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Abstract 

With the development of the information age and the maturity of Internet of Things 
technology, wireless sensor network has been widely applied in indoor localization. 
However, the non-line-of-sight (NLOS) propagation in complicated environment 
and the inherent noise of the sensor will introduce errors in the measurements, which 
will seriously lead to inaccurate positioning. In this paper, a novel localization scheme 
based on the mean reconstruction method is proposed, which reconstructs the dis-
tance measurements from all beacon nodes by taking the average twice to weaken 
the adverse effects of NLOS. At the same time, the noise average is re-estimated 
when the distance difference is not too large. Next, the robust extended Kalman filter 
(REKF) is used to process the reconstructed distance measurements to obtain posi-
tioning results. To make the positioning results more accurate, hypothesis test is used 
as NLOS identification to classify the position estimates generated from all distance 
combinations by least-squares. Then, the residual weighting (RWGH) method is uti-
lized to combine the position estimates that fall into the validation region. At last, we 
merge the results from RWGH and REKF. The simulation and experimental results show 
that the proposed algorithm has high positioning accuracy and strong positioning 
robustness.

Keywords: Wireless sensor network, Mean reconstruction, Robust extended Kalman 
filter, NLOS identification, Residual weighting

1 Introduction
A certain number of low-energy sensors are deployed in a specific range indoors or 
outdoors, thus forming a wireless sensor network (WSN). Using communication tech-
nology to receive relevant information about the target, such as time of arrival (TOA), 
time difference of arrival (TDOA), angle of arrival (AOA) and received signal strength 
(RSS). The researchers have extended wireless positioning technology, which has good 
effects on science, military and social life [1]. In WSN, the pre-fixed sensors are called 
beacon nodes (BNs), while the state of the object to be located is indeterminate, usually 
in motion, so we call it mobile node (MN). According to whether there are obstacles 
between the BN and the MN, the channel can be divided into two types: line-of-sight 
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(LOS) and non-line-of-sight (NLOS) propagation. In the real world, obstacles such as 
humans, tables, cars, and plants will cause diffraction and refraction of the electric signal 
during the NLOS transmission process and produce the signal time delay, which make 
the measurements become larger than actual values [2]. Thus eventually lead to the devi-
ation between the positioning trajectory and the actual mobile trajectory [3]. The errors 
of contaminated measurements in NLOS transmission are mainly NLOS errors, which 
make the measurements have positive errors that can’t be ignored. The NLOS errors are 
adverse to the positioning accuracy, so it is especially crucial to alleviate and eliminate 
the NLOS errors.

Nowadays, several NLOS processing algorithms have been proposed. Some algorithms 
directly process all original measurement data [4–9]; while others identify the measure-
ment data and divide them into several categories [10–16], even discarding the measure-
ment values with larger errors and only utilizing the measurement values with smaller 
errors into subsequent steps. Therefore, we can divide these algorithms into NLOS miti-
gation and NLOS identification.

In this paper, we propose a positioning algorithm based on mean reconstruction REKF 
by using the TOA measurements, which combines NLOS mitigation and NLOS identi-
fication. The proposed algorithm has made some improvements in positioning perfor-
mance and algorithm applicability. The main contributions in the proposed algorithm as 
follows:

1. The proposed algorithm is based on REKF, which integrates robust regression into 
EKF and can be applied to nonlinear systems. Unlike the IMM framework, the REKF 
has a significant advantage that does not depend on the prior knowledge of the 
NLOS errors, so REKF is more in line with the actual circumstances.

2. In the worst case, our algorithm time complexity is (r + K ) · O(n) , where r is the 
number of Newton–Raphson iterations and K is the total number of distance combi-
nations.

3. The proposed algorithm has a significant advantage in localization performance with 
high accuracy and strong robustness. In addition, the proposed algorithm is suitable 
for different NLOS error distributions and independent of BNs distribution. Particu-
larly, the proposed algorithm works better for the environments with lots of NLOS 
errors.

The subsequent structure of the paper is arranged as follows: Sect. 2 introduces related 
works. Sections 3 and 4 describe the signal model and the proposed algorithm in detail 
respectively. We conducted simulations and experiments, and analyzed the results in 
Sect. 5. The conclusion is drawn in Sect. 6.

2  Related works
2.1  NLOS mitigation

There are two strategies for NLOS mitigation: the first one is only to remedy range 
errors. The residual weighting (RWGH) method is to take the reciprocal of the dis-
tance difference as the residual, which removes the effect of outliers by giving less 
weight to points farther away from the measurements [4]. However, the complexity of 
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the method needs to be reduced, some researchers were committed to improving the residual 
weighting algorithm. For instance, by reserving the combinations with the smallest residu-
als and performing summation, the RWGH method becomes computationally simple [5]. 
The iterative minimum residual algorithm is proposed in [6], which sets a minimum residual 
threshold, and iteratively retains position estimates with residuals less than this threshold as 
final results. In TDOA positioning, solving optimization problems by convex relaxation is also 
a hot topic for NLOS mitigation. Through l(1)-norm robustification and neurodynamic opti-
mization in NLOS, the convex optimization problems with inequality constraints are solved 
by redefining Augmented Lagrangian effectively [7].

The second strategy is to directly suppress the NLOS impact by using dedicated locali-
zation techniques. The authors in [8] proposes a NLOS nodes localization scheme based 
on Harris Hawke optimization algorithm to promote reliable data propagation between 
vehicle nodes in emergency situations. It can locate NLOS nodes based on their dynamic 
characteristics and adaptive positioning styles obtained through reference nodes. A 
novel self-learning LS positioning algorithm has been proposed in [9], which can not 
only solve the distortion problem of LS in NLOS environment, but also not be limited to 
the condition that LS requires at least three nodes in localization problems.

