optimal hyperplane, which not 
only accurately separates the samples, but also maximizes the classification interval
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effectiveness. Yilmaz, Cohen and Porter [25] applied the covering arrays for efficient 
fault characterization in complex configuration spaces. Colbourn et al. [26] gave a con-
struction of mixed covering array with strength two, and emphasized its broad appli-
cability in military data analysis. According to the space-filling properties of the fractal 
geometry, Best [27] studied the resonance compression and multi-band behavior of frac-
tal-shaped wire antennas. Martínez et al. [28] used ELAs, coverage arrays, and adaptive 
testing algorithms to locate errors. Guo and Wang [29] creatively applied unified design 
methods to the radar anti-jamming simulation experiment, and achieved ideal analysis 
results. Taking into account the actual operation and requirements, our study in this 
manuscript includes the following three types of jammers: 

(1) noise FM jammer,
(2) noise PM jammer,
(3) multiple false target jammer.

All these three kinds of jamming are active jammings in intentional jammings. Among 
them, the first two are covered jammings, while the third one belongs to deceptive 
jamming. Covered jamming always uses noise or noise-like jamming signals to cover 
or overwhelm the useful signals and prevents radar from detecting target informa-
tion. Its principle is to make the strong jamming power into radar receiver, reduce the 
signal-to-noise ratio as much as possible, and make it hard for the radar to detect the 
target. While the principle of deceptive jamming is that, false targets and information 
are used in radar’s target detection and tracking system to make the radar cannot cor-
rectly detect the real target or measure the parameter information of real targets.

Moreover, both of noise FM jammer and noise PM jammer have five parameters, 
while the multiple false target jammer has four parameters. And the radar itself has 
six parameters, which can be set to be different values to observe its performance 
in the case of carrying three types of jammers. Based on the above analysis, the dif-
ficulties of experiment design here under complex electromagnetic environment are 
mainly the diversity of variable values and various complex constraints among varia-
bles. However, the two-map position array and two-map detection array can meet our 
actual needs of confrontation experiment in a complex electromagnetic environment. 
They require that each level combination of any radar parameter and jammer param-
eter occurs at least once, which results in the overall design with less aberration. Here 
an experiment design with eighteen runs is proposed, shown in Tables 1 and 2.

4  Measurement of anti‑jamming effectiveness
4.1  Single indicator

In the process from detecting and discovering to automatically locking the target, the 
radar usually has undergone three stages of searching, capturing and tracking in turn. 
Wherein, the radar scans the airspace of interest over a large area during the search 
phase, explores and locates possible targets; see Sotiroudis et al. [30]. The tracking phase 
guides the system to the target and track it. And the capture phase is a process from the 
search phase to the automatic tracking phase, whose duration is generally short.
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In order to achieve quantitative measure of anti-jamming capability, we are supposed 
to select metrics reasonably. These metrics are required to reflect the extent of radar 
jamming in both search phase and tracking phase, and the effect of both covered jam-
ming and deceptive jamming. Based on the above analysis, and combined with principles 
of power, information, efficiency and time, the following multiple indicators in Table 3 
are given as a measure of radar performance. The contents of this table are described as 
follows. For the target interception time, the distance accuracy, the jamming consump-
tion time resources, the percentage of interference consuming time resources and the 
number of false tracks, the smaller the value, the worse the jamming effect and the better 
the radar performance. While for the maximum tracking duration, the tracking points, 
the track time resources for true goals and the track true target time resource percent-
age, the conclusion is the opposite, i.e., the larger the value, the worse the jamming effect 
and the better the radar performance. And when the relative distance accuracy> 2 , it 
indicates that the radar performance deteriorates due to the effective jamming.

