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1 Introduction
With the arrival of the fifth generation mobile communications (5 G) era, humanity will 
enter an era of interconnected everything. Traditional industries such as automobiles, 
health, manufacturing, and entertainment will also become more intelligent, automated, 
and internet-based due to 5 G. In these applications, in addition to the well-known 5 G 
technical indicators such as high speed, low latency, and high reliability, high-precision 
positioning is also a very important technical indicator.

Generally, the positioning technology can be mainly divided into two categories, 
range-based positioning and range-free positioning. The core of range-based position-
ing is to calculate signal measurements from one or more reference transmitters at the 
receiving end, and then use a certain positioning algorithm to obtain position estima-
tion. Commonly used measurement values include received signal strength (RSS), time of 
arrival (TOA), time difference of arrival (TDOA), time of flight (ToF) or angle of arrival 
(AOA) [1–10], but the accuracy of range-based positioning is largely affected by the 
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accuracy of parameter estimation, and the accuracy of parameter estimation is often 
affected by the line of sight (LOS) path of signal propagation, which limits its application 
in practical scenarios. The method that does not require distance usually uses position 
fingerprints constructed by signals, images, sensors, etc. to achieve fingerprint position-
ing. Compared to range-based methods, it is not affected by LOS path and can achieve 
ideal positioning performance in complex multipath environments. However, its posi-
tioning accuracy is somewhat different from range-based positioning algorithms with 
ideal parameter estimation. Therefore, the prerequisite for achieving high-precision 
positioning is how to carry out effective LOS path recognition and design more effective 
positioning algorithms based on the recognition results. That is to say, for the LOS envi-
ronment and the not LOS (NLOS) environment, different positioning methods should be 
used according to different environments according to the LOS recognition results.

In the LOS environment, the signal travels in a straight line between the base station 
(BS) and the mobile station (MS). At this time, the direction and distance information 
between the BS and the MS can be obtained more accurately. Therefore, the position-
ing method based on ranging [5] has higher positioning accuracy and is more widely 
used. For the positioning method based on ranging, the premise of achieving high-pre-
cision positioning is to estimate the required positioning parameters. The most com-
monly used positioning parameters are AOA [6, 7] and TOA [8], and the traditional 
subspace methods, such as multi-signal classification (MUSIC) [11, 12] and estimating 
signal parameters via rotational invariance techniques (ESPRIT) algorithm [13] can 
been widely used to estimate these parameters. However, in the actual environment, 
due to the existence of obstacles such as buildings and trees, the signal will be reflected 
or refracted between the BS and the MS, which results in the NLOS environment and 
will cause a large deviation in the measurement of propagation time and propagation 
distance [14]. At this time, the range-based positioning method will have a larger posi-
tioning error. In the NLOS environment, an effective approach is to use the correspond-
ence between propagation features and positions to establish a fingerprint database for 
localization. In this case, a direct approach is to utilize the existing channel propagation 
model knowledge to design a spatial fingerprint feature localization scheme. In this case, 
the key is how to recognize the LOS path.

The actual prorogation environment is not only complicated but also often unpredict-
able. Therefore, it is difficulty to recognize the LOS environment and the NLOS environ-
ment. For the LOS identification, a typical method is based on channel characteristics 
[15]. This type of method extracts from the channel impulse response (CIR) features that 
have significant differences in the statistical distribution of LOS and NLOS environ-
ments, such as the total signal energy, kurtosis, root mean square delay spread (RMS), 
etc., and then use these features for LOS/NLOS identification. Reference [16] uses the 
extracted signal features to perform LOS/NLOS identification using binary hypoth-
esis testing. In recent years, with the rapid development of machine learning technol-
ogy, many scholars have applied machine learning technology to the research of LOS/
NLOS identification. Since the identification of LOS and NLOS can be regarded as a 
binary classification problem, some classic classification algorithms based on machine 
learning, such as support vector machine (SVM), have also been applied to LOS identi-
fication. Reference [17] uses kurtosis rise time, and other characteristics, and uses the 
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least square-SVM (LS-SVM) algorithm to complete the identification and mitigation of 
NLOS in the Ultra Wideband (UWB) systems, and proposes several kinds of positioning 
schemes. Reference [18] also studies the identification and mitigation of NLOS in the 
UWB positioning system. The reference uses the relevance vector machine (RVM) algo-
rithm to identify NLOS and mitigate the NLOS signal to improve the accuracy of TOA 
positioning. Reference [19] uses the gradient boosting decision tree (GBDT) to study 
LOS/NLOS identification in mmWave systems.