2.2  NLOS identification

The NLOS identification part is generally conducted before NLOS mitigation, which can 
recognize whether the propagation state between nodes is LOS or NLOS, after identi-
fication different error elimination technologies are used for different conditions. The 
NLOS identification methods include range, channel and location aspects. The identifi-
cation method based on channel is challenging, and the method based on distance can 
be measured by UWB, which is relatively easy to obtain, and the position can also be cal-
culated using distance. The method based on distance mainly use the probability density 
function (PDF) or variance of range estimates to distinguish between LOS and NLOS 
[10]. In location identification, probability theory [11] or machine learning [12] can be 
used to determine whether the position estimate is generated by NLOS measurements.

There exist some methods to identify whether the state is in LOS or NLOS. The Wylie 
method mainly calculates the measurement variance and judges whether the distance 
measurements are contaminated by NLOS errors [13]. The decision theory and z-test 
are used for identifying NLOS propagation [14], and then the NLOS measurement data 
are discarded. Even if the prior information of NLOS error is unknown, the algorithm is 
still effective. These identification methods are based on range. The modified probabil-
istic data association (MPDA) algorithm obtains a position estimate through different 
combinations of ranging by LS [15]. The NLOS detection is to identify the optimized 
position estimate which falls into the validation gate. Then the optimized position esti-
mates are reserved and used to calculate the position of the MN by the corresponding 
association probability weighting. The method is based on location. A practical NLOS 
identification (PNI) technique based on support vector machine (SVM) is designed in 
[16], which can reduce the effects of transmission channel-dependent characteristics 
and optimize the classifier, so it’s based on channel. Our algorithm improves the hypoth-
esis test in the MPDA to determine whether the position estimate is from LOS or NLOS.
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2.3  NLOS identification and NLOS mitigation

Some positioning algorithms are divided into two steps: first identifying the NLOS error 
and then eliminating it. All of them play a certain role in improving the positioning accu-
racy. The Wylie method uses the time history of distance measurements from each BN, 
combined with the method of measuring noise standard deviation and residual analysis 
rank test, to determine whether there exists NLOS error in the distance measurements 
[13]. The second step is to eliminate the NLOS errors to achieve true TOA reconstruc-
tion by using the time history of TOA measurements. A distance measurement recon-
struction mode was proposed in [17]. After identifying the NLOS error, Liu uses an 
orthogonal polynomial to optimize the distance measurements obtained by the biased 
Kalman filter (KF). In [18], an Bayesian sequential test is designed to identify whether 
the distance measurements are contaminated by NLOS errors. After identification, the 
original distance measurements, which are contaminated by NLOS errors, are optimized 
by a modified Kalman filter (MKF). In [19], according to the number of position esti-
mates that fall into the validation gate, the environment at this moment is divided into 
mild NLOS and severe NLOS condition; then the average value of NLOS error is esti-
mated by using the historical positioning results, and the distance measurements from 
each beacon node are reconstructed. Our algorithm reconstructs the distance measure-
ments to reduce the NLOS errors and determines whether the position estimate is from 
LOS or NLOS, and finally combines the results.

3  Signal model
X(n) = [x(n) y(n)x̂(n) ŷ(n)]T is the state vector of the MN, where n is the time step and 
N is the whole time steps. (x(n), y(n)) is the coordinate of the MN and (x̂(n) ŷ(n)) denotes 
the velocity of the MN. According to the force model, the state vector of the MN changes 
over time, which can be described as:

where, �t is the sampling period. u(n) is the driving noise, which is assumed to be a 
Gaussian white noise with a mean of zero and covariance matrix of Q(n) . F is the state 
transition matrix of the MN, and G is the interference input matrix which is used to 
described the random acceleration of the MN causes by u(n) . Within the specific area, L 
beacon nodes are randomly deployed to receive the signal from the MN. D(n) is the dis-
tance measurements based on TOA data between the BNs and MN at time step n, which 
can be defined as and calculated by follows:

(1)X(n)=FX(n− 1)+ Gu(n− 1), n=1, 2, . . . ,N .

(2)F =

1 0 �t 0
0 1 0 �t
0 0 1 0
0 0 0 1

, G =

�t2/2 0

0 �t2/2
�t 0
0 �t

,

(3)D(n) = [d1(n), d2(n), · · · , dL(n)]
T

(4)D(n) = h(X(n))+ b(n), n = 1, 2, . . . ,N
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where, h(X(n)) = [h1(x(n)), h2(x(n)), ..., hL(x(n))]
T represents the actual distances 

between the BNs and the MN at time step n and b(n) = [b1(n), b2(n), ..., bl(n), ..., bL(n)]
T 

is the noise vector. The actual distances h(X(n)) are measured by Euclidean distance and 
hl(X(n)) is the l-th component of h(X(n)).

where, (xB(l), yB(l))T denotes the coordinate of the l-th BN.
The noise vector b(n) consists of sensor noise and NLOS error, and the sensor noise is 

also called LOS error. b(n) contains random variables with a variance describing Gauss-
ian noise due to the NLOS propagation, and it can be defined as:

where, w(n) is Gaussian noise N (0, 12) . bNLOS denotes the NLOS error, which changes 
with the environment and could follow different distribution. σLOS and σNLOS are the 
standard deviation of the sensor noise and the NLOS error respectively. The measure-
ment covariance matrix is:

where σ 2
L represents the variance of the noise.

In this paper, we assume that the standard deviation of the sensor noise σLOS is known 
beforehand, while σNLOS is unknown for us.

