
Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creat iveco mmons. org/ licen ses/ by/4. 0/.

RESEARCH

Battaglioni et al. J Wireless Com Network (2023) 2023:67
https://doi.org/10.1186/s13638-023-02273-0

EURASIP Journal on Wireless
Communications and Networking

Optimizing quasi-cyclic spatially coupled
LDPC codes by eliminating harmful objects
Massimo Battaglioni1*† , Franco Chiaraluce1†, Marco Baldi1†, Michele Pacenti2† and David G. M. Mitchell3†

Abstract

It is well known that some harmful objects in the Tanner graph of low-density parity-
check (LDPC) codes have a negative impact on their error correction performance
under iterative message-passing decoding. Depending on the channel and the decod-
ing algorithm, these harmful objects are different in nature and can be stopping sets,
trapping sets, absorbing sets, or pseudocodewords. Differently from LDPC block codes,
the design of spatially coupled LDPC codes must take into account the semi-infinite
nature of the code, while still reducing the number of harmful objects as much as pos-
sible. We propose a general procedure, based on edge spreading, enabling the design
of good quasi-cyclic spatially coupled LDPC (QC-SC-LDPC) codes. These codes are
derived from quasi-cyclic LDPC (QC-LDPC) block codes and contain a considerably
reduced number of harmful objects with respect to the original QC-LDPC block codes.
We use an efficient way of enumerating harmful objects in QC-SC-LDPCCs to obtain
a fast algorithm that spans the search space of potential candidates to select those
minimizing the multiplicity of the target harmful objects. We validate the effectiveness
of our method via numerical simulations, showing that the newly designed codes
achieve better error rate performance than codes presented in previous literature.

Keywords: Convolutional codes, Cycles, Harmful objects, Iterative decoding, LDPC
codes, Spatially coupled codes, Trapping sets

1 Introduction
Low-density parity-check (LDPC) convolutional codes or (SC-LDPCCs), which have
been introduced in [1] as the convolutional counterpart of LDPC block codes [2], have
attracted much interest from the scientific community in recent years. Efforts have been
expended in order to make them suitable for wireless communications [3, 4]. This is due
to the fact that while LDPC block codes are known to approach the channel capacity [5],
terminated SC-LDPCCs have been shown able to achieve the channel capacity under
belief propagation-based iterative decoding, for a wide range of channels, owing to the
convolutional structure of their parity-check matrix, which triggers the well-known
threshold saturation phenomenon [6–8].

The performance of such iterative decoders, however, is significantly affected by the
code representation, in addition to its structural properties. In fact, iterative decod-
ing is performed on a bipartite graph known as Tanner graph [9], which has a small

†Massimo Battaglioni, Franco
Chiaraluce, Marco Baldi, Michele
Pacenti and David G. M. Mitchell
have contributed equally to this
work.

*Correspondence:
m.battaglioni@univpm.it

1 Dipartimento di Ingegneria
dell’Informazione, Università
Politecnica delle Marche
and CNIT, Via Brecce Bianche 12,
60131 Ancona, Italy
2 Department of Electrical
and Computer Engineering,
University of Arizona, 1230 E
Speedway Blvd, Tucson, AZ
85719, USA
3 Klipsch School of Electrical
and Computer Engineering,
New Mexico State University,
1125 Frenger St, Las Cruces, NM
88011, USA

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13638-023-02273-0&domain=pdf
http://orcid.org/0000-0002-8539-4007

Page 2 of 29Battaglioni et al. J Wireless Com Network (2023) 2023:67

number of edges corresponding to the small number of ones in the sparse parity-
check matrix of an LDPC code. It is well known that some properties of the Tan-
ner graph, like short cycles, negatively affect the performance of iterative decoders.
Other well-known harmful objects in the Tanner graph are called stopping sets [10],
which determine the failure of iterative decoding algorithms over the binary erasure
channel. Different families of harmful objects are of interest to characterize the per-
formance of these decoders over different channels, such as trapping sets for the addi-
tive white Gaussian noise (AWGN) channel [11]. A special subclass of trapping sets,
known as absorbing sets, was shown to strongly affect the performance of bit-flipping
iterative decoders [12]. In many cases, there is a strong connection between these
harmful objects and cycles in the Tanner graph of a code [13–15]. In particular, in
[13, 14] it has been shown that starting from a cycle, or a cluster of cycles in the Tan-
ner graph of a regular or irregular LDPC block code, any trapping set can be obtained
by means of some graph expansion technique.

The presence of the aforementioned harmful objects may yield an important degra-
dation of the error correction performance of an iteratively decoded code, especially in
the so-called error-floor region, i.e., the high signal-to-noise ratio region. Although the
effect of harmful objects on the performance of iterative decoders depends on both the
specific decoding algorithm and the channel, reducing the number of harmful objects
generally is an important target to optimize the performance of LDPC codes. Two main
approaches can be adopted to this end: i) avoiding or reducing harmful objects during
code design [15–17] and ii) modifying the decoding algorithm in such a way as to be
less affected by harmful objects [18, 19]. Solutions combining both approaches have also
been proposed [20]; however, the former approach has generally received more attention
than the latter, because working at design stage provides more degrees of freedom than
acting on the decoding algorithm and thus opens more avenues for performance optimi-
zation. For this reason, we focus on the former approach to optimize the performance of
SC-LDPCCs.

One common method for the design of SC-LDPCCs starts from LDPC block codes
and exploits an edge-spreading procedure to achieve a convolutional version of the block
code [21]. This is a generalization of the unwrapping technique introduced in [1, 22].
When SC-LDPCCs are designed following this approach, the harmful objects of the SC-
LDPCC derive from the corresponding objects of the underlying LDPC block code, and
their multiplicity depends on the adopted edge-spreading technique. Thus, for a given
LDPC block code, the problem of designing good SC-LDPCCs from the harmful objects
reduction standpoint translates into the problem of finding good spreading matrices. For
the sake of brevity, in the rest of the paper we denote quasi-cyclic SC-LDPCCs (QC-
SC-LDPCCs) obtained from quasi-cyclic low-density parity-check (QC-LDPC) block
codes by edge spreading as QC-SC codes. The matrix according to which spreading is
performed is called spreading matrix and denoted as B . The edge-spreading procedure
can also be displayed graphically by means of protographs, which are Tanner graphs with
a relatively small number of variable and check nodes. We remark that the matrix and
the graphical interpretations are completely equivalent. Protograph-based codes with
excellent asymptotic and finite-length performance have been designed; see, for exam-
ple, [23–25].

Page 3 of 29Battaglioni et al. J Wireless Com Network (2023) 2023:67

1.1 Previous work

A straightforward approach to the aforementioned optimization problem is that of
exhaustively exploring the space of spreading matrices, which obviously poses com-
plexity issues. Some previous works have addressed the problem of reducing the
search space of candidate spreading matrices. A basic approach was proposed in [26],
where the authors minimize the number of (3, 3) absorbing sets (ASs) in (m, n)-regu-
lar (AB) QC-SC codes with m = 3 , obtained through cutting vectors, which are a sub-
class of spreading matrices (see [27] for further details). Such an approach is very
efficient, since it relies on an integer optimization procedure, but the spanned search
space is very small. In fact, the cutting vectors, as defined in [26, 27], only support

QC-SC codes with memory ms = 1 and they only cover n
3

 spreading matrices,

instead of the total 8n . This yields a non-negligible probability that some optimal
matrices are left out of the search.

In [28], a guided random search is used to find optimal spreading matrices for
(m, n)-regular AB QC-SC codes with m = 3 , where a small subset of all the possible
columns is considered in such a way that the spreading matrix is “balanced.” Although
this approach can result in a reasonably fast search, especially if the subset contains
a small number of elements, it is expected to be suboptimal, since it spans a search
space which is considerably smaller than the whole space, without considering any
optimization criterion. In particular, when ms = 1 (ms = 2 , respectively), given that
m = 3 , the guided random search in [28] includes 5n out of the total 8n (27n , respec-
tively) possible spreading matrices.

The method proposed in [29] is similar to that proposed in [28]. In fact, only a sub-
set of all the possible spreading matrices is considered, such that each possible entry
of B , which is in {0, 1, . . . ,ms} , appears nm

ms+1 times. This also results in a type of bal-
anced spreading matrix. Nevertheless, in this case, the search may again be non-opti-
mal, since a large number of spreading matrices are excluded a priori (more details
on the computation of the exact number of candidates are provided in [29] and are
omitted here for saving space).

The approach in [30] relies on a searching algorithm which is not described in the
original paper. For this reason, we are not able to estimate the number of candidates
it considers. Nevertheless, the authors of [30] mention that the search is limited,
implying that it suffers from similar limitations as the methods proposed in [28, 29].
Finally, in [31, 32], a two-stage procedure is proposed: First, an optimal partitioning
is applied; then, the shifts of the circulant matrices are adapted in order to minimize
the number of harmful objects. However, the adaption of the shifts alters the ini-
tial code. Our focus is on the first stage of the approach proposed in [31], since our
method assumes that the underlying block code is fixed. Under such an assumption,
our method outperforms the approach proposed in [31], as we will show in Sect. 4.
Combining our method with a preliminary optimization stage of the starting block
code is an avenue for further optimization, but is beyond the scope of this paper.

As summarized above, most of the previous approaches consider only certain code
structures and certain harmful objects to make their search feasible. Namely, for
(m, n)-regular codes, only (3, 3(m− 2)) trapping sets (i.e., cycles of length 6 for the

Page 4 of 29Battaglioni et al. J Wireless Com Network (2023) 2023:67

considered codes), whose minimization is shown to be beneficial also to the mini-
mization of (4, 2), (4, 4) and (5, 3) trapping sets (among others), are the target of the
minimization algorithms in [26–31]. In [32], (4, 4(m− 2)) trapping sets are also tar-
geted. Furthermore, many possible solutions are excluded a priori. In [28, 29, 31, 33],
for example, it is shown that the multiplicity of harmful objects can be significantly
reduced by increasing the memory of SC-LDPCCs. However, the computational com-
plexity of the aforementioned approaches makes them unsuitable for the design of
SC-LDPCCs with moderate and large memories.

A quite different approach has been proposed in [34]. In that work, the authors deal
with the construction and performance of SC-LDPCCs with finite memory (expressed
as smoothing parameter w, such that w = ms − 1), showing through asymptotic anal-
ysis that non-uniform coupling yields to faster decoding convergence with respect to
uniform coupling. Such a method differs from ours in that it is tailored to the binary
erasure channel (BEC), relies on asymptotic analysis (and therefore does not take into
account the harmful objects influencing finite-length performance), and is restricted
to small values of the memory.