4.2  Comprehensive indicator

The above-mentioned principles of power, information, efficiency and time are usually 
used to provide a number of indicators for measuring the anti-jamming performance. 
However, one single indicator selected by these criteria has many deficiencies in radar 
performance evaluation; see Guariglia [31]. For example, there may be duplication 

Table 1 Radar and noise FM jamming parameters in experimental schemes

 Curun, Cupun, Tdr, Fa, Bt and Fet, respectively, denote CFAR Unilateral reference unit number, CFAR Unilateral protection 
unit number, the tracking data rate, the frequency agility, the burn through and the front edge tracking

 n1 , SIR1 , Cr, Sdmn and Bmn, respectively, denote the first quantity, the signal to interference ratio in the noise FM jamming, 
the chirp rate, the standard deviation of modulation noise and the bandwidth of modulation noise

 Unit description: the units of SIR1 , Cr and Bmn are, respectively dB, MHz/s and MHz, while others are non-dimensional

Number Radar parameters Noise FM jamming parameters

Curun Cupun Tdr Fa Bt Fet n1 SIR1 Cr Sdmn Bmn

1 8 2 7 Y N N 1 40 6.00E+06 1.50E‑06 1

2 16 1 4 Y N N 1 35 6.00E+06 1.50E‑06 0.5

3 24 1 7 Y Y N 1 30 8.00E+06 1.00E‑06 0.5

4 24 3 1 Y Y Y 1 40 7.00E+06 1.50E‑06 1.5

5 32 4 4 N N Y 1 25 6.00E+06 1.00E‑06 1.5

6 32 4 4 N Y Y 1 40 5.00E+06 5.00E‑07 1

7 16 2 10 Y N Y 1 40 8.00E+06 5.00E‑07 1.5

8 16 1 10 N N N 1 25 5.00E+06 1.50E‑06 1

9 24 3 1 Y Y Y 1 25 6.00E+06 5.00E‑07 0.5

10 24 3 1 Y Y N 1 35 5.00E+06 5.00E‑07 0.5

11 16 2 10 Y Y N 1 30 7.00E+06 1.00E‑06 1

12 32 4 4 Y Y N 1 30 7.00E+06 5.00E‑07 1.5

13 8 1 7 N N N 1 25 7.00E+06 5.00E‑07 1.5

14 8 3 1 N N Y 1 30 8.00E+06 1.00E‑06 1

15 8 2 7 N Y N 1 35 5.00E+06 5.00E‑07 0.5

16 32 4 10 N Y Y 1 35 8.00E+06 1.50E‑06 0.5

17 24 1 4 N N Y 1 40 8.00E+06 1.00E‑06 1

18 8 2 10 N N Y 1 25 6.00E+06 1.50E‑06 1.5
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between the several radar effectiveness evaluations obtained by these single indicators. 
Therefore, based on the characteristics of multiple jammers and the analysis of their 
impact on radar performance, this manuscript uses the PCA to obtain two comprehen-
sive indicators that better reflect the radar performance. This method effectively avoids 
the one-sidedness of past performance evaluation indicators. In fact, only according to 
the extraction and meaning of indicators, all these indicators in Table  3 can be easily 
simplified into six different indicators, which are:

(1) target acquisition time, (if the real target is lost, the assignment is 2.4)
(2) maximum tracking duration,
(3) relative distance accuracy, (if the real target is lost, the assignment is 18.6)
(4) time resources for tracking true goals,
(5) jamming consumption time resources,
(6) number of false tracks.

For convenience, denote these six radar performance indicators as y1 , y2 , y3 , y4 , y5 and y6 , 
respectively. The value of each indicator in the eighteen experiment schemes are shown in 
Table 4. Then we perform the PCA on the above six radar performance indicators to obtain 

Table 2 Noise PM and multiple false targets jamming parameters in experimental schemes

 Npjp, n2 , SIR2 , Fc, Sdmn and Bmn, respectively, denote the noise PM jamming parameters, the second quantity, signal 
to interference ratio in the noise PM jamming, the FM constant, the standard deviation of modulation noise and the 
bandwidth of modulation noise

