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Abstract 

Automatic modulation classification (AMC) plays a vital role in modern communication 
systems, which can support wireless communication systems with limited spectrum 
resource. This paper proposes an AMC method, which integrates gated recurrent unit 
(GRU) and convolutional neural network (CNN) to utilize the complementary input 
features of received signals for spatiotemporal feature extraction and classification. 
Different from other state-of-the-art (SoA) frameworks, the proposed AMC classifier, 
named as fusion GRU deep learning neural network (FGDNN), aggregates firstly tempo-
ral features with GRUs and then extracts spatial features with CNNs. The GRUs can store 
temporal dynamic features, and facilitate to capture the characteristics of correlation 
and dependence among input features. The method is tested extensively with com-
parisons in order to verify its effectiveness. Experiment results show that the recogni-
tion rates of our method outperform other deep learning frameworks.

Keywords:  Automatic modulation classification, Multichannel, Input features, 
Temporal dynamics, Gated recurrent unit

1  Introduction
Automatic modulation classification (AMC) refers to a signal processing mechanism 
through which a received signal’s most likely modulation scheme is determined using 
classification with minimal information about the signal configuration [1]. Modulation 
classification is a major issue in many communication systems with both military and 
civilian applications, such as spectrum monitoring [2], dynamic spectrum access [3, 4], 
IoT attack detection [5], and cognitive radio [6, 7]. Traditional AMC methods include 
likelihood-based (LB) classifiers, which has a high dependence on prior knowledge, and 
consequently the feature-based automatic modulation classification (FBAMC) method 
was widely studied. The FBAMC method involves two stages. In the first stage, a received 
signal’s features are extracted and then provided to a labeling stage that functions as the 
second processing stage. Features extracted in the first stage correspond primarily to the 
signal’s characteristics. These features include signal spectral-based [8], wavelet trans-
form-based, high-order statistics-based, and cyclostationary analysis-based features [6].
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During the last decade, deep learning (DL) has made great achievements in many 
fields, such as image processing, natural language processing, wireless communica-
tions, and so on. So many scholars tried to apply DL methods to the FBAMC method 
for improving classification accuracy [9–21]. Most of the current methods based 
on DL are directly borrowed from the field of image processing or natural language 
processing. We present the related DL-based AMC works in two aspects. Firstly, we 
survey related works whose contributions are mainly about achieving a high classi-
fication performance through combining different network layers or deepening the 
network depth.

Meng et al. proposed an earlier DL-based AMC method [9], which is CNN-based 
AMC and can outperform the FBAMC and has a faster computing speed with parallel 
computation. An efficient CNN architecture, MCNet, is also proposed in [10], which 
is concatenated or added by multiple convolution blocks with asymmetric convolu-
tion kernel, and can effectively capture the spatial correlation of modulation signals 
with the increase of the number of convolution blocks. Another optimized CNNAMC 
network named SBCNN also has a high robustness on a complex dataset by designing 
an optimal filter size for improving the prediction accuracy [11]. Lin et al. designed 
a time-frequency attention mechanism for CNNAMC to learn which frequency, 
channel and time features are more meaningful in networks for modulation classifi-
cation [12], which outperforms other attention mechanisms. Multiple CNN models 
are trained in [13] for multitask learning under different SNRs, and each CNN model 
shares the model weight with other CNN models, which can be applied in realistic 
noise scenarios and achieves better generalization and robustness. Besides CNN, 
there are other contributions in the field of image processing that have been applied 
to AMC. P. Qi et  al. exploited a waveform-spectrum multimodal fusion method to 
realize deep residual network (ResNet)-based AMC method [8], which can efficiently 
distinguish among sixteen modulated signals.

Moreover, recurrent neural network (RNN) is well-known for its capability to learn 
from the temporal data. Hu et al. realize the DNN-based modulation classifier using 
multiple long short-term memory (LSTM) layers and fully connected layers and show 
that the proposed RNN-based classifier is robust to the uncertain noise conditions 
[14]. In addition, modulated signals have not only spatial characteristics, but also 
temporal characteristics. A CNN-LSTM-based dual-stream structure is proposed in 
[15], which extracts spatial features with CNN and then extracts temporal features 
with LSTM. Another three-stream deep learning framework is proposed in [16], 
which has efficient convergence speed and achieves improved recognition accuracy, 
especially for the signals modulated by higher dimensional schemes such as 16-QAM 
and 64-QAM. LSTM attains high classification accuracy with fewer signal symbols, 
but it requires a long training process due to its recurrent structure [17]. Hong et al. 
[18] proposed a classifier composed of a simple convolution layer and gated recurrent 
unit (GRU), but the performance gain is not obvious compared with one-layer LSTM.