To the best of the authors’ knowledge, except for the method concurrently pro-
posed in [35], a general scheme enabling the construction of optimized QC-SC codes
(in terms of minimization of harmful objects) with moderate memories is still missing
in the literature.

1.2 Our contribution

We propose an algorithm that, given any QC-LDPC block code, exploits a smart
strategy to construct a QC-SC code containing the smallest possible number of tar-
get objects (or combinations of objects), which are the most harmful ones for the
given channel and decoding algorithm. We generalize the algorithm proposed in [36],
which takes the target length of cycles as input without distinguishing those that are
actually harmful from those that are not. The approach in [36] is efficient when the
most harmful objects are cycles, or combination of a few short cycles, and if their
multiplicity is relatively small. However, when the most harmful objects have a more
complicated structure, targeting all the cycles with a given length for removal may not
be an efficient approach. Moreover, for a given value of the memory of the convolu-
tional code, a solution allowing the elimination of all the cycles with a given length
may not exist, and the algorithm in [36] is unable to identify the subset of cycles that
should be removed in order to eliminate as many harmful objects as possible. In this
work we overcome such a limitation and improve over [36] in that:

• we provide new theoretical results on spreading matrices and trapping sets;
• we propose an algorithm which starts from any set of objects as input and tries

to minimize their multiplicity. These objects are not necessarily cycles and do not
necessarily have the same size;

• the proposed algorithm is not necessarily exhaustive, in that it does not necessar-
ily target all the objects in the set of interest;

Page 5 of 29Battaglioni et al. J Wireless Com Network (2023) 2023:67

• we estimate the complexity of the new algorithm and verify that, based on the afore-
mentioned theoretical results, when targeting cycles, it is significantly faster than the
exhaustive search and than that in [36].

We demonstrate the effectiveness of the proposed procedure for several exemplary
code constructions with variable code memories via enumeration of the target harmful
objects and computer simulations. Such a procedure is shown to be particularly effective
for harmful objects that correspond to relatively large combinations of short cycles in
the code Tanner graph and on codes with a large multiplicity of harmful objects. Even
though the analysis carried out in this paper is limited to regular codes, in principle
the proposed algorithm also works for irregular codes. However, irregularity yields an
increase of the degrees of freedom in the exponent matrix design which, in turn, leads
to a larger number of elementary structures forming the harmful objects. Therefore, the
computational complexity of their enumeration would inevitably increase.

We also prove that the average number of cycles per node in the unterminated ver-
sion of the parity-check matrix can be assessed with the sole knowledge of the spread-
ing matrix and of the list of the corresponding cycles in the underlying block QC-LDPC
code, which, in turn, can be determined by means of the code exponent matrix. A simi-
lar analysis is carried out in the concurrent work [35]. This yields a significant reduction
in the computational effort, as the most costly procedure is carried out on a relatively
small matrix, i.e., the exponent matrix of the block QC-LDPC code, compared to the
semi-infinite exponent matrix of the QC-SC codes. This is the main reason of the speed-
up achieved by the algorithm we propose with respect to that in [36], when it targets
sets of cycles. Instead, when trapping sets are targeted by our algorithm, with the aim of
reducing their multiplicity as much as possible, the counting algorithm we employ is the
one proposed in [14], which is already very efficient. Note that, alternatively, elementary
trapping sets can be characterized through edge-coloring techniques exploiting the base
matrix, as reported in [37].

We remark that the result of the spreading matrix optimization is tied to the choice of
the initial QC-LDPC block code. The focus of this paper is not on the optimization of the
original QC-LDPC block code, for which a great amount of literature already exists, but
rather on the optimization of the corresponding convolutional version. Thus, in order to
show the effectiveness of the proposed algorithm, we stick to block code designs leading
to spreading matrices with a simple structure, such as array codes [38] and Tanner codes
[22], whose properties are well known and allow us to perform a fair comparison with
previous literature.

1.3 Outline of the paper

The paper is organized as follows. In Sect. 2, we introduce the notation used throughout
the paper and some basic concepts regarding QC-LDPC block codes and SC-LDPCCs
derived from them. In Sect. 3, we focus on edge-spreading matrices and the correspond-
ing cycle properties and describe the proposed algorithm. In Sect. 4, we discuss some
code examples and assess the corresponding performance. In Sect. 5 we provide a com-
plexity estimate for our algorithm. Finally, in Sect. 6 we draw some conclusions.

Page 6 of 29Battaglioni et al. J Wireless Com Network (2023) 2023:67

2 Notation and definitions
In this section we introduce the notation and definitions we use throughout the paper,
and we present the edge-spreading procedure we consider to obtain QC-SC codes
from QC-LDPC block codes.

2.1 QC‑LDPC codes

We consider QC-LDPC block codes defined through a parity-check matrix H in the
form of an m× n array of N × N circulant permutation matrices (CPMs) or all-zero
matrices. We do not consider circulant matrices with weight larger than 1, since
large-weight circulants yield short unavoidable cycles [39, 40], which are likely to
form harmful objects. We denote a CPM of size N × N as I(pi,j) , i ∈ {0, 1, . . . ,m− 1} ,
j ∈ {0, 1, . . . , n− 1} , where pi,j ∈ {−∞, 0, 1, . . . ,N − 1} and N is the lifting degree of the
code. When pi,j = −∞ , I(pi,j) is obtained from the identity matrix through a cyclic
shift of its rows to the left by pi,j positions. Conventionally, we denote the all-zero
matrix by I(−∞) . The code length is L = nN . The exponent matrix of a code is the
m× n matrix P containing the values pi,j corresponding to the CPM forming the code
parity-check matrix. A bipartite graph G(H) , known as Tanner graph, is associated to
any parity-check matrix H as follows:

• any column of H corresponds to a variable node;
• any row of H corresponds to a check node;
• there is an edge between the ith check node and the jth variable node if and only if

the (i, j)th entry of H is 1.

The set of L = nN variable nodes is denoted as V , and the set of mN check nodes is
denoted as P . The set of edges is denoted as E. Thus, H coincides with the bi-adja-
cency matrix of G(H) and we also denote G(H) as G(V ∪ P ,E).

Definition 1 Two bipartite graphs G1(V1 ∪ P1,E1) and G2(V2 ∪ P2,E2) are isomorphic
if there is a bijection f : V1 ∪ P1 → V2 ∪ P2 such that e1 = {v1, p1} is an element of E1 if
and only if e2 =

{

f (v1), f (p1)
}

 is an element of E2.

Definition 2 Equivalently, if H1 and H2 are the bi-adjacency matrices of the isomorphic
graphs G1(H1) and G2(H2) , respectively, we say that H1 and H2 are graph-isomorphic.

If two parity-check matrices are graph-isomorphic, then also their exponent matri-
ces are graph-isomorphic.

Definition 3 For the sake of conciseness, with a slight mathematical abuse, we say that
graph-isomorphic parity-check matrices define isomorphic codes.

Isomorphic graphs have the same girth and performance under iterative decoding.
Let us consider the subgraph induced by a subset D of V and the corresponding set

of neighboring check nodes. We define E(D) and O(D) as the set of neighboring check

Page 7 of 29Battaglioni et al. J Wireless Com Network (2023) 2023:67

nodes with even and odd degree in such a subgraph, respectively. The girth of G(H) ,
noted by g, is the length of the shortest cycle in the graph.

Definition 4 An (a, b) absorbing set (AS) is a subset D of V of size a > 0 , with O(D)
of size b ≥ 0 and with the property that each variable node in D has strictly fewer neigh-
bors in O(D) than in P\O(D) . We say that an (a, b) AS D is an (a, b) fully AS (FAS) if, in
addition, all nodes in V \D have strictly more neighbors in P\O(D) than in O(D).

For a QC-LDPC block code defined by the parity-check matrix H , a necessary and suf-
ficient condition on the entries of P for the existence of N cycles of length 2k in G(H) is
[41]

where nk = n0 , mi = mi+1 , ni = ni+1 . In the rest of the paper, we refer to cycles in G(H)
and cycles in H interchangeably. Hence, for some given values of m and n, and for a fixed
value of N, one has to find a matrix P whose entries do not satisfy (1) for any value of
k < g/2 and for any possible choice of the row and column indexes mi and ni in order to
achieve a certain girth g.

2.2 QC‑SC codes based on QC‑LDPC codes

The edge-spreading procedure we consider to obtain QC-SC codes from QC-LDPC
block codes exploits an m× n spreading matrix B with entries in Zms+1 , where ms rep-
resents the memory of the resulting QC-SC code. The spreading matrix B can also be
represented as an integer spreading vector b of length n, where the ith element (bi) is
obtained by replacing the ith column of B , which is a vector in Zm

ms+1 , with its decimal
representation, i.e., bi =

∑m−1
j=0 bj,i(ms + 1)m−1−j . Conversely, B can be obtained from

b by replacing each decimal entry with the associated (ms + 1)-ary column vector of
length m with entries in Zms+1 . Without loss of generality, we assume that in any column
of B the most significant symbols are those with the smallest row indices. A straightfor-
ward conversion from B to b will be shown in Example 1.

A convolutional exponent matrix derived from B has the following form

where each matrix Pk , k ∈ {0, 1, . . . ,ms} , has the entry at position (i, j) equal to

and Bi,j is the (i, j)th entry of B . Let us remark that −∞ represents void entries in the
convolutional exponent matrix and corresponds to the N × N all-zero matrix in the

(1)
k−1
∑

i=0

(

pmi ,ni − pmi ,ni+1

)

= 0 mod N ,

(2)P[0,∞] =

P0

P1 P0

... P1
. . .

Pms

...
. . .

Pms

. . .

,

(3)P
(i,j)
k =

{

pi,j if k = Bi,j,
−∞ if k �= Bi,j,

Page 8 of 29Battaglioni et al. J Wireless Com Network (2023) 2023:67

associated binary parity-check matrix. Notice that the entries of P[0,∞] which are outside
the main diagonals are −∞ and have been omitted from (2) for the sake of readability.
The parity-check matrix of the QC-SC code is then obtained as

where the appropriate N × N CPM is substituted for the entries of P[0,∞] which
have values in the set {0, 1, . . . ,N − 1} , and the N × N all-zero matrix is substituted
for the entries of P[0,∞] equal to −∞ . The constraint length of the code is defined as
νs = L(ms + 1) . Any set of columns of H[0,∞] with indexes in {jnN , . . . , (j + 1)nN − 1} ,
j = 0, 1, . . . , is named the jth column block. H[α,β] represents a terminated version of
H[0,∞] , obtained by considering the columns of the semi-infinite parity-check matrix
with indexes in {αnN , . . . ,βnN − 1} , i.e., by considering the consecutive column blocks
from the α th to the (β − 1)th.