 Mftjp, n3 , SIR3 , Nfta and Ftd, respectively, denote the multiple false targets jamming parameters, the third quantity, 
the signal to interference ratio in the multiple false targets jamming, the number of false targets and the false targets 
distribution

 In the last two rows, missing values occur due to n3=0

 Unit description: the units of SIR2 , Fc, Bmn and SIR3 are, respectively, dB, MHz, MHz and dB, while others are non-
dimensional

Test number Npjp Mftjp

n2 SIR2 Fc Sdmn Bmn n3 SIR3 Nfta Ftd

1 1 30 8 1 1 1 30 5 S

2 1 25 7 0.5 1 1 30 9 S

3 1 40 7 0.5 0.5 1 18 9 L

4 1 25 6 1 0.5 1 22 5 L

5 1 30 6 1 1.5 1 18 1 L

6 1 35 8 1.5 1.5 1 22 5 S

7 1 35 8 1.5 1 1 18 9 S

8 1 40 5 1 1.5 1 22 5 L

9 1 30 5 0.5 1 1 26 1 S

10 1 35 8 1.5 1.5 1 30 1 L

11 1 30 6 0.5 0.5 1 26 1 L

12 1 40 5 1 0.5 1 26 9 L

13 1 35 6 1.5 0.5 1 26 1 S

14 1 40 7 0.5 1.5 1 18 9 L

15 1 25 5 1.5 1.5 1 22 9 S

16 1 25 7 0.5 1 1 30 1 S

17 2 30 8 1 1 0

18 1 40 7 1.5 0.5 0
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Table 3 Radar performance indicators

 M1 : Time interval from the start of the simulation to the capture of the first true target

 M2 : The maximum duration of continuous tracking of true targets

 M3 : Capture measurement accuracy ( root-mean square error ) for true targets

 M4 : Ratio of distance accuracy between jamming conditions and non-jamming conditions

 M5 : Tracking number of real target traces

 M6 : If the true target is not lost, it is (tracing points-1) × 0.034; otherwise it is 0

 M7 : Duration of tracking true target ÷ Duration of simulation × 100%

 M8 : Duration of simulation × resource consumption rate - time resource for tracking true targets - time resources for initial 
search and guidance ( 6 × 0.017s )

 M9 : Duration of jamming consumption ÷ duration of simulation × 100%

 M10 : The number of false targets that form a stable track

 Unit description: the units of M1 , M2 and M3 are, respectively, seconds, seconds and minutes, while others are non-
dimensional

Number Name Meaning

1 Target interception time M1

2 Maximum tracking duration M2

3 Distance accuracy M3

Relative distance accuracy M4

4 Tracking points M5

Track time resources for true goals M6

Track true target time resource percentage M7

5 Jamming consumption time resources M8

Percentage of interference consuming time resources M9

6 Number of false tracks M10

Table 4 Value of each indicator

 y1 , y2 , y3 , y4 , y5 and y6 , respectively, denote the target acquisition time, the maximum tracking duration, the relative 
distance accuracy (compared with No.0), the time resources for tracking true goals, the jamming consumption time 
resources and the number of false tracks

 Unit description: the units of y1 and y2 are seconds, while others are non-dimensional

y1 y2 y3 y4 y5 y6

2.4 0 18.6 0 7.21 5

1 27.2 1 5.75 0.7 9

0.8 34.212 3.1 3.3 30.73 13

0.89 34 4.2 1.97 10.98 5

0.63 34.374 2.4 5.81 5.7 1

0.89 34.128 2.2 5.34 28.79 5

1.2 33.8 2.7 5.75 7.87 1

1 34.003 1.8 5.78 0.8 5

0.6 9.966 9.3 1.84 2.65 1

2.4 0 18.6 0 2.42 1

2.4 0 18.6 0 7.14 1

0.89 33.798 2.3 3.2 30.93 9

1 34.003 1.8 5.78 1.82 1

0.93 33.653 3.3 1.94 17.7 11

0.8 18.308 3.4 0.71 33.41 9

2.4 0 18.6 0 12.15 1

0.84 34.164 2.2 5.78 1.12 0

0.64 34.638 2.3 5.81 6.09 0
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two comprehensive indicators. These two indicators correctly and comprehensively reflect 
the radar performance. The analysis results are shown in Table 5.