Once the signal propagation environment is identified, different positioning methods 
can be used for positioning according to different environments. For the LOS environ-
ments with a LOS path, simple and effective ranging-based methods are generally used. 
For the NLOS environment without a LOS path, it is necessary to reduce the position-
ing error caused by NLOS propagation. Therefore, many scholars have researched NLOS 
error mitigation technology [20–22]. Reference [23] proposes a semidefinite program-
ming (SDP) method with new constraints and converted the TDOA positioning model 
to the TOA positioning model to effectively alleviate the NLOS error in the TDOA sys-
tem. Reference [24] proposes an equality-constrained Taylor series robust least squares 
(ECTSRLS) technology, which suppresses the residual NLOS range error in the indoor 
positioning system by introducing robustness into the Taylor series least squares 
method. Reference [25] uses a second-order cone relaxation weighted least square 
(SOCR-WLS) method to reduce the impact of NLOS errors on TOF/TDOA-based posi-
tioning algorithms. The algorithm simplifies the constraint conditions of the weighted 
least squares formula through the second-order cone relaxation and does not require 
any statistical characteristics or parameters, but it has high computational complexity. 
However, the algorithms in the above references all have certain requirements on the 
number of BSs, generally no less than 3, when the number of base stations is small, the 
positioning accuracy will be greatly reduced. At present, for positioning in the NLOS 
environment, most of the existing research uses multiple BSs, and the research on the 
positioning of a single BS is still limited.

To overcome the above-mentioned challenges in the complex unknown positioning 
environment, we propose a single-BS hybrid positioning method based on LOS identifi-
cation. The contribution of the proposed method is summarized as follows: 

1. We study several machine learning methods for LOS identification. We evaluate the 
identification performance of GDBT and Random Forest (RF) based on the position-
ing data. When using different training functions and training strategies, these meth-
ods show different performances.

2. To solve the problem that most of the positioning methods in the NLOS environ-
ment use multiple BSs, we propose a single-BS positioning method that directly uses 
the NLOS path for positioning. The final position of the MS can be obtained by solv-
ing the optimization problem. The advantage of this method is that it can satisfy sin-
gle BS positioning and can achieve relatively high positioning accuracy.

3. We propose a hybrid positioning method based on LOS identification, which can 
improve positioning accuracy in a complex and unknown positioning environment. 
We first use LOS recognition technology to judge the positioning environment. 
Then, according to the identification results, we use different positioning methods 
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in different positioning environments to complement each other’s advantages and 
improve positioning accuracy. Simulation results prove that the proposed scheme 
can achieve high-precision positioning in the complex unknown positioning envi-
ronment.

2  System model
Figure 1 shows the positioning system model. In the positioning system, there is a BS with 
a known location and a mobile MS with an unknown location, and a number of scatterers 
are randomly distributed between the BS and MS. Assume that the MS is equipped with 
a uniform linear array (ULA) composed of Mr antennas and the BS is equipped with a 
ULA composed of Mt antennas. The dotted line represents the LOS path, and the solid line 
represents the NLOS path. And we assume that the signal only experiences one reflection 
when it encounters a scatterer. Figure 1 also shows the position-related parameters in the 
channel. These parameters include θl , ϕl , τl and dl = c · τl , which represent angle of arrival 
(AOA), angle of departure (AOD), time delay, and path length of the l-th path (c represents 
the speed of light), where the range of AOA and AOD are [−180◦, 180◦).

For the positioning system with L paths, the CIR between the mt-th transmitting antenna 
and the mr-th receiving antenna can be expressed as

where ρ represents channel fading, βl is the equivalent channel gain of the l-th path, � 
is wavelength, d = �/2 is antenna array spacing, s(t) represents the pulse shaping filter.

Sampling (1) with Ts as the sampling interval, the corresponding discrete-time channel 
CIR can be expressed as

(1)hmtmr (t) = √
ρ

L

l=1

βle
j2πd(mr−1) sin θl

� e
j2πd(mt−1) sin ϕl

� s (t − τl)

(2)hmtmr (tn) =
√
ρ

L
∑

l=1

βle
j2πd(mr−1) sin θl

� e
j2πd(mt −1) sin ϕl

� s( tn − τl )

Fig. 1 System model with channel parameters
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where 0 ≤ n ≤ N − 1 , N is the number of sampling points, that is, the equivalent time 
domain channel length, tn = NTs.

3  LOS identification
Since the hybrid positioning method in this paper uses different positioning methods for 
the two different propagation environments of LOS and NLOS, it is necessary to identify 
the LOS/NLOS propagation environment first, that is, to determine whether there is a 
LOS path in the environment.