Let us introduce a straightforward result on the maximum possible span of a cycle.

Lemma 1 A cycle with length � is contained within H
[k ,k+⌊ �4 ⌋ms]

 , where k is arbitrary.

Proof Consider that a cycle with length � has �2 horizontal edges and �2 vertical edges
and any horizontal edge can span at most ms + 1 column blocks of H[0,∞] . Any cycle
spanning the largest number of column blocks of (4) has horizontal edges spanning
ms + 1 columns. In this scenario, starting from any of the leftmost nodes, �2 edges are
required to reach any of the rightmost nodes, and as many edges are needed to return
to the not visited leftmost node. Thus, the number of spanned column blocks is at most

�

We remark that, for finite n, the girth of regular time-invariant codes, such as those
considered in this paper, is upper bounded by a value that does not depend on the
code memory [42]. In sight of this, and of the finite circulant size of the starting QC-
LDPC code, asymptotic analysis density evolution techniques such as those in [5, 6,
43], which rely on the assumption of infinite girth, may not be the most suited tools to
predict the performance of designed codes.

Example 1 Consider the (3, 5)-regular array LDPC block code with the exponent
matrix

(4)H[0,∞] =

H0

H1 H0

... H1
. . .

Hms

...
. . .

Hms

. . .

,

Np =

⌊

�/2

2

⌋

(ms + 1)−

(

⌊

�/2

2

⌋

− 1

)

=

⌊

�

4

⌋

ms + 1.

Page 9 of 29Battaglioni et al. J Wireless Com Network (2023) 2023:67

and N = 5 . Consider also the ms = 2 spreading matrix B with columns with entries in Z3
corresponding to the spreading vector b , where

Then the constituent blocks of P are

and

where, for simplicity, −∞ has been expressed as –. �

2.3 Exhaustive analysis of spreading matrices

According to the definition given in Sect. 2.2, there are (ms + 1)mn possible spreading
matrices. However, some of them define isomorphic codes. When performing an exhaus-
tive analysis, the size of the search space can be reduced, without loss of completeness,
using the following property (from [44]):

Lemma 2 Let P1 and P2 be exponent matrices. If P1 can be obtained by permuting the
rows or the columns of P2 , or if P1 can be obtained by adding or subtracting (modulo N)
the same constant to all the elements of a row or a column of P2 , then the corresponding
codes are isomorphic.

It follows from Lemma 2 that the set of exponent matrices that contain at least one
zero in each column represents, without loss of generality, the entire space of exponent
matrices. Similarly, it is straightforward to show that the set of spreading matrices con-
taining at least one zero in each column represents, without loss of generality, the entire
space of spreading matrices. Each of the m entries of a column of B can assume values in
{0, 1, . . . ,ms} , and thus, there are (ms + 1)m possible column choices. However, we can
remove the mm

s columns which do not contain any zero entries. It follows that

spreading matrices cover the whole search space. It is straightforward to notice from
(7) that the number of candidate spreading matrices becomes very large as the values of
m, n and ms increase. For this reason, in Sect. 3.2 we propose a novel procedure which

(5)P =

0 0 0 0 0
0 1 2 3 4
0 2 4 1 3

(6)B =

0 0 0 2 1
0 1 2 1 0
1 0 0 0 1

 and b =
�

1 3 6 21 10
�

.

P0 =

0 0 0 − −

0 − − − 4
− 2 4 1 −

,P1 =

− − − − 0
− 1 − 3 −

0 − − − 3

,

P2 =

− − − 0 −

− − 2 − −

− − − − −

,

(7)[(ms + 1)m −mm
s]

n

Page 10 of 29Battaglioni et al. J Wireless Com Network (2023) 2023:67

allows one to efficiently distinguish “good” candidates from “bad” candidates. Such an
algorithm, based on a tree-search, does not exclude any candidate spreading matrix a
priori.

3 Methods/experimental
In this section we introduce some theoretical results and propose a novel search algo-
rithm for counting the average number of cycles in QC-SC codes. Moreover, we intro-
duce the spreading matrix search algorithm we use to minimize as much as possible the
number of target harmful objects.

3.1 Spreading matrices selection criteria

As mentioned in Sect. 2, trapping sets (and therefore absorbing and fully absorbing sets)
often originate from cycles, or clusters of cycles. In this section we prove conditions on
the existence of cycles in H[0,∞] ; this allows us to derive the number of equations that
must be checked for each candidate spreading matrix in order to verify if it is a good
or bad candidate. The goodness of a candidate is measured by the number of harmful
objects of the underlying block code that are eliminated in the corresponding QC-SC
code.

Definition 5 Let us consider a block code described by P , such that entries

satisfy (1). Then, we say that the code contains a block cycle with length � = 2k in the
Tanner graph corresponding to the parity-check matrix and we represent such a block
cycle through a matrix P� , such that

Definition 6 The block-cycle distribution (or spectrum) of H[0,L] is denoted as DL,� and
is a vector such that its ith entry DL,�

i represents the multiplicity of block cycles with
length 2i + 4 ≤ � in G(H[0,L]).

The propositions below easily follow from [31, Theorem 1] and [42, Theorem 1].

Proposition 1 The number of block cycles of length � spanning exactly i sections,
i ∈ {2, 3, . . . , ⌊ �4 ⌋ms + 1} is

where K �
1 = D1,�

�−4
2

.

(pm∗
0,n

∗
0
, pm∗

0,n
∗
1
. . . , pm∗

k−1,n
∗
k−1

, pm∗
k−1,n

∗
k
)

p�i,j =

{

pi,j if (i, j) ∈ {(m∗
0, n

∗
0), (m

∗
0, n

∗
1), . . . , (m

∗
k−1, n

∗
k−1), (m

∗
k−1, n

∗
k)}

−∞ elsewhere
.

(8)K �
i = Di,�

�−4
2

−

i−1
∑

j=1

(i + 1− j)K �
j ,

Page 11 of 29Battaglioni et al. J Wireless Com Network (2023) 2023:67

Proposition 2 The average number of block cycles with length � per node, considering a
terminated version of H[0,∞] , H[0,L] , is

Lemma 3 In the case of unterminated parity-check matrix H[0,∞] , we have that the
average number of block cycles with length � per node is

Proof Equation (9) follows from the following chain of equations

�

A similar reasoning can be used to compute the average number of (a, b) ASs, E(a,b) ,
which is indeed

where κ(a,b)i is the number of considered ASs spanning exactly i column blocks of the
convolutional parity-check matrix, obtained similarly to (8), and L(a,b,ms) is introduced
next. The superscript of the sum in (9) represents the maximum span of the (a, b) ASs
under consideration [27, 28] that we call L(a,b,ms) . The latter does not only depend on a
and b and ms , but also on the topology of the considered ASs. Let the shortest path that
connects any two variable nodes of an (a, b) AS (or generic trapping set) include at most
� variable nodes (including the nodes at the start and end of the path). Then, it is pos-
sible to compute L(a,b,ms) = (� − 1)ms + 1 , as shown in [31, Lemma 1]. � can be com-
puted by means of Dijkstra’s algorithm [45].

From (9) and (10) we notice that the average number of objects per node does not
depend on L , but only on the number of objects spanning exactly a certain number of
column blocks. Based on the above premises, we have the following results:

Lemma 4 One, and only one, block cycle (except for trivial replicas) satisfying (1) exists
in P[0,∞] only if a block cycle in P exists, satisfying the same equation.

E�,L =

∑⌊ �4 ⌋ms+1

i=1 (L+ 1− i)K �
i

Ln
.

(9)E� =

∑⌊ �4 ⌋ms+1

i=1 K �
i

n
.

E� = lim
L→∞

∑⌊ �4 ⌋ms+1

i=1 (L+ 1− i)K �
i

Ln

= lim
L→∞

L
∑⌊ �4 ⌋ms+1

i=1 K �
i +

∑⌊ �4 ⌋ms+1

i=1 (1− i)K �
i

Ln

=

∑⌊ �4 ⌋ms+1

i=1 K �
i

n
.

(10)E(a,b) =

∑L(a,b,ms)

i=1 κ
(a,b)
i

n
,

Page 12 of 29Battaglioni et al. J Wireless Com Network (2023) 2023:67

Proof Let us consider a block cycle with length � = 2k in P[0,∞] , described by the fol-
lowing equation of type (1)

where z0, z1, . . . , zk−1 ∈ {0, 1, . . . ,ms} are not necessarily different integers. By the
definition of edge spreading, given by (3), P(m0,n0)

z0 = pm0,n0 , P
(m0,n1)
z1 = pm0,n1 , · · · ,

P
(mk−1,nk−1)
zk−1

= pmk−1,nk−1
 and P(mk−1,n0)

z0 = pmk−1,n0 . Therefore, there also exists a block
cycle with length � = 2k in P described by

Therefore each block cycle in P[0,∞] corresponds to a block cycle in P . Moreover, if
P
mi ,ni
zj = −∞ for j ∈ {0, 1, . . . ,ms} , then Pmi ,ni

zj′
= −∞ for all j′ �= j . This means that there

cannot be more than one cycle in P[0,∞] corresponding to the same cycle in P , except for
shifted replicas. In fact, given the time-invariant structure of P[0,∞] , all the block cycles
described by

where s > 0 , are simple replicas of the block cycle described by (11), since
P(mi+sm,ni+sn) = P(mi ,ni) , ∀i, s.

�

In other words, Lemma 4 states that any block cycle in the convolutional code can
be unambiguously associated to a block cycle in the block code. However, the con-
verse is not necessarily true, as proved in the following lemma:

Lemma 5 Consider a block cycle with length � , described by P� , existing in the Tan-
ner graph G(H) corresponding to the parity-check matrix of the block QC-LDPC code
described by P . Then, after the edge-spreading procedure based on B is applied, such a
block cycle also exists in G(H[0,∞]) if and only if B� satisfies (1) over Z , where

Proof Let us consider the matrix R , derived from P , with entries

Suppose that a simple cycle C with length � exists in G(R) . The spreading operation
defined by B yields a matrix R[0,∞] such that G(R[0,∞]) will still contain C if and only if the
entries of B that are in the same positions as the 1’s involved in the cycle satisfy (1) over

(11)(P(m0,n0)
z0

− P(m0,n1)
z1

)+ · · · + (P
(mk−1,nk−1)
zk−1

− P
(mk−1,n0)
z0) = 0 mod N ,

(pm0,n0 − pm0,n1)+ · · · + (pmk−1,nk−1
− pmk−1,n0) = 0 mod N .