4  The proposed algorithm program
4.1  General concept

The flowchart of the proposed algorithm is illustrated in Fig. 1. First, we obtain a pre-
dicted position through Kalman prediction with real initial position information. Then 
we calculate the distances from the predicted position to all beacon nodes and make 
difference with the original distance measurements. In the first averaging, the distance 
differences from all beacon nodes are averaged, and the second averaging is the histori-
cal time average. The average value of the two times is used as the estimation of noise 
average, and then the mean reconstruction is performed: we subtract the estimation 
of noise average from the original distance measurements, and the results are approxi-
mated as the distances from all beacon nodes to the mobile node, thereby reducing the 
error caused by the noisy environment. However, reconstruction may produce a nega-
tive error when the noise is small, so we re-estimate the noise. After that, the robust 
regression technology is introduced to improve the EKF, which does not need to assume 
the prior knowledge about the NLOS errors. To further enhance the positioning accu-
racy, we divide the distance measurements into multiple groups, and each group pro-
duces a position estimate by least-squares. Then by processing these position estimates 
with EKF, the filtered position estimates can be obtained. LOS identification is to recog-
nize whether the position estimate is in LOS through hypothesis testing. The position 
estimates whose test statistic is not greater than the validation threshold can fall into 

(5)hl(X(n)) =

√

(x(n)− xB(l))
2 +

(

y(n)− yB(l)
)2
, l = 1, . . . ,L

(6)bl(n) =

{

σLOSw(n) LOS
√

σ 2
LOS + σ 2

NLOSw(n)+ bNLOS NLOS

(7)R(n) = diag
[

σ 2
1, σ

2
2, . . . , σ

2
L

]

, l = 1, 2, . . . ,L
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the validation region and are selected for residual weighting, and the other position esti-
mates are discarded. Lastly, the result of REKF and the result of residual weighting are 
merged as the positioning result, which will be input into the next moment positioning.

4.2  Mean reconstruction method

In indoor localization, the sensors return observation value D(n) , which consisted of the 
actual distances and the noise b(n) [20]. b(n) is mixed with the LOS error and the NLOS 
error. The LOS error is generally smaller than NLOS error. So we can use the noise esti-
mation to estimate NLOS error. The NLOS error has a certain rule and follows a specific 
distribution, which has different values with different probabilities. We take the method 
of averaging multiple distance measurements differences, the random NLOS errors tend 
to offset each other in the linear dynamic system in the process of averaging [21].

˜

˜

Fig. 1 The flowchart of the proposed algorithm
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Assuming that the initial state information is known and the movement is entered 
from the door of the room, the position of the door can be used as the initial position. 
Based on this accurate data, the Kalman prediction position at the first moment is close 
to the real position. We calculate the distances from the predicted position to all beacon 
nodes, and the differences can be considered as the noise. The average of the differences 
from all beacon node can be approximated as the mean value of noise. On the basis of 
the above operations, the Kalman filter values of the subsequent time steps are also rela-
tively accurate. Therefore, we can estimate the noise and average the differences in sub-
sequent time steps.

4.2.1  Kalman prediction

The state vector X(0|0) and covariance matrix P(0|0) are initialized. The state vector and 
covariance matrix of current time step n can be predicted by the state and the covari-
ance matrix at previous time step n − 1:

De,l(n) is the distance between the predicted position and the l-th BN. We subtract 
De,l(n) from the distance measurements dl(n) to get de,l(n) , de,l(n) is the noise estimate 
of the l-th BN.

where, B is 
[

1000

0 1 0 0

]

 , and �•�n denotes n-norm.

4.2.2  First average

To overcome the randomness of the noise, de,l(n) from the L BNs are averaged to obtain 
M(n) , which can be approximately considered of the noise at time step n.

4.2.3  Second average

It is assumed that the NLOS errors follow the same distribution in a separate indoor 
environment with a small range and similar obstacles. So we perform the second aver-
age, historical data from initial time step to current time step n are averaged as the esti-
mation of noise average:

(8)X(n|n− 1) = FX(n− 1|n− 1)

(9)P(n|n− 1) = FP(n− 1|n− 1)FT + GQGT

(10)De,l(n) =
∥

∥BX(n|n− 1)− [xB(l), yB(l)]
∥

∥

2

(11)de,l(n) =
∥

∥dl(n)− De,l(n)
∥

∥

1

(12)A(n) =

L
∑

l=1

de,l(n)

(13)M(n) = A(n)/L
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With the process of sampling, the average value can represent the digital characteristics 
of the noise in this environment.

4.2.4  Mean reconstruction

We mainly let the distance measurements directly subtract the noise average estimation. 
The noise is mixed with the sensor noise and the NLOS error, and the NLOS error is gener-
ally larger than sensor noise. Noise average estimation is mainly determined by the large 
NLOS error, therefore the distance measurement in NLOS minus the estimated mean 
value m(n) will be closer to the actual distance. To mitigate the influence of NLOS error, we 
reconstruct the distance measurements by subtracting the recorded mean value:

However, the distance measurement in LOS with a little noise error, subtracting the esti-
mated mean value m(n) , may bring about a negative error. If the following conditions are 
met, it can be roughly considered as a little noise error.