Secondly, we survey related deep learning works based on input data formats, that 
include in-phase/quadrature (I/Q)-based, amplitude/phase (A/P)-based, I/Q + A/P-
based, constellation-based, and other formats. 
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(1)	 I/Q Based: In [19], a seven-layer convolutional neural network (CNN), a seven-layer 
residual networks (ResCNN), a seven-layer densely connected networks (DenseC-
NNs), and convolutional long short-term deep neural network (CLDNN) are evalu-
ated and shown that CLDNN is the most suitable framework for the AMC task. 
Different from the CLDNN used in [19], where only the last step outputs from long 
short-term memory (LSTM) layer are used as features, a temporal RNN attention 
layer over outputs of all time steps is proposed to summarize temporal information 
in [14]. Though most recent DL-based AMC works are based on real-valued opera-
tions and representations, Tu et al. demonstrated the high potential of complex-val-
ued networks for AMC in [22], and their results validate the superior performance 
in AMC achieved by the complex-valued networks.

(2)	 A/P Based: Different from the I/Q, A/P is the polar coordinate counterpart trans-
ferred by I/Q. In [1], a novel deep learning and polar transformation framework for 
an adaptive automatic modulation classification is presented, which is composed of 
CNN architecture and channel compensation network. Huang et al. [5] proposed 
a novel gated recurrent residual neural network, which is made up of ResNet and 
GRU layers.

(3)	 I/Q + A/P Based: To explore the feature interaction and spatial-temporal properties 
of raw complex signals, a CNNLSTM-based dual-stream structure (DSCLDNN) 
is proposed in [15]. As for the fusion operation in DSCLDNN, the outer product 
is adapted. In [20], Chang et al. proposed multitask learning deep neural network 
based on the differences and characteristics of I/Q and A/P.

(4)	 Constellation Based: Peng et  al. [21] used two convolutional neural network 
(CNN)-based DL models, AlexNet and GoogLeNet for AMC task directly. In [23], 
Lin et  al. developed a framework to transform complex-valued signal waveforms 
into images with statistical significance, termed contour stellar image, which can 
convey deep level statistical information from the raw wireless signal waveforms 
while being represented in an image data format. Although the AMC using constel-
lation map can directly benefit from the visual CNN networks, the temporal char-
acteristics of signal sequence is neglected, which results in the degradation of clas-
sification accuracy.

However, utilizing multiple formats of a signal is a complex task in practical applications 
and different input information might affect the performance of the framework. While 
some conclusions from previous work are interesting and helpful, how to fuse different 
formats of signals are still required to explore for designing networks in accordance with 
characteristics of modulated signals. The main contributions of this article are summa-
rized as follows. 

(1)	 Compared with conventional model-driven modulation classification methods, we 
propose a novel deep learning framework to efficiently fuse multichannel informa-
tion and explore spatial and temporal characteristics existing in modulated sig-
nals. Specially, it has three functional parts: fusion of input features and temporal 
characteristics mapping, spatial features extraction, and fully connected classifier. 
Since the classification process consists of offline training and online classification 
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stages, the designed classifier is capable of identifying the received signal samples 
corrupted by different channel conditions and is robust to the uncertainties of noise 
conditions.

(2)	 As for RNNs, GRU layer is more promising than LSTM for extracting temporal 
information in signal data [24]. In this paper, we modify the standard GRU model 
to implement better fusion of multiple input features. The modification to the con-
ventional GRU model involves model parameter sharing and reduction of the num-
ber of model parameters. The modified GRU can expand the dimension of the sig-
nal features, and the strong temporal correlation stored in stacked GRU layers can 
help the following CNN layers to extract spatial features more efficiently. Moreover, 
the designed classifier is flexible in practice as it can process different input lengths 
during the offline training stage and online classification stage in practice.