(12)
(P(m0+sm,n0+sn)

z0
−P(m0+sm,n1+sn)

z1
)+· · ·+(P

(mk−1+sm,nk−1+sn)
zk−1

−P
(mk−1+sm,n0+sn)
z0) = 0 mod N ,

{

B�
i,j = −∞ if p�i,j = −∞,

B�
i,j = Bi,j otherwise.

{

Ri,j = 0 if pi,j = −∞,
Ri,j = 1 otherwise.

Page 13 of 29Battaglioni et al. J Wireless Com Network (2023) 2023:67

Z . It is clear that any block cycle in G(H[0,∞]) corresponds to a simple cycle in G(R[0,∞])
(although the converse, in general, is not true). Since we assumed that P� describes a
block cycle with length � , G(H[0,∞]) will also contain this block cycle if and only if the �
entries of B that are in the same positions as the � entries of P� different from −∞ satisfy
(1) over Z . �

Let us suppose that the code defined by an exponent matrix P contains ν block cycles
P
�0,0, . . . ,P�ν−1,ν−1 . Given B , we can extract all the matrices B�i ,i , i ∈ {0, . . . , ν − 1} , that

correspond to the block cycles in the QC-LDPC code and check if (1) is satisfied. If
so, then the block cycle also exists in the QC-SC code; otherwise, the block cycle does
not exist in the QC-SC code. In other words, given an exponent matrix and a spread-
ing matrix, checking as many equations as the number of block cycles in the exponent
matrix allows determining the number of block cycles in the convolutional exponent
matrix. We also remark that a single block cycle in an exponent matrix corresponds to N
cycles in the binary parity-check matrix.

Example 2 Consider the same code and the same spreading matrix as in Example 1
(see (5) and (6), respectively). G(H) contains twenty block cycles with length � = 6 . For
the sake of brevity, we only consider the following three, along with the corresponding
entries of the spreading matrix

Notice that any P�i ,i complies with (1), as it represents a block cycle in the array LDPC
block code. Moreover, (1) is satisfied for B6,2 but not for B6,0 and B6,1 . In other words,
G(H[0,∞]) contains the block cycles of length 6 corresponding to P6,2 , but not those asso-
ciated to P6,0 and P6,1 . The same procedure can be applied to test whether the remaining
17 block cycles are also contained in G(H[0,∞]) or not. �

The above reasoning permits us to derive an efficient procedure to count the average
number of cycles per node in the parity-check matrix of the QC-SC code that is obtained
by edge spreading an exponent matrix P with the edge-spreading matrix B . Such a pro-
cedure is described in Algorithm 1 and provides a significant boost with respect to the
counting algorithm used in [36].

P
6,0 =

0 0 − − −

0 − 2 − −

− 2 4 − −

B
6,0 =

0 0 − − −

0 − 2 − −

− 0 0 − −

,

P
6,1 =

− 0 0 − −

0 − 2 − −

0 2 − − −

B
6,1 =

− 0 0 − −

0 − 2 − −

1 0 − − −

,

P
6,2 =

− 0 0 − −

− 1 − 3 −

− − 4 1 −

B
6,2 =

− 0 0 − −

− 1 − 1 −

− − 0 0 −

.

Page 14 of 29Battaglioni et al. J Wireless Com Network (2023) 2023:67

Let us suppose that cycles of length � are the most harmful objects; then, Algorithm 1
returns E� . In Algorithm 1, the function edge_spread(P,B,N) performs the edge-spread-
ing procedure as described in Sect. 2.2; the function list_cycles(H, �) lists cycles of length
� of block codes. Clearly, B�j ,j can be associated to P�j ,j as described in Lemma 5. Moreo-
ver, we have denoted the ith entry of H as H(i).

Notice that Lemmas 4 and 5 cannot be straightforwardly extended to general ASs.
Let us suppose that an (a, b) AS exists in the parity-check matrix of the initial block
code. Let us suppose that none of the cycles contained in the AS are eliminated during
the edge-spreading procedure. This is not sufficient to ensure that the (a, b) AS exists
in the convolutional version of the matrix, since the edge-spreading procedure may
transform it into an (a, b′) AS, with b = b′ . So, when the most harmful objects are not
cycles, but general (a, b) ASs, we resort to the trapping sets search algorithm proposed
in [14] to the convolutional case, considering that the search can be limited to a finite
number of column blocks of the parity-check matrix, L(a,b,ms) . Different sets of harmful
objects can also be considered. The number of column blocks to be considered is then
the largest span for the considered set of harmful objects. Once the considered ASs are
enumerated with the algorithm in [14], their average number per node can be obtained
using (10).

So, we have devised two different procedures: The first one should be used when the
targets of the proposed algorithm are simple cycles; the second one should be used when
the target harmful objects are general ASs.

3.2 Design of good QC‑SC Codes

In this section we describe a general algorithm, named MInimization of HArm-
ful Objects (MIHAO), which can be applied to an arbitrary harmful object (or set
of objects) of interest to find a good QC-SC code. Given the exponent matrix of a
QC-LDPC block code, the most harmful objects causing an error rate performance
degradation in the associated QC-SC code have to be determined. Such a preliminary
analysis depends on the considered decoding algorithm, channel and code, whereas

Page 15 of 29Battaglioni et al. J Wireless Com Network (2023) 2023:67

our algorithm is general and works for any group of objects, regardless of their harm-
fulness, without requiring the knowledge of the decoding algorithm and the chan-
nel. We first describe the proposed optimization algorithm. Then, its application is
described in Sect. 4 through some examples including the evaluation of the target
harmful objects.

The pseudocode describing the proposed recursive procedure is reported in Algo-
rithm 2. Let us denote the set of target harmful objects as H = {H0, . . . ,Hν−1} . The
MIHAO algorithm exploits a tree-based search: The root node of the tree is the
all-zero spreading matrix, which characterizes a QC-LDPC block code; the lth tier
contains all the spreading matrices with l nonzero entries which reduce the mul-
tiplicity of harmful objects with respect to their parent node. If a parent node has
no children nodes with better properties than its own, it is discarded, and the algo-
rithm backtracks. Therefore, bad candidates and their children are discarded by
the algorithm during the search. If no early stopping criterion is included, after all
the survivor candidates are tested, the node corresponding to the spreading matrix
yielding the smallest number of harmful objects is the output of the algorithm. On
the other hand, some early stopping criteria can be, for example, related to the max-
imum number of times the algorithm backtracks or the maximum number of tiers
it spans.

In Algorithm 2, the function count_avg_HO(B,H) determines the average number
of harmful objects per node of the QC-SC code obtained by spreading P with B . This
is accomplished by running lines 4 to 12 of Algorithm 1 if the harmful objects are
cycles, and by running the search algorithm in [14] otherwise. Then, the candidate
spreading matrices are those maximizing the multiplicity of removed harmful objects.

Page 16 of 29Battaglioni et al. J Wireless Com Network (2023) 2023:67

In fact, the metric we consider to determine whether a candidate is good or bad is the
average number of harmful objects per node, as defined above. Note that the algo-
rithm does not guarantee to find the absolute optimal solution, but, as will be shown
in Sect. 4 with the help of many examples, it provides better solutions than the best
ones available in the literature.

4 Results and discussion
We assess the benefit in terms of structural properties of the codes designed through
the proposed approach considering array codes [38] and Tanner codes [22] as a
benchmark. Then, we confirm the expected error rate performance improvement via
Monte Carlo simulations.

4.1 Optimization results

It is known that the performance of (3, n)-regular array codes is adversely affected by
(3, 3) ASs and (4, 2) FASs [12]. It can be shown that (3, 3) ASs and (4, 2) FASs derive
from a cycle with length 6 and a cluster of two cycles with length 6, respectively [27].
The results in [28, 29] show that these objects are extremely detrimental also for their
QC-SC versions, when used in coded transmissions over the AWGN channel.

Therefore, we have applied Algorithm 2 to minimize their multiplicity in AB
QC-SC codes when ms = 1 and ms = 2 . Notice that the proposed algorithm, differ-
ently from those proposed in [28, 29], has also been used to target harmful objects
which are not cycles. The results are shown in Tables 1 and 2, respectively. For

Table 1 Average number of (3, 3) ASs per node E(3,3) and (4, 2) FASs per node E(4,2) in AB SC-LDPC
codes with m = 3 , ms = 1

n = N 5 7 11 13 17 19 23

E(3,3) block code 4 6 10 12 16 18 22

E(3,3) MIHAO 0 0.43 1 1.08 1.88 2.26 3.26

E(3,3) [28, 29] 0 0.43 1 1.23 1.88 2.68 3.78

E(4,2) block code 6 9 15 18 24 27 33

E(4,2) MIHAO 0 0 0 0.15 0.47 0.58 0.52

E(4,2) [28, 29] 0 0 0 0.31 0.53 0.63 0.52

Table 2 Average number of (3, 3) ASs per node E(3,3) and (4, 2) FASs per node E(4,2) in AB SC-LDPC
codes with m = 3 , ms = 2

n = N 7 11 13 17 19 23

E(3,3) block code 6 10 12 16 18 22

E(3,3) MIHAO 0 0 0 0.29 0.42 0.96

E(3,3) [28, 29] 0 0 0 0.24 0.47 0.96

E(4,2) block code 9 15 18 24 27 33

E(4,2) MIHAO 0 0 0 0 0 0.26

Page 17 of 29Battaglioni et al. J Wireless Com Network (2023) 2023:67

m = 3 , any cycle of length 6 is a (3, 3) AS and, thus, we can feed Algorithm 2 with all
the block cycles of length 6 in the AB code. Instead, the search of (4, 2) AS is slightly
more complex, as, in this case, Algorithm 2 cannot be fed with simple cycles, but its
inputs are combinations of cycles. For (4, 2) FASs of QC-SC codes with m = 3 , we
have that their maximum span is L(4,2,ms) = 2ms + 1 . Notice that the (3, 5)-regular
array code is the one considered in Examples 1 and 2. We remark that it is the only
(3, n)-regular AB QC-SC code allowing for the removal of all the (3, 3) ASs and (4, 2)
FASs when ms = 1.

All the spreading vectors returned by Algorithm 2 are reported in “Appendix 1.”
Note that, even though the algorithm does not guarantee to find the absolute optimal
solution, it provides better solutions than the best ones available in the literature in
most cases.