For this case, similar to formula (12) and (13), re-estimate the noise to reduce the influ-
ence of negative error and make the reconstructed distances close to the actual distances:

where, T is the number that de,l(n) is judged to be a little error. For little noise error, 
we reconstruct the distance measurements by subtracting the re-estimated value of the 
noise:

4.3  REKF algorithm

4.3.1  Deformation of the EKF formula

In the EKF, the Jacobian matrix H(n) , the innovation v(n) , the innovation covariance matrix 
S(n) and the extended Kalman gain K (n) at time step n can be calculated as follows:

(14)m(n) =

n
∑

i=1

M(i)/n

(15)dl(n) = dl(n)−m(n)

(16)de,l(n) < σLOS , de,l(n) < M(n), l = 1, . . . , L

(17)Ã(n) =

T
∑

l=1

de,l(n)

(18)M̃(n) = Ã(n)/T

(19)dl(n) = dl(n)− M̃(n)

(20)H(n) =
∂h(X(n|n− 1))

∂X(n|n− 1)

(21)v(n) = D(n)− h(X(n|n− 1))
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where D(n) is the reconstructed distance measurements. The update of the state and 
covariance matrix are:

In the next steps, we replace X(n) with X . The EKF equation is rewritten and transformed 
into linear regression model by applying the robust technology. The state Eq. (1) and the 
measurement (4) are rewritten as follows:

where, E(·) represents the expectation and C(n) is obtained by using Cholesky decompo-
sition for E

(

e(n)eT (n)
)

 . The linear regression model is constructed by multiplying (26) 
with C−1(n):

4.3.2  Robust regression

Referring to the linear regression model (29), the maximum likelihood estimation of X at 
time step n can be obtained by solving the following coupled equation:

(22)S(n) = H(n)P(n|n− 1)HT (n)+ R(n)

(23)K (n) = P(n|n− 1)HT (S(n))−1

(24)X(n|n) = X(n|n− 1)+ K (n)v(n)

(25)P(n|n) = E
[

(X(n)− X(n|n))(X(n)− X(n|n))T
]

(26)
[

I4
H(n)

]

X(n) =

[

FX(n− 1|n− 1)
D(n)− h(X(n|n− 1))+H(n)X(n|n− 1)

]

+ e(n)

(27)e(n) =

[

F (X(n− 1)− X(n− 1|n− 1))+ Gw(n− 1)

−v(n)

]

(28)E
(

e(n)eT (n)
)

=

[

P(n|n− 1) 0
0 R(n)

]

= C(n)CT (n)

(29)ỹ = AX + bf (ṽ)+ ṽ

(30)ỹ = C−1(n)

[

X(n|n− 1)

D(n)− h(X(n|n− 1))+H(n)X(n|n− 1)

]

(31)A = C−1(n)

[

I4
H(n)

]

(32)ṽ = −C−1(n)e(n)

(33)
M+dim(X)

�

i=1

[A]ij × ϕ



ỹi −

dim(X)
�

j′

[A]ij′X j′



 = 0
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where, dim(·) is the operation to count the dimension of X and j′ = 1, 2, . . . , dim(X) . 
However, the pdf f (ṽ) of the ṽ is asymmetric because the mean of the NLOS error is 
positive. Therefore, we use the descending score function ϕ(·) , which is referred to [22]:

where, β1 is chosen to be 1.739; according to [22], we set α1 and α2 as 1.5 and 3 respec-
tively. The state estimate X obtained above still contains a large error, so we use New-
ton–Raphson method to optimize X:

At first, we need to obtain the initial state estimate X0 by least squares (LS)s:

where, X r is the state estimate in r-th iteration.
Next, we determine the error residual ˆ̃v through deformation by shifting (29) and esti-

mate the error scale σv by (37):

Then, the update step of the robust Kalman filter is performed, in which the state esti-
mate X r is updated iteratively by Newton–Raphson method. The iteration will continue 
until the preset convergence is met, otherwise the iteration will be broken, and the final 
result will be reserved.

where, the preset threshold ε is set to 0.5.
At last, X r+1 is determined as the state vector X at this time step n and the two-dimen-

sion coordinates of the position estimates Z(n) can be obtained by X multiplying the 
matrix B:

4.4  LOS identification strategy

If the noise is small, the reconstruction has little change to the original distance measure-
ments and the reconstruction distance measurements have limited improvement to the 

(34)ϕ(θ) =







θ |θ |<α1
β1tanh[0.5b1(α2 − |θ |)]sgn(θ) α1 ≤ |θ | ≤ α2
0 |θ | > α2

(35)X r =
(

ATA
)−1

AT ỹ r= 0

(36)
⌢

ṽ = ỹ − AX r

(37)σv = 1.483mean

{∣

∣

∣

∣

⌢

ṽ −mean(
⌢

ṽ)

∣

∣

∣

∣

}

(38)X r+1 = X r + µ

(

ATA
)−1

ATϕ(
⌢

ṽ/σv)

(39)µ = 1

/(

1.25max

(∣

∣

∣

∣

ϕ′(
⌢

ṽ/σv)

∣

∣

∣

∣

))

(40)�X r+1 − X r�2 < ε

(41)Z(n) = BX(n)
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positioning accuracy. The enhancement of the accuracy should be improved from the posi-
tioning method. We use multiple position estimates generated by distance measurements 
to eliminate outliers, and retain the position estimates under the condition of LOS with 
small errors.

We firstly divide the reconstructed distance measurements into K combinations and each 
combination generate a corresponding position estimates via least-squares. Then by pro-
cessing these position estimates with extended Kalman filter (EKF), filtered positions 

⌢

Zi(n) 
can be obtained which is expressed as follow:

where

Next, we obtain the coordinate Z(n|n− 1) of the predicted position and calculate the 
innovation ⌢vi(n) between the position estimate of the i-th combination and the predicted 
position:

LOS identification: If the NLOS error in position estimate of each combination has been 
mostly eliminated after the distance measurements reconstruction, the condition of the 
position estimate can be considered in LOS. Furthermore, there are:

where, 
⌢

Si(n) is the innovation covariance matrix of 
⌢

Zi(n).