3.1  Feature selection

To identify LOS and NLOS, we must first extract from the CIR the characteristics of 
statistical distributions that have obvious differences under the conditions of LOS and 
NLOS. Therefore, the selection of features is very critical. First, use (2) to get the CIR 
under LOS and NLOS conditions to prepare for feature extraction.

Then, we select the following features to identify the LOS path:

1.  Total energy of received signal

In the NLOS propagation environment, the signal will be reflected or refracted due 
to the existence of obstacles, so the signal attenuation is greater, making the energy 
and power of the received signal smaller. Therefore, the total energy of the received 
signal and the maximum received power are often used for LOS/NLOS identification. 
Since the two have a relatively strong correlation, it is enough to select one of them 
for identification. In this paper, the total energy of the received signal is selected as the 
identification feature.

2. Kurtosis, defined as the ratio between the fourth and second moments of the 
received signal amplitude, can be used to measure the peak value of the amplitude 
probability distribution.

where E(·) represents expectation, µ|h| and σ|h| respectively represent the mean and 
standard deviation of h(tn) , can be represented by (5) and (6) respectively

(3)ε =
N−1
∑

n=0

∣

∣h(tn)
∣

∣

2

(4)κ =
E
[
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Because the signal attenuation is greater in the NLOS propagation environment, the 
signal amplitude in the NLOS environment is usually smaller than the signal ampli-
tude in the LOS environment, so the kurtosis value under the LOS condition is 
higher than the kurtosis value under the NLOS condition.

3. Skewness

where µ|h| and σ|h| can be represented by (5) and (6) respectively.
 Skewness is mainly used to characterize the asymmetry of the probability distribu-

tion. Generally speaking, the skewness of the Rayleigh distribution is greater than the 
skewness of the Rice distribution. It is generally considered that the channel fading 
under LOS conditions obeys the Rice distribution, while the channel fading under 
NLOS conditions obeys the Rayleigh distribution. Therefore, the skewness in the 
NLOS environment is generally greater than the skewness in the LOS environment.

4. Average delay spread

5. Root mean square (RMS) delay spread

Since the strongest single component (ie, LOS) does not exist in the NLOS channel, 
this often results in low power concentration in the delay. Therefore, generally speak-
ing, the average delay spread and the root mean square delay spread in the NLOS 
environment are higher than those in the LOS environment.

6. Rise time

The rise time is used to measure the time interval between the strongest compo-
nent and the first component in the multipath signal. Under LOS conditions, the 
strongest component of the signal usually corresponds to the first component, while 
under NLOS conditions, the first component may be attenuated due to obstruction 
by objects or strong diffraction, making it usually before the strongest component. 
This results in a longer rise time. Therefore, the rise time in the NLOS environment 
is generally greater than the rise time in the LOS environment.

3.2  LOS identification algorithm

After extracting the channel characteristics from the CIR, a method needs to be used 
to identify the LOS path. Because the identification of LOS and NLOS can be regarded 
as a binary classification problem, this paper uses two different classification algorithms 

(7)s =
E
(
∣

∣h(tn)
∣
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)3

σ 3
|h|
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based on machine learning: GDBT and RF, to identify the LOS path, and their classifi-
cation and recognition performance is compared. The two algorithms are briefly intro-
duced below.

3.2.1  Gradient boosting decision tree

GBDT is an integrated learning method based on decision tree [22]. It uses the classifi-
cation and regression tree (CART) algorithm, which can provide excellent classification 
and regression performance, has a reasonable complexity, and reduces the possibility of 
overfitting. Suppose F(x) is an approximate function based on the response y of a set of 
predictor variables x. Since the output of the binary classification problem is a discrete 
sample category, we cannot fit the error of the sample output. To solve this problem, the 
log-likelihood loss function can be used, then the loss function can be expressed as

The GBDT algorithm uses the negative gradient of the loss function as an approximation 
of the residual, and then based on this value, we can construct a CART regression tree. 
Therefore, the negative gradient needs to be calculated first, which is

where t = 1, 2, . . . ,T  is the number of iterations, i = 1, 2, . . . ,m is the number of 
samples.

Each training sample is divided into corresponding leaf nodes, and the best residual 
fitting value of each leaf node is

where j = 1, 2, . . . , J  is the leaf area, Rtj is the leaf area corresponding to the t-th CART 
tree.

Since (13) is difficult to optimize, we generally use approximate values instead, as

In order to prevent over-fitting and improve classification accuracy, GBDT applies learn-
ing rate factors ξ , 0 < ξ ≤ 1 . Then the updated approximation function Fj(x) can be 
expressed as

3.2.2  Random forest

The RF algorithm, similar to GBDT, is an ensemble learning method composed of 
multiple different decision trees using randomly selected features. RF classifiers 

(11)L(y, F(x)) = log(1+ exp(−2yF(x))), y ∈ {−1, 1}

(12)rti = −
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∂L
(

yi, F(xi)
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∑
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(
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∑
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(15)Fj(x) = Fj−1(x)+ ξ ·
T
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γtjI
(

x ∈ Rtj
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usually have good robustness to overfitting, but also have excellent classification 
performance, moderate complexity, and relatively large feature size (that is, it can 
handle high-dimensional data) [26].