We have also considered the (3, 5)-regular Tanner QC-LDPC code with L = 155 and
g = 8 , described by

The dominant trapping sets of this code are known to be (8, 2) ASs [46]. It is shown in
[17] that there are 5 different types of (8, 2) ASs in (3, n)-regular codes. All of them con-
tain at least one cycle of length 8. In particular, the (8, 2) ASs identified in [46] as the
most dangerous ones for the (3, 5)-regular Tanner code consist of clusters of 15 cycles: 3
of length 8, 4 of length 10, 2 of length 12, 4 of length 14 and 2 of length 16. The simplest
approach to eliminate all the (8, 2) ASs consists in removing the shortest cycles they
contain, i.e., all the cycles of length 8. In this case, feeding Algorithm 2 with P 2

5
 , N = 31 ,

all the cycles of length 8 in P 2
5
 and ms = 1 , we obtain

This spreading matrix allows the elimination of all cycles of length 8 and, thus, also
E(8,2) = 0.

As a further example, we consider the (3, 7)-regular Tanner code with blocklength
L = 301 , g = 8 and

Even though we might have simply assumed that the dominant trapping sets of this code
are the same (8, 2) ASs as for the (3, 5)-regular Tanner code, we have analyzed the error
patterns returned by the Monte Carlo simulations aimed at estimating the bit error rate
(BER) of this block code, over the AWGN channel, using the log-likelihood ratio sum-
product algorithm (LLR-SPA) decoder. The results are shown in “Appendix 2” and con-
firm that the most dangerous objects are indeed (8, 2) ASs, but of a different type than

(13)P 2
5
=

1 2 4 8 16
5 10 20 9 18
25 19 7 14 28

.

b1 =
[

2 1 6 1 5
]

.

(14)P 4
7
=

1 4 16 21 41 35 11
6 24 10 40 31 38 23
36 15 17 25 14 13 9

.

Page 18 of 29Battaglioni et al. J Wireless Com Network (2023) 2023:67

those considered in [46]. In fact, the (8, 2) ASs which are harmful for the (3, 7)-regular
Tanner code are formed by clusters of 14 cycles: 3 of length 8, 4 of length 10, 2 of length
12, 4 of length 14 and 1 of length 16. Again, we note that if we are able to remove all the
cycles of length 8 we will also remove all the (8, 2) ASs, whereas the converse is not true,
in general. Clearly, removing all the cycles with length 8 is preferable, as they may com-
bine together and form other harmful objects; unfortunately, however, this is not always
possible.

For example, the approach of eliminating all the cycles with length 8 for the
(3, 7)-regular Tanner code with MIHAO using ms = 1 , is not successful. In fact, by
performing an exhaustive analysis of the spreading matrices, we have verified that no
solution free of cycles with length 8 exists for these parameters. Therefore, since we
aim to remove all the (8, 2) ASs, we need to target the cycles composing them, includ-
ing those with length larger than 8. Notice that this is not equivalent to targeting all
the cycles with length 8, but rather a (small) subset of them has to be considered. In
order to reach this goal, we need to list the (8, 2) ASs and, for each of them, find the
cycles contained in the corresponding subgraph. Consequently, we feed Algorithm 2
with P 4

7
 , N = 43 , ms = 1 , all the (8, 2)-ASs in the parity-check matrix associated to P 4

7

and obtain

which indeed eliminates all the (8, 2) ASs.
If, instead, we consider ms = 2 , we do not need to target the absorbing sets directly,

since, in this case, the MIHAO algorithm can easily find a spreading matrix which
removes all the cycles with length 8. In fact, if we feed Algorithm 2 with P 4

7
 , N = 43 and

all the block cycles of length 8 in P 4
7
 we obtain

which yields no cycles of length 8 and, thus, no (8, 2) ASs.
We have also considered the code proposed in [31, Example 6], with exponent matrix

and considered two scenarios:

• L = 98 , g = 6 and spreading vector as in [31], i.e.,

• L = 49 , g = 6 and spreading vector obtained with MIHAO algorithm, with the aim
of minimizing the same objects as in [31] (6 cycles), i.e.,

b2 =
[

3 3 3 1 6 6 5
]

,

b3 =
[

4 11 20 3 13 21 21
]

,

(15)P 3
7
=

0 4 5 2 5 0 0
0 1 2 3 4 6 5
0 2 4 6 1 3 5
0 3 6 2 0 0 3

.

(16)b4 =
[

5 9 6 9 6 10 10
]

;

(17)b5 =
[

55 241 36 73 2 78 84
]

.

Page 19 of 29Battaglioni et al. J Wireless Com Network (2023) 2023:67

The resulting QC-SC codes have ms = 1 and ms = 3 , respectively, but the same con-
straint length νs = 196 , and are therefore comparable. They will be addressed to as CO
and CM , respectively.

4.2 Monte Carlo simulations

In this section we assess the error rate performance of the newly designed Tanner
codes in terms of BER via Monte Carlo simulations of binary phase shift keying
(BPSK)-modulated transmission over the AWGN channel. All the considered codes
are terminated and have block length 120, 000. We have used a sliding window
(SW) decoder with window size (in column blocks) W = 5(ms + 1) performing 100
iterations per window position. The SW decoder performs belief propagation over
a window including W blocks of L bits each, after which this window slides forward
by L bits before starting over again. For each decoding window position, the SW
decoder returns the first L decoded bits, usually called target bits, as its output. As
in [26–32, 36], we assume that the most harmful objects of a QC-LDPC code are
also harmful for its QC-SC version, even when decoded with a large sliding win-
dow decoder, such as that used in this paper. This assumption is corroborated by
the fact that QC-SC codes have a reduced number of the same harmful object(s)
with respect to their block counterparts and also a significantly better performance
under sliding window decoding with respect to their block version (see, for exam-
ple, Fig. 2).

We have first considered the (3, 5)-regular Tanner code and simulated the QC-SC
codes obtained by edge-spreading (13) with b1 , reported in Sect. 4.1, and with a ran-
dom spreading matrix. The results are shown in Fig. 1. The QC-SC code correspond-
ing to b1 has g = 10 , whereas that obtained by using a random spreading matrix has
g = 8 (E8 = 0.12), some residual (8, 2) trapping sets (E(8,2) = 0.37) and also a larger
multiplicity of cycles with length 10 and 12. While, as expected, the code designed
through MIHAO shows improvement over the random code in the region from 0.75
dB to 2 dB, the simulation curves converge at higher signal-to-noise ratios (SNRs) as
a result of the remaining dominant objects. So, Fig. 1 is meaningful, since it shows
that the QC-SC code suffers the presence of harmful objects which are not imme-
diately deducible from the analysis of the error patterns of the belief propagation
decoder for the initial block code, since they are not dominant in that case. In order
to improve the performance at a higher SNR, MIHAO should be employed with dif-
ferent target harmful objects, specifically tailored to the SW decoder. An in-depth
analysis of this behavior is left for future works, in which the aspects introduced
in [47, Section V] should also be accounted for. The error propagation phenom-
enon suffered by sliding window decoders, as discussed in [48, 49], might also be
considered.

We have also simulated the error rate performance of the QC-SC codes obtained by
edge spreading the (3, 7)-regular Tanner block code with b2 , which yields a code with
ms = 1 , and b3 , which yields a code with ms = 2 , as detailed in Sect. 4.1. We have com-
pared the performance of these two QC-SC codes with that of the QC-SC codes obtained
by edge spreading the (3, 7)-regular Tanner block code with random spreading matrices,

Page 20 of 29Battaglioni et al. J Wireless Com Network (2023) 2023:67

and the results are shown in Fig. 2. Also in this case, we notice that the increase of the
memory yields a gain in the error rate performance and, above all, that the optimization
performed by Algorithm 2 improves the error rate performance of the considered codes,
especially in the error floor region.

As a final example, we have simulated the error rate performance of the QC-SC
codes obtained from (15) in the two scenarios described in Sect. 4.1. The results are

Fig. 1 Simulated performance of (3, 5)-regular Tanner-based QC-SC codes as a function of the signal-to-noise
ratio

Fig. 2 Simulated performance of (3, 7)-regular Tanner-based QC-SC codes as a function of the signal-to-noise
ratio

Page 21 of 29Battaglioni et al. J Wireless Com Network (2023) 2023:67

shown in Fig. 3. Also in this last case, the code obtained by edge spreading P 3
7
 with the

spreading matrix obtained through the MIHAO algorithm outperforms that obtained
with the spreading matrix proposed in [31], from an error rate performance point of
view.

Alternative input QC-LDPC codes of girth 8, with potential performance improve-
ments over Tanner codes, especially in the error floor region, are those proposed in [15,
50–52], among many others. We leave the performance analysis of the corresponding
optimized QC-SC codes as a spark for future research.

5 Complexity of the algorithm
In this section, we briefly discuss how the complexity of the proposed procedure grows
asymptotically with n and ms . We also provide complexity estimations in the finite-
length regime by considering some examples.

5.1 Asymptotic complexity

Looking at the whole optimization process, we can separate two phases and the cor-
responding complexity: i) finding the harmful objects in a matrix with finite size (which
is either a parity-check matrix or a portion of it) and ii) executing the MIHAO algo-
rithm. Clearly, the first contribution depends on the nature and size of the searched
harmful objects. By using the search method proposed in [53], the complexity of the
search of trapping sets in a block code with blocklength L, excluding the initial cycle
search, increases as O(L). For completeness, we must also consider that the complexity
of the search of cycles with length � , for QC-LDPC codes with column weight equal to

Fig. 3 Simulated performance of (4, 7)-regular QC-SC codes as a function of the signal-to-noise ratio

Page 22 of 29Battaglioni et al. J Wireless Com Network (2023) 2023:67

m, increases as O(m�+1) . Obviously, when this is performed on the block code, ms does
not play any role.

The complexity of the MIHAO algorithm, when targeting cycles, can be estimated as
follows. Assuming that picking a value from or changing an entry in a matrix has neg-
ligible computational complexity, we can estimate the complexity of the MIHAO algo-
rithm as the complexity of evaluating (1), multiplied by the number of tested spreading
matrices (denoted as NB) and multiplied by the number of cycles per test (that is, |H|).
The complexity of computing (1) is the same as the cost of the sum of � elements, where
� is the length of the considered cycle. Conservatively assuming that all the cycles have
the same length, i.e., the length of the longest cycle in H , denoted as �max , the complexity
of evaluating (1) increases as O((�max − 1) log2(ms)) . Combining these results, we finally
obtain that the complexity of the whole procedure asymptotically increases as

Note that in (18), |H| does not depend on ms , whereas NB depends on ms , m, and on the
specific code considered.

When, instead, the target harmful objects are general (that is, not cycles) (a, b) ASs,
we refer the interested reader to the complexity analysis in [14, Section IV-E], where the
blocklength should be substituted with L(a,b,ms)L , being L the blocklength of the start-
ing QC-LDPC code, and L(a,b,ms) the maximum span (in terms of column blocks) of any
harmful object of interest.