These analysis results show that the cumulative contribution rate of the first principal 
component and the second principal component is as high as 89.1% , indicating that the first 
two principal components have a strong ability to interpret the original indicators. There-
fore, these two principal component can replace the original six indicators to achieve the 
purpose of reducing dimensions with few information loss. For more intuitively illustrat-
ing the distribution of radar performance indicators, we consider the load matrix which 
measures the importance of the indicators to the principal components. Using the biplot() 
function in R, with the first principal component as the abscissa and the second principal 
component as the ordinate, a PCA scatter plot can be drawn, as shown in Fig. 2. In this way, 
we are able to intuitively observe the correlation of each indicator and their degree of influ-
ence on the principal component.

As shown in Fig. 2, the six radar performance indicators are divided into two groups. The 
first principal component is positively correlated with y1 and y3 , while negatively correlated 
with y2 and y4 . And the second principal component is positively correlated with y5 and 
y6 Therefore, the problem of modeling and analyzing each indicator is successfully trans-
formed into the modeling analysis of these two principal component. According to their 
reflections of radar performances, we name them as the tracking capability z1 and the anti-
jamming capability z2 , respectively. The expressions of z1 and z2 are as follows:

Tracking capability (z1):

Anti-jamming capability (z2):

where y1 , y2 , y3 , y4 , y5 and y6 denote the six radar performance indicators as in Table 4.

(3)z1 = 0.363+ 0.743y1 − 0.036y2 + 0.078y3 − 0.179y4 − 0.012y5 − 0.045y6,

(4)z2 = −0.799+ 0.012y1 − 0.004y2 + 0.003y3 − 0.157y4 − 0.060y5 − 0.156y6,

Table 5 Principal component analysis on radar performance indicators

 Comp1 , Comp2 and Comp3 , respectively, denote the first, the second and the third principal component

 y1 , y2 , y3 , y4 , y5 and y6 denote the six radar performance indicators as in Table 4

Radar performance indicators Principal components

Comp1 Comp2 Comp3

y1 0.486 ‑0.22 0.745

y2 − 0.508

y3 0.522

y4 − 0.429 − 0.376

y5 − 0.129 0.67 0.646

y6 − 0.183 0.637 − 0.726

Contribution rate 0.602461 0.2886396 0.0550844

Cumulative contribution rate 0.602461 0.8911006 0.946185
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5  Evaluation of anti‑jamming effectiveness
The evaluation of radar anti-jamming capability has always been a concern for the 
researchers of radar anti-jamming technologies and for manufacturers of jamming 
equipments. The early evaluation factor method considers only few factors, and the 
evaluation results are generally not normalized. Obviously, this is not convenient for 
qualitative evaluation. In recent years, the evaluation method has developed into the 
fuzzy lake comprehensive evaluation method, and then the machine learning evalua-
tion method. It has been confirmed that the evaluation based on the machine learning 
for predicting radar performance has certain robustness and generalization capability. 
By this way, we are able to obtain the influence law of each factor on radar perfor-
mance. And then the evaluation of radar anti-jamming capability under specific fac-
tors can be realized.

According to the quantitative characteristics of radar anti-jamming performance 
evaluation, it can be regarded as a regression problem. Therefore, here we select four 
popular machine learning algorithms, CART, random forest, Xgboost and SVM, to 
solve the evaluation of radar anti-jamming performance. Considering the correct-
ness of each algorithm and their feasibilities in radar anti-jamming effectiveness 
evaluation, we also compare the quality of these four machine learning algorithms. 
In addition, we adopt the cross-validation method in data analysis for avoiding over-
fitting. Here we declare that, All specific data in this simulation are derived from the 
observations in the real radar countermeasure experiments of State Key Laboratory 
of Complex Electromagnetic Environment Effects on Electronics and Information 
System (CEMEE) of China. Next we are going to use the experiment data under two 
comprehensive indicators (z1, z2) , to evaluate the generalization ability of the model.