The main contribution of this article includes a novel deep learning framework to effi-
ciently fuse multichannel information and explore spatial and temporal characteristics 
existing in modulated signals. Specially, it has three functional parts: fusion of input 
features and temporal characteristics mapping, spatial features extraction, and fully 
connected classifier. The remainder of this article is organized as follows. Section  2 
introduces the motivation and presents the deep-learning AMC framework with fusion 
of multichannel information using GRU. Experiments and discussion are conducted in 
Sect. 3, and the results are analyzed in detail. Finally, Sect. 4 concludes this article.

2 � Method
2.1 � Motivation

This paper considers a single-input single-output communication system, and the 
received signal r(t) can be written as in (1). s(t) is the modulated signal from the trans-
mitter, which is a time series signal of either a continuous signal or a series of discrete 
bits modulated onto a sinusoid with either varying frequency, phase, amplitude, trajec-
tory, or some permutation. h(t) is the channel impulse response, reflecting some path 
loss or constant gain term on the signal, and n(t) is an additive Gaussian white noise 
process reflecting thermal noise.

The received signal r(t) is sampled N times at a rate fs = 1/Ts by the analog to digital 
converter, which generates the discrete-time observed signal r(n). The in-phase compo-
nent (I) and quadrature component (Q) of r(n), called I/Q data, are given as

The amplitude/phase (A/P) data are generated by transferring the I/Q data from the car-
tesian coordinate system to the polar coordinate system [1].

Most of AMC methods are based on mono-modal input information, i.e., only the 
I/Q data [14, 19] or the A/P data [1, 5] are used. Basically, the I/Q data can be utilized 
to learn temporal characteristics from raw complex signals, and the A/P data will pro-
vide effective temporal and spatial features related to the amplitude and phase of raw 
complex signals. They are belonging to the waveform features of the received signals. 

(1)r(t) = s(t) ∗ h(t)+ n(t)

(2)I = {real[r(n)]}N−1
n=0 , andQ = {imag[r(n)]}N−1

n=0
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However, the ability of I/Q data to accurately represent signal characteristics may be 
affected in low SNRs, and the A/P data can recover some signal features by using the 
amplitude and the phase.

One intuitive idea is that, with the fusion of multichannel inputs, the extracted fea-
ture is more discriminating than the mono-modal representation. Motived by differ-
ences and complementary features between I/Q data and A/P data, a deep learning 
framework using GRUs is proposed to implement the fusion of I/Q and A/P data, as 
shown in Fig. 1.

Fig. 1  The structure of the proposed framework. This figure presents the architecture of the proposed 
framework. It consists of three functional parts: fusion of input features and temporal characteristics 
mapping, spatial features extraction, and fully connected classifier. Part-A is the stacked GRU layers, which 
includes two GRU layers. Part-B includes three CNN layers and two max-pooling layers, and the number and 
kernel size of convolutional filters are given. Part-C includes two fully connected (FC) layers, and the Softmax 
activation function is adopted at the last FC layer
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2.2 � Method description

The overall process of our proposed classification method is shown in Fig. 2, which 
consists of three functional parts: fusion of input features and temporal characteris-
tics mapping, spatial features extraction, and fully connected classifier.

Firstly, a preprocessing is implemented to convert signals from I/Q data to A/P data. 
Secondly, stacked GRU layers are exploited to facilitate fusion of multichannel input 
features, and the more discriminating feature is obtained by learning the temporal 
pattern. Then, outputs of the stacked GRU layers are fed to the following CNNs for 
spatial feature extraction. The spatial feature extraction consists of three CNN layers, 
which are followed by two fully connected (FC) layers. The Softmax activation func-
tion is adopted at the last FC layer to obtain the probability of modulation schemes.

Gated recurrent unit (GRU) is proposed as a replacement for LSTM to solve the 
vanishing/exploding gradient problem, which has been encountered by recurrent 
neural networks (RNNs) while dealing with long-term dependencies. GRUs have 
fewer training parameters than LSTMs and require less memory and training time 
than LSTMs. The critical difference is that GRUs combine input and forget gates of 
LSTM into an update gate and discard cell state (see Fig. 3).