5.2 Complexity examples for the finite‑length scenario

In order to assess the efficiency of the MIHAO algorithm in a finite-length scenario,
we have evaluated the average number of spreading matrices the novel algorithm tests
before finding a solution, for the codes with the smallest spreading matrices (so that
comparison with exhaustive search is feasible).

Let us consider the (3, 5)-regular array code. Running the MIHAO algorithm with
(3, 3) ASs as input, required testing an average of 21 spreading matrices out of the total
85 = 32, 768 possible ones (0.06% of the search space) before finding a solution which
eliminates such ASs in the QC-SC code with ms = 1 , over 1000 trials. A smart exhaus-
tive search on the reduced search space described in Sect. 2.3 found 80 different solu-
tions, out of the 16,807 possible spreading matrices and, therefore, the expected value
of tested spreading matrices before finding a valid solution is 211 (1.26% of the search
space). If a (non-smart) exhaustive search is performed, the search space has 215 ele-
ments, out of which 100 elements have been found to be solutions of the problem of
eliminating all (3, 3) ASs. Therefore, the expected percentage of the solution space that
has to be spanned to find a solution is 1% (328 spreading matrices). By applying the
minimum overlapping (MO) method proposed in [29], the search space contains 1000
spreading matrices. However, this reduced search space does not contain any of the 100
solutions found by means of the exhaustive search.

Let us also consider the (3, 7)-regular array code. Running the MIHAO algorithm 1000
times, with (3, 3) ASs as input, required testing an average of 1, 350 spreading out of

(18)O(m�max+1 + log2(ms)|H|NB).

Page 23 of 29Battaglioni et al. J Wireless Com Network (2023) 2023:67

the total 277 possible choices before finding a spreading matrix which eliminated all
such sets in the QC-SC code with ms = 2 (1.3 · 10−5% of the search space). Spanning
the entire search spaces of the conventional exhaustive search and the smart exhaus-
tive search is too complex, since they would require testing 321 and 197 spreading matri-
ces, respectively, and for this reason the total number of solutions in the respective
search spaces is not known.1 In order to set up a fair comparison with MIHAO, we have
randomly generated spreading matrices using the above methods until a solution was
found and repeated the experiment 1000 times, counting the average number of tested
matrices before finding it. Namely, the exhaustive search requires testing an average of
4227 matrices before finding a solution and the smart exhaustive search 1709 matri-
ces, on average. The MO method considers a reduced search space containing 9261000
spreading matrices. We have verified that it contains 3928 solutions and, therefore, the
expected number of spreading matrices to be tested before finding a solution is 2358.

(3, 5) Tanner-based QC-SC codes with ms = 1 and no cycles of length 8 have been
found by the MIHAO algorithm by testing an average of 14 spreading matrices out of
the total 32768 possible ones (0.04% of the search space), over 1000 attempts. The smart
exhaustive search found 540 solutions out of 16807; the expected value of tested matri-
ces before finding a solution is thus 32. The exhaustive search found 570 solutions out
of the 215 spreading matrices, therefore needing to test an expected value of 58 matrices
before finding a solution. In this case, the MO method considers a reduced space of 1000
spreading matrices containing 45 solutions; therefore, the expected value of spreading
matrices to be tested before finding a solution is 23.

Finally, (3, 7) Tanner-based QC-SC codes with ms = 2 and no cycles of length 8 were
found by the MIHAO algorithm by testing an average of 5292 spreading matrices out of
the total 277 possible choices. The smart exhaustive search, the exhaustive search and the
MO method would again require testing 197 , 321 and 9261000 spreading matrices when
ms = 2 , respectively; these tasks, also due to the increase in the computational complex-
ity of the single test with respect to the previous cases (finding cycles with length 8 is
more costly than finding (3, 3) ASs), require a too long processing time and, for this rea-
son, were not performed. Still, just as for the (3, 7)-regular array code, we have randomly
searched for solutions in the search spaces of these approaches, stopping when a solu-
tion was found. The average number of tested matrices before finding a solution, over
1000 attempts, was 12493, 18396 and 5941, respectively.

Table 3 summarizes the above results. Between round brackets we report the num-
ber of spreading matrices in the considered search space and the number of solutions
within the considered search space, separated by the symbol /, when it is possible to
find them; if the search space is too large to be spanned entirely, we have reported a
lower bound on the number of solutions when the algorithms search (3, 3) ASs, and the
symbol—if cycles with length 8 are the target. Obviously, for MIHAO we only report the
average number of tested matrices before finding a solution, since the novel algorithm
stops as soon as it finds a solution. We notice (see bold values) how MIHAO is, in all the

1 We have empirically found a lower bound for the smart exhaustive search: Its search space contains more than 673
solutions.

Page 24 of 29Battaglioni et al. J Wireless Com Network (2023) 2023:67

considered cases, the algorithm requiring the smallest average number of tested matri-
ces before finding a solution.

The speed-up of the novel MIHAO algorithm with respect to its previous version [36],
and to the random search (when feasible), can be found in “Appendix 1,” referred to array
codes. The speed-up is quantified in relative terms and is therefore independent of the
specific computer used to obtain the results.

6 Conclusions
We have proposed an efficient algorithm that enables the construction of good QC-SC
codes based on QC-LDPC block codes from the perspective of harmful objects. The
algorithm is flexible and allows the analysis of codes with different structure and val-
ues of memory and rate. The algorithm assumes many classes of harmful objects as the
target of a search-and-remove process aimed to eventually optimize codes in terms of
error rate performance. Through several examples, we have verified that our algorithm
can outperform those available in previous literature, in terms of reduced number of
harmful objects, and simulation of the newly designed codes has given evidence of the
performance gain achievable. Finally, we have shown with many examples that MIHAO
presents advantages in terms of computational complexity over competitive solutions.

Appendix 1
In this appendix, we list all the spreading vectors returned by Algorithm 2 that achieve
the results shown in Tables 1 and 2 and the speed-up of the newly proposed algorithm
with respect to a random search and to the previous version of the algorithm (the algo-
rithms are implemented in MATLAB and are executed on a standard laptop computer
with an Intel(R) Core(TM) i5-4210U CPU @ 1.70GHz and 4 GB RAM). In the speed-
up expression, we have denoted the running time of the random search, of the version
of the algorithm in [36] and of the proposed version of the algorithm as tran , t[1] and
tMIHAO , respectively. These results are reported in Tables 4 and 5. A time limit of one
week has been considered for the running time of the algorithms. When the random
search (or the previous version of MIHAO) required more than a week to find the same
solution as the newly proposed algorithm, the speed-up cannot be computed and the
corresponding entry of the table is a –. It is interesting to note that for most of the con-
sidered values of n, the spreading vector yielding the smallest multiplicity of (3, 3) ASs,

Table 3 Average number of tested matrices before finding a solution (between round brackets:
number of spreading matrices in the considered search space and number of solutions within this
search space), for different codes and search algorithms

Code ms MIHAO Exhaustive search Smart exhaustive search Minimum overlapping [29]

Array (3, 5) 1 21 328 (215/100) 211 (16807/80) No solution (1000/0)

Tanner (3, 5) 2 1350 4227 (321/–) 1709 (197/≥ 673) 2358 (9261000/3928)

Array (3, 7) 1 14 58 (215/570) 32 (16807/540) 23 (1000/45)

Tanner (3, 7) 2 5292 18396 (321/–) 12493 (197/–) 5941 (9261000/–)

Page 25 of 29Battaglioni et al. J Wireless Com Network (2023) 2023:67

Ta
bl

e
4

O
ut

pu
t o

f A
lg

or
ith

m
 2

 fo
r (

3,
 n

) A
B

SC
-L

D
PC

 c
od

es
, m

s
=

1 a
nd

 s
pe

ed
-u

p
of

 th
e

ne
w

 a
lg

or
ith

m

n
5

7
11

13
17

b
→

E
(3
,3
)

0,
 3

, 6
, 6

, 3
3,

 5
, 3

, 3
, 6

, 5
, 5

2,
 1

, 1
, 3

, 4
, 4

, 2
, 4

, 4
, 1

, 1
1,

 4
, 6

, 6
, 4

, 3
, 4

, 3
, 1

, 1
, 3

, 6
, 0

1,
 4

, 2
, 6

, 2
, 2

, 1
, 6

, 1
, 4

, 2
, 4

, 3
, 1

, 2
, 5

, 4

b
→

E
(4
,2
)

0,
 3

, 6
, 6

, 3
3,

 5
, 3

, 3
, 6

, 5
, 5

2,
 1

, 1
, 3

, 4
, 4

, 2
, 4

, 4
, 1

, 1
1,

 4
, 6

, 6
, 4

, 3
, 4

, 3
, 1

, 1
, 3

, 6
, 0

1,
 4

, 2
, 6

, 2
, 2

, 1
, 6

, 1
, 4

, 2
, 4

, 3
, 1

, 2
, 5

, 4
t r
a
n

t M
IH
A
O

1.
45

1.
92

4.
11

5.
67

–
t [
3
1
]

t M
IH
A
O

1.
06

0.
98

2.
06

1.
97

6.
1

 n
19

23

b
→

E
(3
,3
)

4,
 2

, 2
, 3

, 4
, 2

, 1
, 2

, 1
, 1

, 4
, 5

, 4
, 1

, 1
, 2

, 1
, 2

, 4
3,

 1
, 4

, 5
, 3

, 2
, 4

, 2
, 6

, 4
, 2

, 4
, 2

, 1
, 3

, 4
, 6

, 1
, 2

, 1
, 1

, 6
, 4

b
→

E
(4
,2
)

5,
 1

, 5
, 6

, 4
, 3

, 5
, 3

, 1
, 6

, 5
, 6

, 3
, 3

, 2
, 2

, 5
, 1

, 7
3,

 1
, 4

, 5
, 3

, 2
, 4

, 2
, 6

, 4
, 2

, 4
, 2

, 1
, 3

, 4
, 6

, 1
, 2

, 1
, 1

, 6
, 4

t r
a
n

t M
IH
A
O

–
–

t [
3
1
]

t M
IH
A
O

9.
64

–

Page 26 of 29Battaglioni et al. J Wireless Com Network (2023) 2023:67

denoted as b → E(3,3) , is also the one yielding the smallest multiplicity of (4, 2) FASs,
denoted as b → E(4,2).