Fig. 2 Principal component analysis scatter plot; The six radar performance indicators are divided into two 
groups. The first principal component is positively correlated with y1 and y3 , while negatively correlated with 
y2 and y4 . And the second principal component is positively correlated with y5 and y6
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The values of z1 (the tracking capability) and z2 (the anti-interference capability) 
under the eighteen experiments are shown in Table 6. The smaller the values of z1 and 
z2 , the better the radar performances.

The model evaluation is divided into two steps. The first one is to use the overall 
sample to train the model, and to predict the value of the target variable for

the same overall sample. That is, the training set and the test set are the same. This 
approach helps to observe the effect of the model, however there may be a risk of 
over-fitting. Then according to the formulas (1) and (2), the overall RMSE can be 
obtained, as shown in Table 7. And the second step is to evaluate the generalization 
ability of each model, and then to conduct cross-validation. The training error and the 
verification error under different models are shown in Table 8.

The above results show that Xgboost has the best fitting effect, but the generaliza-
tion ability is slightly inferior to other models, which is obviously not the best choice. 
According to further in-depth comparison, we find that the average verification error 
of random forest is the smallest, that is, the generalization ability is the best. There-
fore, random forest can be chosen as the final model for predictive analysis. The 
good generalization ability fully demonstrates the evaluation ability of our model. 
This is because the two principal components, the tracking capability z1 and the anti-
jamming capability z2 obtained by the PCA in Sect. 3, accurately measure the radar 

Table 6 Results under comprehensive indicators

Number 1 2 3 4 5 6 7 8 9

z1 3.29 − 1.22 − 1.54 − 0.56 − 1.36 − 1.53 − 0.9 − 1.23 0.775

z2 0.49 − 0.34 2.433 0.223 − 1.33 0.751 − 1.18 − 0.99 − 0.77

Number 10 11 12 13 14 15 16 17 18

z1 3.52 3.47 − 1.33 − 1.06 − 0.93 − 0.34 3.413 − 1.11 − 1.33

z2 − 0.4 − 0.13 1.838 − 1.55 1.562 2.437 0.171 − 1.75 − 1.46

Table 7 The fitting effect of the four models

Algorithm model z1 z2

CART 0.348 0.325

Random forest 0.984 0.612

Xgboost 0.0036 0.0005

SVM 0.1 0.118

Table 8 Generalization capability of four models

 Te and Ve, respectively, denote the training error and the verification error

Algorithm model z1 z2

Te Ve Te Ve

CART 0.631 2.272 0.437 1.558

Random forest 0.991 1.861 0.623 1.227

Xgboost 0.0005 1.982 0.0004 1.687

SVM 0.099 2.174 0.12 0.988
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anti-jamming performance. These results and methods complement each other and 
explain the superiority of each other.

6  Additional verification of models
In order to further verify the accuracy of the obtained model, we supplement some sub-
sequent experiments, and compare and analyse the actual experimental results with the 
prediction results of the above models.

6.1  Construction of supplementary experiments

Decision trees, random forest, and Xgboost all provide seven important variables that 
affect anti-jamming performance. They are CFAR unilateral reference unit number, burn 
through, front edge tracking, SIR1 , SIR2 , SIR3 and the number of false targets, which are, 
respectively, denoted as V1, V2, V3, V4, V5, V6 and V7 for convenience.

In order to increase the supplementary experiment, the design can be constructed by 
using the above variables (the factors that do not contain 4 levels are treated as pseudo-
levels) with the values of other variables chosen arbitrarily. The construction and the 
corresponding results of the supplementary experiments are shown in Table 9.