We also use the CART tree. Each decision tree in CART-RF divides the input sam-
ples based on the Gini coefficient of the input elements instead of the information 
entropy. The Gini coefficient is defined as

where pL denotes the ratio of the samples x that have the label L and the total data 
X , and N  is the number of data categories. In the paper, each sample is either LOS or 
NLOS, thus N  is 2. The Gini index of a given feature x of the input data X is calculated 
as

where x′ is the threshold used to separate the data X.
We can obtain the optimal classification of feature x∗ by minimizing the Gini index 

of x as follows:

In order to perform LOS recognition, first set the label:

where k = 1, 2, . . . ,K  , K is the number of positioning points.
Assuming that the feature set is {xk} , adding labels 

{

lk
}

 to form a complete input 
data set, i.e., 

{

xk , lk
}

 . Half of the positioning points in the positioning points with 
LOS path and the positioning points without LOS path are selected for the training 
of the classifier, that is, the training set is 

{

xk , lk
}

, k = 1, 2, . . . ,K/2 , and the remain-
ing half of the positioning points are used for testing.

Then, we use Scikit-learn (an integrated library for statistical calculations in 
Python) to train GBDT and RF, and use the trained model to classify the channels in 
the test data set.

4  Single base station hybrid positioning method
According to the result of LOS identification, we distinguish between LOS environ-
ment and NLOS environment. Then in different positioning environments, we use 
different positioning methods to make their advantages complementary to improve 
positioning accuracy.

(16)Gini(x) =
N
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∑
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(17)Gini(X, x) =

∣

∣

∣
Xx<x′

∣

∣

∣

|X|
Gini

(

Xx<x′
)

+

∣

∣

∣
Xx>x′

∣

∣

∣

|X|
Gini

(

Xx>x′
)

, x ∈ x

(18)x∗ = arg min
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4.1  Single‑BS positioning in LOS environment

For the LOS environment, due to the LOS path, that is, the signal propagates in a straight 
line between the BS and the MS, the direction and distance information between the BS 
and the MS can be obtained more accurately at this time. Therefore, the positioning method 
based on distance measurement has higher positioning accuracy and more common appli-
cations. For the positioning method based on distance measurement, the prerequisite for 
achieving high-precision positioning is to estimate the required positioning parameters. 
Commonly used positioning parameters mainly include AOA and time delay.

Generally speaking, multiple BSs are required for positioning using a single parameter. 
To realize single-BS positioning, a joint estimation of AOA and time delay is required [27, 
28]. Common joint parameter estimation methods include MUSIC algorithm and ESPRIT 
algorithm, etc. These methods are relatively simple to implement and have high positioning 
accuracy. The ESPRIT algorithm does not need to search for spectral peaks in space all the 
time like the MUSIC algorithm, so the calculation is small. Therefore, for the LOS environ-
ment, we use the ESPRIT algorithm to jointly estimate the AOA and time delay, and then 
extract the parameters of the LOS path, so as to realize the position estimation of the MS.

4.2  Single‑BS positioning in NLOS environment

For the positioning environment where there is no LOS path, many scholars choose to 
use NLOS error mitigation technology to reduce the effects of NLOS error on position-
ing. However, this type of method generally requires no less than 3 BSs. When the num-
ber of BSs is insufficient, accurate positioning cannot be performed. Moreover, since the 
NLOS error will follow different distributions in different environments, it is impossible to 
model the NLOS error uniformly. In response to this problem, this section uses the abun-
dant parameter information in the NLOS channel to propose a method of directly using the 
NLOS path for positioning. The advantage of this method is that it can meet the positioning 
of a single base station and can achieve a relatively good positioning effect.