K hypotheses and alternatives are defined to validate (46). The hypothesis ζ0,i holds true 
when the i-th position estimate is determined in LOS, otherwise the hypothesis ζ1,i holds 
true [15].

(42)
⌢

Zi(n) =
[

⌢
xi(n),

⌢
yi(n)

]T
, i = 1, . . . ,K

(43)K =

L
∑

i=3

Ci
L

(44)Z(n|n− 1) = BX(n|n− 1)

(45)ai(n) =
⌢

Zi(n)− Z(n|n− 1)

(46)ai(n) ∼ N (0,
⌢

Si(n)), i = 1, . . . ,K

(47)
⌢

Si(n) = BP(n|n− 1)BT + σ 2
G(

⌢

HT
i (n)

⌢

H i(n))
−1

(48)
⌢

H i(n) =
∂h(

⌢

Zi(n))

∂
⌢

Zi(n)

(49)ζ0,i:ai(n) ∼ N

(

0,
⌢

Si(n)

)

, i = 1, . . . ,K

(50)ζ1,i: not ζ0,i, i = 1, . . . ,K

(51)T i(n) = aTi (n)
⌢

S−1
i (n)ai(n)
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where, T i(n) is the test statistic, which is used to compare with the threshold value γ 
of the validation gate to judge whether the position estimate 

⌢

Zi(n) is in the validation 
region. If T i(n) isn’t larger than γ , the hypothesis ζ0,i holds; otherwise ζ0,i is rejected. The 
threshold value γ is related to tracking threshold probability Pg , which represents the 
probability that the position estimate that falls into the verification area can be correctly 
detected, and it can be obtained from the following formula:

where, fχ2(2)(·) is the probability density function of chi-square distribution, which has 
two degrees of freedom. PFa is the false alarm rate, while the sum of Pg and PFa is 1.

We record the position estimates that passed the hypothesis test and the number of them, 
which are denoted as Z j(n) and k(n) respectively. Z j(n) is expressed as follows:

where, k(n) is a non-negative integer no greater than K.

4.5  Residual weighting method

When k(n) is more than zero, the position estimates fall into the validation region in the 
previous procedure are selected and used for residual weighting in this procedure. While 
the other position estimates are discarded. It may also occur that k(n) is equal to zero, 
which indicates that all position estimates do not meet the hypothesis and are not identified 
in LOS, then we use the original position estimates 

⌢

Zi(n).
Residual weighting method is performed to prevent reconstruction failure. Assuming 

that the previous steps did not introduce large errors, the predicted point is relatively accu-
rate and is near the real position of mobile node. Therefore, we take the predicted position 
X(n|n− 1) as the center, and the definition of residual [4] is modified as follows:

When k(n) = 0:

When k(n) > 0:

The position estimate which is close to the predicted position is given a larger weight by 
taking the reciprocal of the corresponding residual. After calculating the residual of each 
position estimate, the residual weighted results of them are combined as the positioning 
result of this time step n:

When k(n) = 0:

(52)

γ
∫

0

fχ2(2)(x)dx = Pg = 1− PFa

(53)Zj(n) =
[

xj(n), yj(n)
]T

, j = 1, . . . , k(n)

(54)resi(n) =
∥

∥

∥BX(n|n− 1)−
[

⌢
xi(n),

⌢
yi(n)

]∥

∥

∥

2
, i = 1, . . . ,K

(55)resj(n) =
∥

∥

∥
BX(n|n− 1)−

[

xj(n), yj(n)
]∥

∥

∥

2
, j = 1, . . . , k(n)
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When k(n) > 0:

4.6  Results merging

In this subsection, the positioning results of the above two methods are merged by 
weighting. Due to the distance measurements contaminated by noise, the filtered dis-
tance measurements are closer to the actual distances. We compute the distances from 
the BNs to the positioning results, which are expressed as h(Z(n)) and h(W (n)) . The 
greater the differences between them and the distance measurements D(n) are, the more 
effective of this method can be considered. Therefore, we utilize the ideas in [4], and 
revise the definitions:

Then the weighted sum of the two results at time step n can be obtained after comput-
ing the weighting coefficient βi(n) , which is defined as O(n):

At the same time, we substitute O(n) into the first and second components of the state 
vector X(n|n):

5  Simulation and experimental results
5.1  Simulation scene and parameter settings

In this subsection, we mainly introduce the simulation scene and various parame-
ters. The simulation was carried out on the MATLAB platform. And the MN had a 
fixed trajectory in a 80× 80 m simulation area, where six beacon nodes were ran-
domly distributed in Fig. 2. We sampled 80 times at a sampling interval of 0.5 s. The 
initial state of the MN was [1m78m 1m/s 2.5m/s]T  and the initial covariance matrix of 
MN was P(0) = I4 . u(n) was the Gaussian white noise N (0, 12) , and R(0) = σ 2

l I6 was 
the covariance matrix of measurement noise. In this paper, the threshold probability 

(56)W (n) =

K
∑

i=1

⌢

Zi(n)(resi(n))
−1

K
∑

i=1

(resi(n))−1

(57)W (n) =

∑k(n)
j=1 Zj(n)(resj(n))

−1

∑k(n)
j=1 (resj(n))−1

(58)g1(n) = D(n)− h(Z(n))

(59)g2(n) = D(n)− h(W (n))

(60)βi(n) =
gi(n)

∑2
i=1 gi(n)

(61)O(n) = β1(n)Z(n)+ β2(n)W (n)

(62)[X(n|n)(1),X(n|n)(2)] = O(n)
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was Pg = 0.99 , so the false alarm rate was PFa = 0.01 . 1000 Monte Carlo simulations 
were conducted in each environment.