6.2  Comparisons of actuality and prediction

Since that there are two response variables here, z1 and z2 , the following research is 
correspondingly divided into two parts, ’Comparison on z1 ’ and ’Comparison on z2 ’. In 
each part, we make use of existing variables ( V1 to V7 ) to construct several new variables 
before performing the numerical fitting, in order to reduce the number of variables in 
the model and avoid making the model too complex.

Table 9 Supplementary experiments

1 SIR1 , SIR2 and SIR3 , respectively, denote the signal to interference ratio in the noise FM jamming, in the noise PM jamming 
and in the multiple false targets jamming
2 Curun, Bt, Fet and Nft, respectively, denote CFAR unilateral reference unit number, the burn through, the front edge 
tracking and the number of false targets

Number Curun Bt Fet SIR1 SIR2 SIR3 Nfta z1 z2

1 8 Y Y 25 25 18 1 1.451 0.078

2 16 Y N 25 30 22 5 − 0.252 0.462

3 24 N N 25 35 26 9 − 0.271 0.029

4 32 N Y 25 40 30 1 1.443 − 0.495

5 32 N N 30 25 22 5 − 0.406 − 0.246

6 24 N Y 30 30 18 1 − 0.319 − 0.439

7 16 Y Y 30 35 30 9 − 0.001 0.929

8 8 Y N 30 40 26 5 0.058 0.685

9 16 Y Y 35 25 26 1 1.443 0.477

10 8 N N 35 30 30 9 1.449 0.163

11 32 Y N 35 35 18 9 − 0.116 0.910

12 24 N Y 35 40 22 1 1.443 − 0.495

13 24 N N 40 25 30 5 1.446 − 0.171

14 32 Y Y 40 30 26 1 0.401 − 0.463

15 8 N Y 40 35 22 9 − 0.149 0.876

16 16 Y N 40 40 18 5 − 0.083 1.067
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(i) Comparison on z1:

Considering that V2 and V3 are qualitative variables with two values, we firstly con-
struct a new variable V8 by V2 and V3 as follows to classify the data.

Secondly, within each block, it is noted that the variables V4, V5 and V6 ( SIR1 , SIR2 and 
SIR3 ) have some obvious properties. We summarize these properties and construct 
another new variable V9 with V4, V5, V6 and V8 as follows,

In this way, we easily get

Therefore, z1 in Table 9 can be divided into two types according to z1 > 1 and z1 ≤ 1 . 
Consequently, we fit V7 and z1 with the model z1 = b0 + b1 × V7 by different classifica-
tions of z1 , and fit V4 , V6 and z1 with the model z1 = b2 + b3 × V4 + b4 × V6 . The result-
ing linear regression equations are as follows

At a 10% significance level, the overall and coefficients are both significant. The conclu-
sion unifies the experimental results and the prediction results, which shows the resulted 
model has excellent prediction effect.

 (ii) Comparison onz2:

Similar to the above, we firstly construct a new variable V10 with V2 and V3 to clas-
sify the data,

Secondly another new variable V11 is constructed with V7 (the number of false targets) 
and V10 as follows to increase the difference between blocks,

Finally we fit the data with the model z2 = b5 + b6 × V1 + b7 × V3 + b8 × V10 to get the 
linear regression equation

(5)V8 =











1, if V2 = −1 and V3 = −1;

2, if V2 = −1 and V3 = 1;

3, if V2 = 1 and V3 = −1;

4, if V2 = 1 and V3 = 1.

(6)V9 =











2 | V4 − 40 | +3 | V5 − 30 | + | V6 − 30 |, if V8 = 1;

2 | V4 − 35 | +3 | V5 − 40 | + | V6 − 30 |, if V8 = 2;

30, if V8 = 3;

2 | V4 − 30 | +3 | V5 − 25 | + | V6 − 24 |, if V8 = 4.