In the positioning system model given in Fig. 1, the positions of the BS and the MS are 
q = [xBS, yBS]

T and p = [xMS, yMS]
T respectively, and the position of the i-th scatterer is 

si = [xsi, ysi]
T . d1i is the distance from the BS to the i-th scatterer, d2i is the distance from 

the i-th scatterer to the MS, ϕi is the angle of departure, θi is the angle of arrival. Therefore, 
the position coordinate of the i-th scatterer is

According to the geometric relationship, the position coordinates of the MS can be 
expressed as

As can be seen from Fig. 1, the measured distance from the BS to the MS is

(20)xsi = xBS + d1i · cosϕi

(21)ysi = yBS + d1i · sin ϕi

(22)xMS = xsi + d2i · cos θi

(23)yMS = ysi + d2i · sin θi
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Then, combining (24), (22) and (23) can also be expressed as

Then substituting the expression of the abscissa xsi of the scatterer position in (20) into 
(25), the distance d1i from the BS to the scatterer can be obtained as

Similarly, combining (24), (20) and (21) can also be expressed as

It can also be seen from the positioning model that the distance from the scatterer to the 
MS can be expressed as

Then substituting the expressions of xsi and ysi in (28) and (29) into (30), the distance d2i 
from the scatterer to the MS can be obtained as

where Rxi = d nlos ,i · cosϕi + xBS − xMS , Ryi = d nlos ,i · cosϕi + yBS − yMS.
Generally speaking, measurement errors will inevitably occur in the measurement 

process, and the existence of measurement errors will increase the positioning error. 
Due to the measurement error, (24) is generally not valid. Taking the measurement 
error into account, the measurement distance in the NLOS environment can be 
expressed as

where εi represents measurement error.
Therefore, the position estimation problem of the MS can be solved by minimizing 

the measurement error. We set the objective function as

In general, the propagation distance of the LOS path is smaller than the propagation dis-
tance of the NLOS path, i.e.

(24)d nlos ,i = d1i + d2i

(25)xMS = xsi + (d nlos ,i − d1i) · cos θi

(26)yMS = ysi + (d nlos ,i − d1i) · sin θi

(27)d1i =
xMS − xBS − dnlos,i · cos θi

cosϕi − cos θi

(28)xsi = xBS + (d nlos ,i − d2i) · cosϕi

(29)ysi = yBS + (d nlos ,i − d2i) · sin ϕi

(30)d2i =
√

(xMS − xsi)
2 +

(

yMS − ysi
)2

(31)d2i =
R2
xi + R2

yi

2
(

Rxi cosϕi + Ryi sin ϕi
)

(32)d nlos ,i = d1i + d2i + εi

(33)L(p) =
L

∑

i=1

ε2i
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where d los =
√

(xMS − xBS)
2 +

(

yMS − yBS
)2.

Therefore, the position estimation of the MS can be obtained by solving the optimi-
zation problem, and the optimization model is

Equation (35) is a nonlinear constrained optimization problem, and we use the genetic 
algorithm [29–31] to solve it.

4.2.1  Genetic algorithm

Genetic algorithm is an evolutionary algorithm that simulates the natural evolution 
process of organisms to find the optimal solution. Its main advantage is that it can 
automatically adapt to the global search space, and its global optimization capabil-
ity is better. According to the model established by (35), the steps to solve it using 
genetic algorithm are as follows:
(1) Chromosome coding

When solving the optimization problem of the MS position, the chromosome cod-
ing scheme needs to be established first. We adopt the binary coding scheme, and 
by setting the population size and coding length, a random initial population can be 
obtained. Each row vector of the population, that is, each individual is a chromosome. 
Then, an appropriate decoding process is performed according to the given approxi-
mate position range of MS, and then the initial MS position corresponding to each 
chromosome can be obtained.
(2) Fitness function

Genetic algorithm judges the pros and cons of individuals according to their fitness, 
so as to select individuals that can be inherited to the next generation. From (34), we 
can see that the value of the objective function is always non-negative. And our opti-
mization goal is to solve the minimum value of the function, so the reciprocal of the 
objective function value is used as the fitness of the individual.

Given the initial optimal fitness value bestinti, and then at each iteration, the fitness 
value bestv of each individual is obtained, and bestv ≥ bestinit is used as the judgment 
condition to judge the fitness value of the individual. Output the individual satisfying 
the condition and its corresponding optimal solution. If not, proceed to the next step.
(3) Selection function

The selection operation of genetic algorithm refers to the use of a certain method to 
eliminate individuals with low fitness from the parent population, retain individuals 
with high fitness, and inherit them into the next generation population.