Appendix 2
In this appendix we show the error patterns that cause the failures of a log-likelihood
ratio sum-product algorithm performing 100 iterations on the (3, 7)-regular block Tan-
ner QC-LDPC code considered in Sects. 4.1 and 4.2, with L = 301 and g = 8 , described
by the following exponent matrix

For the sake of brevity, we only give the error patterns for EbN0
= 4.85 dB , which is the

largest EbN0
 for which we were able to collect a sufficiently large number of error patterns

(more than 100) in a reasonable time. In this case, all the decoding failures were caused
by the same initial pattern (inducing set), whose support (variable node indexes) is

We show its evolution throughout the 100 decoding iterations in Fig. 4. This figure
shows that, even though the inducing set is not an (8, 2) AS, the decoder mostly gets
stuck at bit positions

P 4
7
=

1 4 16 21 41 35 11
6 24 10 40 31 38 23
36 15 17 25 14 13 9

.

[

11 22 30 51 112 173 201 205 296
]

.

(19)
[

11 30 51 97 112 173 201 205
]

,

Table 5 Output of Algorithm 2 for (3, n) AB SC-LDPC codes, ms = 2 and speed-up of the new
algorithm

n 7 11 13

b → E(3,3) 10, 12, 23, 23, 20, 12, 12 11, 7, 15, 5, 15, 7, 11, 19, 11, 11, 19 8, 10, 10, 16, 16, 2, 18, 3, 18, 7, 2, 23, 2

b → E(4,2) 18, 13, 23, 7, 7, 13, 7 11, 2, 17, 6, 8, 16, 21, 19, 11, 21, 12 15, 6, 20, 20, 1, 3, 1, 1, 3, 1, 20, 20, 6
tran

tMIHAO
1.72 – –

t[31]

tMIHAO

1.08 9.38 13.31

n 17 19

b → E(3,3) 19, 15, 11, 5, 11, 7, 7, 15, 5,
15, 19, 7, 19, 7, 15, 11, 11

21, 21, 5, 6, 7, 2, 20, 5, 21, 5, 20, 2, 8, 19, 7, 6, 18, 18, 5

b → E(4,2) 19, 15, 11, 5, 11, 7, 7, 15, 5,
15, 19, 7, 19, 7, 15, 11, 11

21, 21, 5, 6, 7, 2, 20, 5, 21, 5, 20, 2, 8, 19, 7, 6, 18, 18, 5

tran
tMIHAO

– –
t[31]

tMIHAO

– –

n 23

b → E(3,3) 11, 5, 5, 7, 11, 11, 7, 15, 5, 15, 7, 19, 7, 19, 19, 7, 19, 11, 15, 19, 11, 11, 15

b → E(4,2) 11, 5, 5, 7, 11, 11, 7, 15, 5, 15, 7, 19, 7, 19, 19, 7, 19, 11, 15, 19, 11, 11, 15
tran

tMIHAO
–

t[31]

tMIHAO

–

Page 27 of 29Battaglioni et al. J Wireless Com Network (2023) 2023:67

which indeed correspond to the most “solid” columns in Fig. 4 and are an (8, 2) AS. Thus,
we consider these classes of harmful objects as the most dangerous ones for the
(3, 7)-regular Tanner code under the considered decoding algorithm and, therefore, as
the input of Algorithm 2. In this case, in order to guarantee results reproducibility, it is
important to specify that, for each entry pi,j of P 4

7
 , the corresponding circulant permuta-

tion matrix was obtained by cyclic shifts of the rows of the identity matrix toward left by
pi,j positions.

Abbreviations
AB Array-based
AS Absorbing sets
AWGN Additive white Gaussian noise
BER Bit error rate
BPSK Binary phase shift keying
CPM Circulant permutation matrix
LDPC Low-density parity-check
LLR-SPA Log-likelihood ratio sum-product algorithm
MIHAO MInimization of harmful objects
QC-LDPC Quasi-cyclic low-density parity-check
QC-SC codes Quasi-cyclic spatially coupled LDPC codes from quasi-cyclic low-density parity-check block

codes
QC-SC-LDPC Quasi-cyclic spatially coupled low-density parity-check
SC-LDPCC Spatially coupled LDPC code
SW Sliding window

Acknowledgements
The work of Dr. Mitchell is supported by the National Science Foundation under Grant Nos. CCF-2145917 and HRD-
1914635. Michele Pacenti acknowledges the support of National Science Foundation under Grants CIF-1855879,
CIF-2106189, CCSS-2027844, CCSS-2052751 and CCF-2100013, as well as the support of the Jet Propulsion Laboratory,
California Institute of Technology, under a contract with the National Aeronautics and Space Administration and funded
through JPL’s Strategic University Research Partnerships (SURP) program.

Author Contributions
All the authors participated in writing the article and revising the manuscript. MB and MP developed the software of the
MIHAO algorithm. DM ran the Monte Carlo simulations. MB assessed the complexity comparisons.

Availability of data and materials
Not applicable.

Declarations

Competing interests
The authors declare that they have no competing interests.

Received: 26 September 2022 Accepted: 6 July 2023

Fig. 4 Evolution of the error pattern causing the failures of the (3, 7)-regular Tanner code for Eb
N0

= 4.85 dB .
Blue dots represent the positions of errors

Page 28 of 29Battaglioni et al. J Wireless Com Network (2023) 2023:67

References
 1. A. Jiménez Felström, K.S. Zigangirov, Time-varying periodic convolutional codes with low-density parity-check

matrix. IEEE Trans. Inf. Theory 45(6), 2181–2191 (1999)
 2. R.G. Gallager, Low-density parity-check codes. IRE Trans. Inform. Theory IT-8, 21–28 (1962)
 3. Z. Yang, Y. Fang, G. Zhang, F.C.M. Lau, S. Mumtaz, D.B. da Costa, Analysis and optimization of tail-biting spatially cou-

pled protograph LDPC codes for BICM-ID systems. IEEE Trans. Veh. Technol. 69(1), 390–404 (2020). https:// doi. org/ 10.
1109/ TVT. 2019. 29496 00

 4. Q. Wang, S. Cai, W. Lin, S. Zhao, L. Chen, X. Ma, Spatially coupled LDPC codes via partial superposition and their
application to HARQ. IEEE Trans. Veh. Technol. 70(4), 3493–3504 (2021). https:// doi. org/ 10. 1109/ TVT. 2021. 30650 52

 5. T.J. Richardson, R.L. Urbanke, The capacity of low-density parity-check codes under message-passing decoding. IEEE
Trans. Inf. Theory 47(2), 599–618 (2001)

 6. M. Lentmaier, A. Sridharan, D.J. Costello, K.S. Zigangirov, Iterative decoding threshold analysis for LDPC convolutional
codes. IEEE Trans. Inf. Theory 56(10), 5274–5289 (2010)

 7. S. Kudekar, T.J. Richardson, R.L. Urbanke, Threshold saturation via spatial coupling: why convolutional LDPC ensem-
bles perform so well over the BEC. IEEE Trans. Inf. Theory 57(2), 803–834 (2011)

 8. S. Kudekar, T.J. Richardson, R.L. Urbanke, Spatially coupled ensembles universally achieve capacity under belief
propagation. IEEE Trans. Inf. Theory 59(12), 7761–7813 (2013)

 9. R. Tanner, A recursive approach to low complexity codes. IEEE Trans. Inf. Theory 27(5), 533–547 (1981)
 10. C. Di, D. Proietti, I.E. Telatar, T.J. Richardson, R.L. Urbanke, Finite-length analysis of low-density parity-check codes on

the binary erasure channel. IEEE Trans. Inf. Theory 48(6), 1570–1579 (2002)
 11. T. Richardson, Error floors of LDPC codes, in Proceedings of 41st Annual Allerton Conference, Monticello, IL (2003)
 12. L. Dolecek, Z. Zhang, V. Anantharam, M.J. Wainwright, B. Nikolic, Analysis of absorbing sets and fully absorbing sets

of array-based LDPC codes. IEEE Trans. Inf. Theory 56(1), 181–201 (2010)
 13. Y. Hashemi, A. Banihashemi, On characterization of elementary trapping sets of variable-regular LDPC codes. IEEE

Trans. Inf. Theory 60(9), 5188–5203 (2014)
 14. Y. Hashemi, A. Banihashemi, New characterization and efficient exhaustive search algorithm for leafless elementary

trapping sets of variable-regular LDPC codes. IEEE Trans. Inf. Theory 62(12), 6713–6736 (2016)
 15. X. Tao, Y. Li, Y. Liu, Z. Hu, On the construction of LDPC codes free of small trapping sets by controlling cycles. IEEE

Commun. Lett. 22(1), 9–12 (2018). https:// doi. org/ 10. 1109/ LCOMM. 2017. 26797 07
 16. R. Asvadi, A.H. Banihashemi, M. Ahmadian-Attari, Lowering the error floor of LDPC codes using cyclic liftings. IEEE

Trans. Inf. Theory 57(4), 2213–2224 (2011)
 17. D.V. Nguyen, S.K. Chilappagari, M.W. Marcellin, B. Vasic, On the construction of structured LDPC codes free of small

trapping sets. IEEE Trans. Inf. Theory 58(4), 2280–2302 (2012)
 18. Y. Han, W.E. Ryan, Low-floor decoders for LDPC codes. IEEE Trans. Commun. 57(6), 1663–1673 (2009). https:// doi. org/

10. 1109/ TCOMM. 2009. 06. 070325
 19. J. Kang, Q. Huang, S. Lin, K. Abdel-Ghaffar, An iterative decoding algorithm with backtracking to lower the error-

floors of LDPC codes. IEEE Trans. Commun. 59(1), 64–73 (2011). https:// doi. org/ 10. 1109/ TCOMM. 2010. 101210.
090628

 20. S. Kang, J. Moon, J. Ha, J. Shin, Breaking the trapping sets in LDPC codes: check node removal and collaborative
decoding. IEEE Trans. Commun. 64(1), 15–26 (2016)

 21. D.G.M. Mitchell, M. Lentmaier, D.J. Costello Jr., Spatially coupled LDPC codes constructed from protographs. IEEE
Trans. Inf. Theory 61(9), 4866–4889 (2015)

 22. R.M. Tanner, D. Sridhara, A. Sridharan, T.E. Fuja, D.J. Costello, LDPC block and convolutional codes based on circulant
matrices. IEEE Trans. Inf. Theory 50(12), 2966–2984 (2004)

 23. A.K. Pradhan, A. Thangaraj, A. Subramanian, Construction of near-capacity protograph LDPC code sequences with
block-error thresholds. IEEE Trans. Commun. 64(1), 27–37 (2016). https:// doi. org/ 10. 1109/ TCOMM. 2015. 25002 34

 24. Y. Fang, S.C. Liew, T. Wang, Design of distributed protograph LDPC codes for multi-relay coded-cooperative net-
works. IEEE Trans. Wireless Commun. 16(11), 7235–7251 (2017). https:// doi. org/ 10. 1109/ TWC. 2017. 27436 99