We use root mean square error (RMSE) and cumulative distribution function 
(CDF) of the localization error to characterize the localization performance of these 
algorithms, and RMSE is calculated as follows:

where, A(n) is the actual location, and Ok(n) is the estimated position at time step n in 
the k-th Monte Carlo simulation, which is obtained from (61). MC = 1000 is the total 
Monte Carlo runs times, and N = 80 denotes the number of whole samples in a Monte 
Carlo run.

To illustrate the general applicability of the proposed algorithm, we complicate the 
motion trajectory and set it as a cubic curve y = −0.00063x3 + 40.63, x ∈ [1, 80][1, 80] , 
where the inflection point is A(n)(1) = 40 . Figure 2 shows the present route of the 
MN and the random distribution of six BNs in a Monte Carlo simulation.

The NLOS error may follow different distributions according to the environment, 
and the distribution of NLOS error may be related to the type and distribution of 
indoor obstacles. We did simulations when the NLOS error follow Gaussian, uni-
form and exponential distribution respectively. We mainly compared our algorithm 
with the conventional positioning algorithm: EKF [23], REKF [24], IMM-EKF [25] 
and probabilistic data association IMM (PIMM) [26]. The specific positioning per-
formances of these algorithms in simulation are shown in the following section.

(63)RMSE =

√

√

√

√

1

MC

1

N − 1

MC
∑

k=1

N
∑

n=2

�Ok(n)− A(n)�2

Fig. 2 A Monte Carlo simulation scene
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5.2  Simulation results and discussion

5.2.1  Gaussian distribution

On the condition that NLOS error and sensor noise followed Gaussian distribution 
N (µNLOS , σ

2
NLOS) and N

(

0, σ 2
LOS

)

 respectively, we set the default parameters as shown 
in the Table 1. The NLOS error probability is defined as the proportion of NLOS error 
to the noise composed of LOS error and NLOS error.

Figure  3 demonstrates the change of RMSE under different probabilities of the 
NLOS error PNLOS which varied from 0.1 to 1. The RMSE curve of the EKF, REKF and 
IMM-EKF had the same trend, and the RMSE value of them from largest to smallest 
were the EKF, REKF and IMM-EKF. The PIMM had the largest RMSE value and poor-
est positioning performance when PNLOS was above 0.6. The proposed algorithm had 
the lowest average value of RMSE, which was 2.1047 m and at least 39.90% lower than 
that of the other four algorithms. Figure 4 displays the change in positioning perfor-
mance when µNLOS varied from 2 to 11 m. The RMSE of the EKF, REKF and IMM-
EKF had the same uptrend and they were nearly close, but their RMSE value were 
not small. No matter how many µNLOS was, the proposed algorithm always had the 
smallest RMSE. The average values of the RMSE were the EKF, the REKF, the IMM-
EKF, the PIMM and the proposed algorithm in descending order, and the specific val-
ues of them were 4.3656 m, 4.2116 m, 4.1703 m, 4.1438 m and 2.5052 m respectively. 

Table 1 The parameters in Gaussian distribution

Parameter Symbol Values

Number of BNs L 6

NLOS probability PNLOS 0.5

Sensor noise N
(

0, σ 2
LOS

)

N(0, 12)

NLOS error N
(

µNLOS , σ
2
NLOS

)

N(5, 42)

Fig. 3 The RMSE comparison of probability PNLOS under Gaussian distribution
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Figure  5 displays the change in positioning performance when σNLOS varied from 2 
to 11 m. The RMSE of the EKF, REKF and IMM-EKF had the same uptrend, but their 
RMSE value were not smaller than the other two algorithms. The proposed algorithm 
had the smallest RMSE among these algorithms. The average values of the RMSE 
were the EKF, the REKF, the IMM-EKF, the PIMM and the proposed algorithm in 
descending order, and the specific values of them were 4.9315 m, 4.7162 m, 4.7013 m, 
4.5468 m and 2.9892 m respectively. As shown in Fig. 6, the RMSE curve of the pro-
posed algorithm is steeper than other algorithms, which is far from the other curves. 

Fig. 4 The RMSE comparison of mean value µNLOS under Gaussian distribution

Fig. 5 The RMSE comparison of standard deviation σNLOS under Gaussian distribution
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The 50% localization errors of the proposed algorithm was about 1.771 m, which was 
at least 11.5% lower than that of the other four algorithms. And the 90% localization 
errors of the proposed algorithm were about 3.383 m, which was at least 31.81% lower 
than that of the other algorithms.

With the increase of the probability, mean or standard deviation of the NLOS error, 
the true value of NLOS error at a certain time will increase, and the interference to the 
measured value will intensify. The localization errors of the position estimates processed 
by the location algorithm will be greater. Therefore, in Figs.  3, 4 and 5, the RMSE of 
each algorithm has an upward trend. Since the proposed algorithm adopted mean 
reconstruction method, the greater the probability of NLOS error was, the more times 
NLOS situation occurred, the more the mean value can reflect the actual situation. The 
proposed algorithm in Fig. 3 had small RMSE and good positioning performance in the 
case of high probability of NLOS error. When the probability of the NLOS error PNLOS 
was small, the NLOS interference was little, so the RMSE was also small. The PIMM 
algorithm associated multiple position estimates with Kalman predicted position. 
These position estimates directly affected the results, and they were generated by LS. 
The effectiveness of the PIMM algorithm largely depends on the number of excellent 
measurements, so in the case of high NLOS probability, the PIMM performance was not 
outstanding. The CDF reflects the distribution of overall localization errors, which can 
be seen from Fig. 6. Most of the localization errors of the proposed algorithm were less 
than 3 m, and only few outliers appeared in the positioning.