(7)
{

z1 > 1, if V9 ≤ 20;

z1 ≤ 1, if V9 > 20.

(8)
{

z1 = 1.444918+ 0.000229× V7, if z1 > 1;

z1 = −2.3437+ 0.035865× V4 + 0.050194 × V6, if z1 ≤ 1.

(9)V10 =











1, if V2 = −1 and V3 = 1;

2, if V2 = −1 and V3 = −1;

3, if V2 = 1 and V3 = 1;

4, if V2 = 1 and V3 = −1.

(10)V11 = V7 × V10.
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At a 5 % significance level, the overall and coefficients are both significant. The conclu-
sion also unifies the above experimental results and the prediction results, which shows 
the resulted model has excellent prediction effect.

In addition, we provide the comparison between the true values and the predictive 
values of z1 and z2 for the above supplementary experiments, as showed in Table 10. As 
can be intuitively seen from the results in the above table, the prediction effect is quite 
good. This states that our analysis of radar performances and selection of models are 
reasonable.

7  Conclusion and discussion
This manuscript is a successful case of applying machine learning and statistical meth-
ods to solve military problems, and provides a methodology for data analysis of simi-
lar practical projects. Through the analysis of radar anti-jamming performance and the 
research on its effectiveness evaluation method, a bipartite covering array is designed for 
the experimental construction scheme. We combined the existing indicators and used 
the principal component analysis method to obtain two comprehensive indicators to 
better reflect the radar performances. Moreover, four machine learning algorithms are 
used to greatly weaken the influence of subjective factors in the comprehensive evalua-
tion, which has good practical application value. The final additional experiments verify 
the effectiveness of the final model. This provides a valuable reference for the research of 
radar anti-jamming.

However, there may be room for improvement. For example, the manuscript adopts 
four kinds of machine learning algorithms to evaluate the effectiveness of radar 

(11)z2 = −0.317775− 0.011842× V1 + 0.216881× V3 + 0.049923× V10.

Table 10 Comparison between true values and predictive values

1 Tv and Pv, respectively, denote the true value and the predictive value

Number z1 z2

Tv Pv Minus Tv Pv Minus

1 1.451 1.445 0.006 0.078 − 0.046 0.124

2 − 0.252 − 0.343 0.091 0.462 0.274 0.187

3 − 0.271 − 0.142 − 0.129 0.029 0.080 − 0.051

4 1.443 1.445 − 0.002 − 0.495 − 0.430 − 0.066

5 − 0.406 − 0.163 − 0.242 − 0.246 − 0.414 0.168

6 − 0.319 − 0.364 0.045 − 0.439 − 0.335 − 0.104

7 − 0.001 0.238 − 0.239 0.929 1.058 − 0.128

8 0.058 0.037 0.020 0.685 0.492 0.193

9 1.443 1.445 − 0.002 − 0.477 − 0.141 − 0.336

10 1.449 1.447 0.002 0.163 0.269 − 0.107

11 − 0.116 − 0.185 0.069 0.910 0.884 0.026

12 1.443 1.445 − 0.002 − 0.495 − 0.335 − 0.159

13 1.446 1.446 0.000 − 0.171 − 0.320 0.148

14 0.401 0.396 0.006 − 0.463 − 0.330 − 0.133

15 − 0.149 0.195 − 0.345 0.876 0.657 0.219

16 − 0.083 − 0.006 − 0.077 1.067 0.274 0.793
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anti-jamming. Interested readers could use other more suitable algorithms, which 
may obtain better results. Moreover, in Sect. 6.2, there may be some better methods 
for the comparisons of actuality and prediction in supplementary experiments. This 
is also a good topic worth discussing in the future. Whereas, the research methods in 
this paper set up a framework to solve the analysis problem of real data for common 
readers. We believe that with the development of theory and technology, the radar 
anti-jamming effectiveness evaluation method can be improved, thereby, increasing 
the reliability of radar anti-jamming.
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