For the selection operation, we use the best retention selection algorithm. The algo-
rithm first selects individuals according to the method of roulette selection. Assum-
ing that the total number of individuals in the group is N, the roulette wheel is divided 
into N sectors, and if the fitness of individual xi is f (xi) , the probability of it being 
selected is

(34)d l o s ≤ min
{

d n l o s ,i

}

, i = 1, 2, . . . , L

(35)
minL(p)
s.t. d los ≤ min

{

d nlos ,i

}

, i = 1, 2, . . . , L
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Then use a random number r to simulate the rotation of the roulette, and compare the 
random numbers r and p(xi) . If r ≤ p(xi) , then chromosome xi is selected, and so on, 
repeating N “rotations”, then N chromosomes can be selected to form a new population. 
For the newly generated population, the complete structure of an individual with the 
highest fitness is retained, that is, it is copied directly to the next-generation population 
without performing subsequent genetic operations to achieve “best retention”.
(4) Chromosome crossover

The crossover operation of the genetic algorithm refers to the exchange of certain 
genes in the two parent chromosomes in a certain way, and then recombination to form 
two new chromosomes. We use the single-point crossover operator in this paper. First 
select two chromosomes X and Y, and randomly generate a position q within their length 
range, and then exchange the codes at position q in chromosome X and chromosome Y 
to generate new chromosome X ′ and chromosome Y ′. Since the offspring genes after the 
crossover may not meet the constraints or are duplicated, the parent chromosomes are 
not changed at this time, that is, the crossover operation is not performed, and the par-
ent chromosomes directly enter the offspring, so the chromosomes before the crossover 
also need to be saved.
(5) Chromosome variation

The mutation operation of genetic algorithm means that the genes of new individuals 
formed by crossover may mutate, and then new individuals will be formed. We choose 
the simplest locus mutation, generate a random number r ∈ [0, 1] for each individual bit 
after the crossover operation, set the mutation probability to pm , if r ≤ pm , then reverse 
the bit, otherwise the bit remains unchanged. Since the mutated offspring genes may not 
meet the constraints or are duplicated, the mutation fails at this time, and it needs to be 
mutated again until it succeeds.

4.2.2  Adaptive genetic algorithm

There are some problems with the basic genetic algorithm, such as: 

1. The algorithm may converge prematurely in the early stage of the population evolu-
tion process and fall into a local optimal solution;

2. In the process of algorithm evolution, close relatives may occur;
3. The search efficiency of the algorithm in the later stage of evolution is low, and it 

needs to pass more iterative calculations to discard a large number of chromosomes 
that do not meet the constraint conditions, so the calculation time is relatively long. 
In order to solve the above problems, this paper uses an adaptive genetic (AG) algo-
rithm [32, 33]. The improvement of this algorithm to the basic genetic algorithm is 
mainly reflected in two aspects:

(1) Adaptive crossover probability The crossover probability pc of the basic genetic 
algorithm is constant, while the adaptive crossover probability will continue to 

(36)p(xi) =
f (xi)

∑N
i=1 f (xi)



Page 13 of 20Gao et al. J Wireless Com Network         (2023) 2023:62  

adjust and change with the evolution process. We use the crossover probability 
adjustment function to flexibly adjust the crossover probability during the evolu-
tion of the population. When the fitness of most individuals in the group tends to 
be consistent, the crossover probability becomes larger, so that the population can 
maintain diversity in the early stages of evolution. When the fitness of most indi-
viduals in the group is relatively scattered, the crossover probability is reduced, so 
that the population can complete a detailed search in the later stage of evolution, 
thereby preventing the optimal solution from being destroyed and accelerating the 
convergence speed. Define the adaptive cross-probability adjustment function as 

 where pcmax is the maximum value of the crossover probability pc , pcmin is the 
minimum value of pc , T is the total generation number of the group, t is the cur-
rent group generation number, f is the individual fitness of the current group, fmax 
is the maximum fitness of individuals in the group, and f avg is the average fitness of 
individuals in the proup. It can be seen that the improved crossover probability pc 
is adaptively adjusted and changed within the interval [pcmin, pcmax].

(2) Adaptive mutation probability The mutation probability pm of the basic genetic 
algorithm is also fixed. If the mutation probability is too small, premature matu-
rity is prone to occur. Therefore, in the early stage of the evolution process, indi-
viduals in the group can use a larger mutation probability to mutate, so that the 
population can maintain diversity. However, if the mutation probability is too large, 
the optimal solution will be easily destroyed. Therefore, in the later stage of the 
population evolution, the mutation probability can be increased to speed up the 
convergence speed of the genetic algorithm and prevent the optimal solution from 
being destroyed. Similarly, we use the mutation probability adjustment function to 
flexibly adjust the mutation probability. Define the adaptive mutation-probability 
adjustment function as 

 where pmmax is the maximum value of the mutation probability pm , pmmin is the 
minimum value of pm . It can be seen that the improved mutation probability pm is 
adaptively adjusted and changed within the interval [pmmin, pmmax].