 25. Y. Fang, P. Chen, G. Cai, F.C.M. Lau, S.C. Liew, G. Han, Outage-limit-approaching channel coding for future wireless
communications: Root-protograph low-density parity-check codes. IEEE Veh. Technol. Mag. 14(2), 85–93 (2019).
https:// doi. org/ 10. 1109/ MVT. 2019. 29033 43

 26. B. Amiri, A. Reisizadehmobarakeh, H. Esfahanizadeh, J. Kliewer, L. Dolecek, Optimized design of finite-length separa-
ble circulant-based spatially-coupled codes: an absorbing set-based analysis. IEEE Trans. Commun. 64(3), 918–931
(2016)

 27. D.G.M. Mitchell, L. Dolecek, D.J. Costello, Absorbing set characterization of array-based spatially coupled LDPC
codes, in Proceedings of IEEE ISIT 2014, Honolulu, HI, USA, pp. 886–890 (2014)

 28. D.G.M. Mitchell, E. Rosnes, Edge spreading design of high rate array-based SC-LDPC codes, in Proceedings of IEEE ISIT
2017, Aachen, Germany, pp. 2940–2944 (2017)

 29. H. Esfahanizadeh, A. Hareedy, L. Dolecek, A novel combinatorial framework to construct spatially-coupled codes:
minimum overlap partitioning, in Proceedings of IEEE ISIT 2017, Aachen, Germany, pp. 1693–1697 (2017)

 30. A. Beemer, S. Habib, C.A. Kelley, J. Kliewer, A generalized algebraic approach to optimizing SC-LDPC codes, in Pro-
ceedings of 55th Annual Allerton Conference, Monticello, IL, pp. 672–679 (2017)

 31. H. Esfahanizadeh, A. Hareedy, L. Dolecek, Finite-length construction of high performance spatially-coupled codes
via optimized partitioning and lifting. IEEE Trans. Commun. 67(1), 3–16 (2019). https:// doi. org/ 10. 1109/ TCOMM.
2018. 28674 93

 32. A. Hareedy, R. Wu, L. Dolecek, A channel-aware combinatorial approach to design high performance spatially-
coupled codes. IEEE Trans. Inf. Theory 66(8), 4834–4852 (2020). https:// doi. org/ 10. 1109/ TIT. 2020. 29799 81

 33. S. Mo, L. Chen, D.J. Costello, D.G.M. Mitchell, R. Smarandache, J. Qiu, Designing protograph-based quasi-cyclic spa-
tially coupled LDPC codes with large girth. IEEE Trans. Commun. 68(9), 5326–5337 (2020). https:// doi. org/ 10. 1109/
TCOMM. 2020. 30010 29

https://doi.org/10.1109/TVT.2019.2949600
https://doi.org/10.1109/TVT.2019.2949600
https://doi.org/10.1109/TVT.2021.3065052
https://doi.org/10.1109/LCOMM.2017.2679707
https://doi.org/10.1109/TCOMM.2009.06.070325
https://doi.org/10.1109/TCOMM.2009.06.070325
https://doi.org/10.1109/TCOMM.2010.101210.090628
https://doi.org/10.1109/TCOMM.2010.101210.090628
https://doi.org/10.1109/TCOMM.2015.2500234
https://doi.org/10.1109/TWC.2017.2743699
https://doi.org/10.1109/MVT.2019.2903343
https://doi.org/10.1109/TCOMM.2018.2867493
https://doi.org/10.1109/TCOMM.2018.2867493
https://doi.org/10.1109/TIT.2020.2979981
https://doi.org/10.1109/TCOMM.2020.3001029
https://doi.org/10.1109/TCOMM.2020.3001029

Page 29 of 29Battaglioni et al. J Wireless Com Network (2023) 2023:67

 34. L. Schmalen, V. Aref, F. Jardel, Non-uniformly coupled LDPC codes: Better thresholds, smaller rate-loss, and less
complexity, in 2017 IEEE International Symposium on Information Theory (ISIT), pp. 376–380 (2017). https:// doi. org/ 10.
1109/ ISIT. 2017. 80065 53

 35. S. Yang, A. Hareedy, R. Calderbank, L. Dolecek, Breaking the computational bottleneck: Probabilistic optimization
of high-memory spatially-coupled codes. IEEE Trans. Inf. Theory 69(2), 886–909 (2023). https:// doi. org/ 10. 1109/ TIT.
2022. 32073 21

 36. M. Battaglioni, F. Chiaraluce, M. Baldi, D.G.M. Mitchell, Efficient search and elimination of harmful objects for the
optimization of QC-SC-LDPC codes, in Proceedings of IEEE GLOBECOM 2019, Waikoloa, Hawaii, USA (2019)

 37. M.-R. Sadeghi, F. Amirzade, Edge-coloring technique to analyze elementary trapping sets of spatially-coupled LDPC
convolutional codes. IEEE Commun. Lett. 24(4), 711–715 (2020). https:// doi. org/ 10. 1109/ LCOMM. 2019. 29626 71

 38. J.L. Fan, Array codes as low-density parity-check codes, in Proceedings of 2nd Interenational Symposium Turbo Codes,
Brest, France, pp. 543–546 (2000)

 39. H. Zhou, N. Goertz, Unavoidable cycles in polynomial-based time-invariant LDPC convolutional codes, in Proceed-
ings of Wireless Conference on Sustainable Wireless Technology 2011, Vienna, Austria, pp. 1–6 (2011)

 40. Y. Wang, S.C. Draper, J.S. Yedidia, Hierarchical and high-girth QC LDPC codes. IEEE Trans. Inf. Theory 59(7), 4553–4583
(2013). https:// doi. org/ 10. 1109/ TIT. 2013. 22535 12

 41. M.P.C. Fossorier, Quasi-cyclic low-density parity-check codes from circulant permutation matrices. IEEE Trans. Inf.
Theory 50(8), 1788–1793 (2004)

 42. M. Battaglioni, F. Chiaraluce, M. Baldi, M. Lentmaier, Girth analysis and design of periodically time-varying SC-LDPC
codes. IEEE Trans. Inf. Theory 67(4), 2217–2235 (2021). https:// doi. org/ 10. 1109/ TIT. 2021. 30594 14

 43. G. Liva, M. Chiani, Protograph LDPC codes design based on EXIT analysis, in IEEE GLOBECOM 2007—IEEE Global
Telecommunications Conference, pp. 3250–3254 (2007). https:// doi. org/ 10. 1109/ GLOCOM. 2007. 616

 44. M. Battaglioni, A. Tasdighi, G. Cancellieri, F. Chiaraluce, M. Baldi, Design and analysis of time-invariant SC-LDPC con-
volutional codes with small constraint length. IEEE Trans. Commun. 66(3), 918–931 (2018)

 45. E.W. Dijkstra, A note on two problems in connexion with graphs. Numer. Math. 1(1), 269–271 (1959)
 46. S. Zhang, C. Schlegel, Causes and dynamics of LDPC error floors on AWGN channels, in Proceedings of 49th Annual

Allerton Conference, Monticello, IL, pp. 1025–1032 (2011)
 47. A. Beemer, C.A. Kelley, Avoiding trapping sets in SC-LDPC codes under windowed decoding, in Proceedings of ISITA

2016, Monterey, CA, pp. 206–210 (2016)
 48. L. Schmalen, D. Suikat, V. Aref, D. Roesener, On the design of capacity-approaching unit-memory spatially coupled

LDPC codes for optical communications, in ECOC 2016; 42nd European Conference on Optical Communication, pp. 1–3
(2016)

 49. K. Klaiber, S. Cammerer, L. Schmalen, S.t. Brink, Avoiding burst-like error patterns in windowed decoding of spatially
coupled LDPC codes, in 2018 IEEE 10th International Symposium on Turbo Codes & Iterative Information Processing
(ISTC), pp. 1–5 (2018). https:// doi. org/ 10. 1109/ ISTC. 2018. 86253 12

 50. G. Zhang, R. Sun, X. Wang, Several explicit constructions for (3, L) QC-LDPC codes with girth at least eight. IEEE Com-
mun. Lett. 17(9), 1822–1825 (2013). https:// doi. org/ 10. 1109/ LCOMM. 2013. 070913. 130966

 51. M. Majdzade, M. Gholami, On the class of high-rate QC-LDPC codes with girth 8 from sequences satisfied in GCD
condition. IEEE Commun. Lett. 24(7), 1391–1394 (2020). https:// doi. org/ 10. 1109/ LCOMM. 2020. 29830 19

 52. G. Zhang, Y. Hu, Y. Fang, D. Ren, Relation between GCD constraint and full-length row-multiplier QC-LDPC codes
with girth eight. IEEE Commun. Lett. 25(9), 2820–2823 (2021). https:// doi. org/ 10. 1109/ LCOMM. 2021. 30963 86

 53. Y. Hashemi, A.H. Banihashemi, Characterization and efficient search of non-elementary trapping sets of LDPC codes
with applications to stopping sets. IEEE Trans. Inf. Theory 65(2), 1017–1033 (2019). https:// doi. org/ 10. 1109/ TIT. 2018.
28653 85

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1109/ISIT.2017.8006553
https://doi.org/10.1109/ISIT.2017.8006553
https://doi.org/10.1109/TIT.2022.3207321
https://doi.org/10.1109/TIT.2022.3207321
https://doi.org/10.1109/LCOMM.2019.2962671
https://doi.org/10.1109/TIT.2013.2253512
https://doi.org/10.1109/TIT.2021.3059414
https://doi.org/10.1109/GLOCOM.2007.616
https://doi.org/10.1109/ISTC.2018.8625312
https://doi.org/10.1109/LCOMM.2013.070913.130966
https://doi.org/10.1109/LCOMM.2020.2983019
https://doi.org/10.1109/LCOMM.2021.3096386
https://doi.org/10.1109/TIT.2018.2865385
https://doi.org/10.1109/TIT.2018.2865385

	Optimizing quasi-cyclic spatially coupled LDPC codes by eliminating harmful objects
	Abstract
	1 Introduction
	1.1 Previous work
	1.2 Our contribution
	1.3 Outline of the paper

	2 Notation and definitions
	2.1 QC-LDPC codes
	2.2 QC-SC codes based on QC-LDPC codes
	2.3 Exhaustive analysis of spreading matrices

	3 Methodsexperimental
	3.1 Spreading matrices selection criteria
	3.2 Design of good QC-SC Codes

	4 Results and discussion
	4.1 Optimization results
	4.2 Monte Carlo simulations

	5 Complexity of the algorithm
	5.1 Asymptotic complexity
	5.2 Complexity examples for the finite-length scenario

	6 Conclusions
	Appendix 1
	Appendix 2
	Acknowledgements
	References