5.2.2  Uniform distribution

On the condition that NLOS error followed uniform distribution U(0,max) , we set the 
default parameters as shown in the Table 2.

We studied the positioning effect of different localization algorithms when the 
NLOS error probability was increasing. Figure 7 is similar to in Fig. 4, in which the 

Fig. 6 The RMSE comparison of standard deviation σNLOS under Gaussian distribution
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RMSE of the proposed algorithm changed slightly. Especially when PNLOS was above 
0.3, its value was stable at around 2 m. The RMSE of the EKF, REKF and IMM-EKF 
were rising linearly with PNLOS . The proposed algorithm had the lowest average value 
of RMSE, which was 1.9576 m and at least 40.44% lower than that of the other four 
algorithms. Then, we let the parameter max change from 6 to 15 m. Figure 8 shows 
that the RMSE were positively correlated to the parameter max. The EKF, REKF and 
IMM-EKF had the largest RMSE and the largest growth rate. The average values of 
the RMSE were the EKF, the REKF, the IMM-EKF, the PIMM and the proposed algo-
rithm in descending order, and the specific values of them were 3.5689 m, 3.4480 m, 
3.4335 m, 3.3649 m and 2.9892 m respectively. The influence of the parameter L on 
the positioning effect of different algorithms was shown in Fig.  9. No matter how 
many BNs there were, our algorithm always worked best, improving accuracy by 
more than 2 m over other algorithms. The proposed algorithm had the lowest average 
value of RMSE, which was 2.0197 m and at least 37.36% lower than that of the four 
other algorithms.

In the case of uniform distribution, the larger the upper limit of NLOS error was, 
the greater the probability of NLOS error appeared with a larger value, so the inter-
ference to positioning became stronger. As shown in the Fig.  8 the RMSE of each 
algorithm increased with parameter max. The proposed algorithm determined the 

Table 2 The parameters in uniform distribution

Parameter Symbol Values

Number of BNs L 6

NLOS probability PNLOS 0.5

Sensor noise N(0, σ 2
LOS

) N
(

0, 12
)

NLOS error U(min,max) U(0, 10)

Fig. 7 The RMSE comparison of the probability PNLOS under uniform distribution
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position estimates and discarded the position estimates that did not fall into the ver-
ification gate. Therefore, the proposed algorithm was not susceptible to NLOS errors 
and had good robustness with smallest RMSE curve growth rate. The more the 
number of beacon nodes were, the more information about the mobile node can be 
measured, and the more equations in the maximum likelihood location method can 
be established, so the the position estimates obtained by LS will be more accurate. 
As shown in the Fig. 9, the more BNs were, the better these algorithms performed.

Fig. 8 The RMSE comparison of parameter max under uniform distribution

Fig. 9 The RMSE comparison of the number of BNs under uniform distribution



Page 20 of 29Wang et al. J Wireless Com Network         (2023) 2023:60 

5.2.3  Exponential distribution

On the condition that NLOS error followed exponential distribution E(1/�) , we set 
the default parameters as shown in the Table 3.

Figure 10 demonstrates the RMSE values of each algorithm under different probabili-
ties PNLOS . When PNLOS was 0.3, the performance of the proposed algorithm was better 
than the EKF, the REKF and the IMM-EKF, but it was not as good as the PIMM. When 
the probability PNLOS was above 0.3, the proposed algorithm performed well in localiza-
tion, and the PIMM was sub-optimal. The proposed algorithm had the lowest average 
value of RMSE, which was 2.2132 m and at least 28.46% lower than that of the other four 
algorithms. Figure 11 demonstrates the RMSE values of each algorithm under different 
parameters � . The average values of the RMSE were the EKF, the IMM-EKF, the REKF, 
the PIMM and the proposed algorithm in descending order, and the specific values of 
them were 3.1050 m. 2.9599 m, 2.9554 m, 2.7823 m and 2.1185 m respectively. The CDF 
of localization error of different algorithms are shown in Fig. 12. The 90% localization 
errors of these algorithms were the EKF, the IMM-EKF, the REKF, the PIMM and the 
proposed algorithm in descending order, and the specific values of them were 4.683 m, 
4.579 m 4.463 m, 3.611 m and 3.374 m respectively.

In the case of uniform distribution, with the increase of parameter � , the maximum 
value of NLOS error increases exponentially. Compared with Gaussian and uniform 

Table 3 The parameters in exponential distribution

Parameter Symbol Values

Number of BNs L 6

NLOS probability PNLOS 0.5

Sensor noise N
(

0, σ 2
LOS

)

N
(

0, 12
)

NLOS error E(1/�) E(1/4)

Fig. 10 The RMSE under the probability PNLOS under exponential distribution
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distribution of Figs.  4, 5 and 8, as shown in the Fig.  11, the growth rate of RMSE 
curve is larger and the curve is steeper. Although there are three different NLOS error 
distributions, the proposed algorithm showed good positioning performance and 
robustness.

5.3  Experimental site and equipment

The real environment is often complex and changeable, so on the basis of simulation, 
we conducted two experiments in real indoor environments. Ultra-wide band (UWB) 
technique is popular for researchers to use in indoor positioning, due to its high accu-
racy and low energy consumption [27]. In the experiment, the UWB nodes were used 

Fig. 11 The RMSE comparison of parameter � under exponential distribution

Fig. 12 The CDF of localization error under exponential distribution
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as radio frequency (RF) devices and sensor nodes in WSN, and Fig. 13 displays a UWB 
node. The MN was connected with the power supply and it was strapped to the walker’s 
shoes; to maintain the same height with MN, the BNs were placed on the ground. At the 
same time, the BNs transmitted the distance measurements to the laptop through the 
universal serial bus (USB) cable and the laptop displayed the distance measurements on 
the screen.