4.3  Single‑BS hybrid positioning algorithm based on LOS identification

Figure 2 shows the overall structure of the proposed hybrid positioning algorithm. First, 
we use the LOS identification algorithm to judge whether there is a LOS path in the 
environment. Then, according to the result of LOS identification, we adopt different 
positioning methods for different positioning environments. For the environment where 
there is a LOS path, we use the ESPRIT algorithm to jointly estimate the AOA and time 
delay of the LOS path to achieve position estimation. For the environment where there is 
no LOS path, we propose a single-base station positioning method that directly uses the 

(37)pc =

{

pcmax − pcmax−pcmin

1+(T−t)
f−f avg

fmax−f avg

, f ≥ f avg

pcmax, f < f avg

(38)pm =

{

pmmax − pmmax−pmmin

1+(T−t)
f−favg

fmax−f avg

, f ≥ f avg

pmmax, f < f avg
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NLOS path for positioning. The final position of the MS can be obtained by solving the 
optimization problem.

5  Experimental simulation results
In this section, the LOS identification results and the positioning results in different 
environments are simulated and verified. First, the LOS identification accuracy using 
different classifiers and different features is obtained through simulation. Then, the per-
formance of the proposed single-base station positioning algorithm in the NLOS envi-
ronment is verified for positioning points where there is no LOS path. And then, in order 
to prove that the hybrid positioning method proposed in this paper can complement the 
advantages of the two single positioning methods, that is, different positioning meth-
ods have different effects in different environments, the positioning results of the two 
methods in the LOS environment and the NLOS environment were compared. Finally, 
the simulation analysis of the hybrid positioning algorithm based on LOS identification 
proposed in this paper is carried out to prove its effectiveness.

We use statistical modeling to establish a mmWave MIMO positioning model, and gen-
erates two sets of positioning data to simulate two different propagation environments, 
LOS and NLOS. One group is that there are 1 LOS path and 2 NLOS paths between the 
BS and the MS, indicating the LOS environment. The other group is that there are only 
3 NLOS paths between theBS and the MS, indicating the NLOS environment. Set the 
simulation experiment area to 10 m × 10 m, the signal center frequency fc = 60 GHz, 
the number of BS antennas Mt = 16 , the number of MS antennas Mr = 16 , the band-
width B = 100 MHz, the frequency interval �f = 240 KHz, the number of subcarriers 
N = 256 , the number of sampling points N = 100 , the number of paths between BS and 
MS L = 3.

5.1  LOS identification result

We first use a single feature for LOS identification, and the single feature identification 
accuracy results obtained by using the GBDT and RF classifiers are shown in Table 1.

As can be seen from Table 1, first of all, for the GBDT and RF classifiers, the classifica-
tion performance is almost the same. For a single feature, the identification accuracy of 
the total energy of the received signal ε is the highest, reaching 87.14% , followed by the 
rise time τRT , and the recognition accuracy rate is 78.39% . For kurtosis κ and skewness 

Fig. 2 Structure model of hybrid positioning algorithm based on LOS identification
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s, their identification accuracy is relatively low, only 60.25% and 62.68% respectively. The 
identification accuracy of the two features, the average delay spread τmean and the root 
mean square delay spread τrms , are 70.25% and 68.39% respectively, indicating that their 
identification performance is average. Therefore, the two characteristics of ε and τRT play 
a more important role in LOS identification.

Although single features such as ε and τRT can achieve relatively good LOS identifica-
tion, their identification accuracy still cannot exceed 90% , and most of the features play a 
general role in LOS recognition. Therefore, it is still unable to obtain high identification 
accuracy. In this case, we use GBDT and RF classifiers to synthesize multiple features 
for LOS identification, because these two classification methods are ensemble learning 
methods, and both can merge multiple weak learners to achieve high-precision classifi-
cation performance. Table 2 shows the accuracy results of multiple feature recognition 
by using GBDT and RF classifiers.

It can be seen from Table 2 that the identification accuracy of using multiple features 
is much higher than that of using a single feature, and the more the number of features 
used, the higher the identification accuracy. When all six features are used, the identi-
fication accuracy of GDBT and RF are 96.96% and 95.69% , respectively. Therefore, we 
choose to use GBDT’s identification results for all six features, that is, a recognition 
accuracy of 96.96% as the basis for subsequent positioning work.

5.2  Positioning results of single‑BS positioning method in NLOS environment

In this section, we have performed a simulation analysis on the performance of the pro-
posed single-base station positioning method in the NLOS environment. We use the 
basic genetic algorithm and the adaptive genetic algorithm to solve the optimization 
model, and the positioning results are shown in Fig. 3.

It can be seen that when the genetic algorithm is used, the positioning error of 85% of 
the positioning points can be less than 1 m, and when the adaptive genetic algorithm is 
used, the positioning error of about 96% of the positioning points can be kept below 1 m. 