As shown in Figs. 14 and 15, the experimental site was a university classroom with 
a large number of tables, seats and students, which can be considered as obstacles. 
Therefore, the measured data obtained from the UWB nodes were easily contami-
nated by NLOS errors, containing large errors. We randomly placed six UWB nodes 
and moved at a constant speed of 1.2  m/s, and sampled 30 times in total. We took 
the corner of the lower left corner as the origin; took the long side of the classroom 
as the x-axis, and the short side as the y-axis, to establish a two-dimensional coordi-
nate system, and the coordinate of the initial position was [0.6m 1.2m]T  . The motion 
trajectory was roughly a rectangle. We first moved in the vertical direction, so the 
horizontal speed was 0m/s . The entire positioning process was sampled 30 times in 
total, during the sampling time (�t = 1s) , each beacon node collected more than 20 

Fig. 13 The physical image of UWB node

Fig. 14 The actual scene of the university classroom



Page 23 of 29Wang et al. J Wireless Com Network         (2023) 2023:60  

distance measurements. After sampling, the average value of them was obtained as 
the input of each localization algorithm.

Figures 16 and 17 show the actual scenario and schematic diagram of the research 
group office. The difference was that the scope of this scene was smaller, so there were 
only four BNs, and the track distance was relatively short, so only 15 times were sam-
pled. As shown in Fig. 17, we set an origin at the bottom right of the room, extending 
the y-axis in the left direction of the plan view and the x-axis in the upper direction of 
the plan view to establish a coordinate system, and the coordinate of the initial posi-
tion was [7.2 m 1.8 m]T  (Figs. 18, 19, 20, and 21).

Beacon node TrajectoryTermination 

position
Initial position

Fig. 15 The schematic diagram of the university classroom

Fig. 16 The actual scene of the research group office
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5.4  Experimental results and discussion

To illustrate the filtering effect of the algorithms, the data before and after the algo-
rithm processing were shown in Figs. 18 and 21. Because the proposed algorithm sub-
tracted a value during reconstruction, the processed results may be smaller than the 

Termination positionInitial position

Beacon nodes Trajectory

Fig. 17 The schematic diagram of the research group office

Fig. 18 The data before and after the algorithms processing in the university classroom
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actual distances, but they were close to the actual distances, so the position estimates 
obtained were still more accurate than that in other algorithms. The positioned trajec-
tories in the university classroom and the research group office are shown in Figs. 19 
and 22, and the track of the proposed algorithm was close to the real track. In addi-
tion, the CDF of the localization errors of the proposed algorithm were smaller than 
other algorithms in Figs. 20 and 23. Because the interference of NLOS errors caused 
by lots of obstacles in the experimental site were large, the localization performance 
of the EKF, REKF, IMM-EKF and PIMM were relatively poor. Since the classroom was 
not as large as the simulation scene, and the noise here was not as complicated as 
expected, so the final positioning results were slightly different from the simulation.

Fig. 19 The trajectories in the university classroom

Fig. 20 The CDF versus the localization error in the university classroom
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The algorithm and data processing were conducted in MATLAB2018b platform of the 
laptop whose computer system is a 64-bit operating system and the processor is Intel 
(R) Core (TM) i5-7300HQ CPU @ 2.50 GHz. Tables 4 and 5 show the running time that 
each algorithm estimated the position at a sampling time in the university classroom and 
the research group office. In order to ensure the high precision of positioning, it is inevi-
table to increase the amount of calculation. The sampling frequency of this experiment 
was set to 1 Hz. Although the proposed algorithm consumed more time, the processing 
time for each sampling point was still less than one second, which equalled to the inter-
val between single sample. Therefore, the algorithm can achieve real-time tracking and 
positioning.

Fig. 21 The data before and after the algorithms processing in the research group office

Fig. 22 The trajectories in the research group office
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6  Conclusion
In this paper, we proposed a mean reconstruction method to improve the REKF, 
which can detect and mitigate the NLOS errors to enhance the positioning accuracy. 
The specific operation of the algorithm is to use the Kalman prediction position to 
calculate the differences from the distance measurements, which are nearly equiva-
lent to the noise. After averaging the data to estimate the mean value of the noise, the 
distance measurements are reconstructed by subtracting the estimation of the noise 
average. At the same time, the results of the residual weighting can ensure the effec-
tiveness of the reconstruction method. The algorithm can significantly reduce the 
NLOS errors, especially in the environment with severe NLOS errors. The simulation 

Fig. 23 The CDF versus the localization error in the research group office

Table 4 Running time of each sampling point in the university classroom

Algorithm Running time/s

EKF 0.0132

IMM-EKF 0.0361

REKF 0.0368

PIMM 0.2357

PROPOSED 0.3243

Table 5 Running time of each sampling point in the research group office

Algorithm Running time/s

EKF 0.0168

IMM-EKF 0.0422

REKF 0.0451

PIMM 0.1411

PROPOSED 0.1894
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and experimental results both demonstrated that the proposed algorithm had higher 
localization accuracy with strong robustness, which had a prominent advantage over 
traditional localization algorithms. While, there are few shortcomings in the pro-
posed algorithm.

1. The mean reconstruction method is required to be used in a small range of area 
where obstacles are similar, and the NLOS errors follow the same distribution.

2. The reconstruction may bring negative errors, which make the reconstructed dis-
tances smaller than the actual distances, and the position estimates appear on both 
sides of the actual trajectory.

3. The proposed algorithm is more computationally intensive. First, in the RWGH step, 
the number of combinations selected is larger than other algorithms; second, the 
Newton–Raphson iteration will also consume a certain amount of computation.
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