Table 1 Single feature identification accuracy

Feature set GBDT (%) RF (%)

ε 87.14 86.25

κ 58.75 60.25

s 61.07 62.68

τmean 70.25 69.84

τrms 68.04 68.39

τRT 78.39 76.32

Table 2 Multiple features identification accuracy

Feature set GBDT (%) RF (%)

τmean + τrms + τRT 85.89 87.28

Other features except ε 92.14 89.82

All six features 96.96 95.69



Page 16 of 20Gao et al. J Wireless Com Network         (2023) 2023:62 

Compared with the basic genetic algorithm, the positioning accuracy has been greatly 
improved. This is because the basic genetic algorithm will fall into the local optimal solu-
tion in the iterative process and produce certain errors. The simulation results also show 
that the adaptive genetic algorithm has greatly improved on this problem. The simula-
tion results prove that the method of directly using the NLOS path for positioning pro-
posed in this paper can also achieve better positioning results in the case of a single base 
station.

5.3  Comparison of positioning results in LOS and NLOS environments

In order to prove that the proposed hybrid positioning method can complement the 
advantages of the two single positioning methods, that is, different positioning methods 
have different effects in different environments, we compare the positioning results of 
the two methods in the LOS environment and the NLOS environment.

Figure 4 shows the comparison of the positioning results of the ESPRIT algorithm and 
adaptive genetic algorithm in LOS and NLOS environments. It should be stated that the 
performance of adaptive genetic algorithm in LOS environment is almost the same as 
that it in NLOS environment, so we only show one curve of adaptive genetic algorithm 
in the figure. It can be seen that in the LOS environment, both the ESPRIT algorithm 
and the adaptive genetic algorithm can achieve better positioning results, but the posi-
tioning accuracy of the ESPRIT algorithm is slightly better than that of the adaptive 
genetic algorithm. It is proved that for the LOS environment with LOS path, the posi-
tioning method using ESPRIT algorithm for parameter estimation is reasonable. In the 
NLOS environment, the positioning result of the adaptive genetic algorithm is signifi-
cantly better than that of the ESPRIT algorithm. Because the signal in the NLOS envi-
ronment is interfered by the reflection path during transmission, the ESPRIT algorithm 
is used to estimate the AOA and time delay will have a large error, while the direct use 
of the NLOS path for positioning will not have this problem. The simulation result also 
proves that it is better to use the NLOS path directly and use the adaptive genetic algo-
rithm to solve the MS position in the NLOS environment.
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5.4  Hybrid positioning results based on LOS identification

To verify the performance of the proposed hybrid positioning method, we simulated two 
comparison groups. One group is to use ESPRIT algorithm to estimate the parameters of 
AOA and delay for all positioning points, consider the path with the shortest arrival time 
as the LOS path, and then extract the AOA and delay of the LOS path for positioning. 
The other group is to directly use their NLOS path to locate all the positioning points. 
Comparing the positioning results of the hybrid positioning method with the position-
ing results of the two comparison groups, the simulation results are shown in Fig. 5.

It can be seen that the positioning results using only the ESPRIT algorithm for 
parameter estimation are not ideal, because this type of method has a strong depend-
ence on the propagation environment. The positioning result directly using the NLOS 
path for positioning is better than the positioning result using only the ESPRIT algo-
rithm. This is because all the positioning points have the NLOS path, and this method 
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has very low dependence on the propagation environment. Finally, combining LOS 
identification with the two methods, it can be seen that the positioning result of the 
proposed hybrid positioning method based on LOS identification is better than any 
single method, which proves the effectiveness of the proposed positioning scheme.

6  Conclusion
In this paper, we study the single-BS hybrid positioning algorithm based on LOS 
identification in mmWave systems. Aiming at the problem of complex and unpredict-
able positioning environment, we propose a hybrid positioning method based on LOS 
identification. First, we use the feature sets consisting of multiple features with differ-
ent statistical distributions in LOS environment and NLOS environment, and use two 
classifiers, GBDT and random forest, to train the feature sets. After that, the trained 
model is used to classify the channels in the test set and judge whether there is a 
LOS path in the environment. Then, according to the result of LOS identification, we 
adopt different positioning methods for different positioning environments. For the 
environment where there is a LOS path, we use the ESPRIT algorithm to jointly esti-
mate the AOA and time delay of the LOS path to achieve position estimation. For the 
environment where there is no LOS path, we propose a single-BS positioning method 
that directly uses the NLOS path for positioning. The final position of the MS can be 
obtained by solving the optimization problem. The advantage of this method is that it 
can satisfy single BS positioning and can achieve relatively high positioning accuracy. 
Simulation results prove that the proposed scheme can achieve high-precision posi-
tioning in a complex unknown positioning environment.
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