In this section, we modify the standard GRU model to implement better fusion of 
multiple input features. The modification to the conventional GRU model involves 

Fig. 2  The process map. This figure presents the overall process of the proposed classification method. The 
deep learning AMC can be processed in two processes, i.e., the offline training process and the online test 
process. In training process, preprocessing receives the signals and then transforms them from I/Q data to 
A/P data. After multichannel input fusion and features extraction, classifier learns their modulate type. In test 
process, the well-trained model receives the signal and decide the modulation scheme

Fig. 3  The architecture of Gated Recurrent Unit. This figure presents the architecture of gated recurrent unit 
(GRU). GRUs include an update gate and a reset gate, and discard cell state compared with LSTM
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model parameter sharing and reduction of the number of model parameters.Specifi-
cally, ut,rt , and nt share the input-to-hidden parameters, in which the subscripts u, r, 
and n indicate the update gate, reset gate, and candidate state, respectively. That is, 
the input term in GRU is expressed by

where xt denotes the current input vector, and W is the shared input-to-hidden param-
eter for ut , rt , and nt . Thus, the calculation procedures for GRU are

where ht−1 denotes the previous hidden state vector, Uu , Ur , Un are hidden-to-hidden 
parameters, σg is the logistic sigmoid function, σh is the hyperbolic tangent function, and 
⊙ operator represents an element-wise multiplication. As shown in Fig. 3, ut is the out-
put of the update gate, rt is the output of the reset gate, and nt is the output of the hyper-
bolic tangent function in Fig. 3.

The modified GRU is capable of processing the representative features with the 
arbitrary length for modulation classification and can expand the dimension of the 
signal features. As described in Fig. 1, I/Q data and A/P data are fed to the stacked 
GRU layers, which includes two layers of GRU with m hidden neurons, respectively, 
and a dropout layer with rate of 0.2. The kernel is initialized using a Glorot uniform 
initializer, and a recurrent kernel initialized using an orthogonal initializer. The bias 
is initialized to be zero. Due to the recurrent structure of GRU, the input to first GRU 
layer is a N × 4 matrix, where the first dimension N corresponds to the sample length 
(N = 128, 256, 512, 1024), and the second dimension 4 is the total number of input 
channel (i.e., I, Q, A and P). The sample length N is regarded as the time step of GRU 
and this parameter changes dynamically, which determines that the GRU can process 
data with arbitrary length. The output of the first GRU layer, the input and output of 
the second GRU layer are all N × m matrix.

There are multiple ways to summarize the final output of a RNN layer before feed-
ing into the subsequent layers. The most popular one is to use the output at the final 
time step as the summary of all temporal information and as the output of this layer 
[19]. It can effectively reduce the number of parameters in the subsequent neutral 
network layer. Another way is to use a weighted sum of outputs at all time steps as 
the final output [14]. Based on high-order attention mechanism, high-order convolu-
tional attention networks for radio signal expression and feature correlation learning 
are proposed in [25]. How to effectively compute the weight remains an open issue 
and it may bring more complexity. Both of above methods apparently lose part of the 
information.

(3)st = Wxt

(4)ut = σg (Wxt + Uuht−1)

(5)rt = σg (Wxt + Urht−1)

(6)nt = σh[Wxt + rt ⊙ (Unht−1)]

(7)ht = (1− ut)⊙ nt + ut ⊙ ht−1
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In order to fuse the multichannel inputs for further feature extraction and classifica-
tion, the aggregated information from all time steps will be used in this paper. The out-
puts at all time steps are concatenated and truncated as output of the stacked GRUs. As 
a result, temporal correlation data is expanded and reshaped as m ×1×128 tensors.

Then, three one-dimensional convolution layers are adopted to extract spatial features 
from the temporal correlation data. For convolution layers, the convolution process-
ing of the feature map by the convolution kernel is the key step of feature extraction. 
Convolutional filters of larger width (kernel size) can effectively compute higher n-gram 
features at each time step. This is important for maintaining the training quality of the 
AMC classifier when it is going through the training process for low-SNR received sam-
ples modulated with high-order modulation schemes. The numbers of kernels used in 
the first, second, and third convolution layer are 32, 64, and 128, respectively, with the 
same kernel size of 1 × 7. And the rectified linear unit (ReLU) is used as the activation 
function. In the CNN, a pooling layer is mainly used to compress features extracted by 
the convolution layer. Here two maximum pooling layers with stride =  2 are adopted 
after the first and second convolution layers to further reduce dimension of time series.

A batch normalization process is implemented after every CNN layer to prevent 
effects of large noise variance present in the extracted feature map, especially while 
training in the case of low-SNRs. This batch normalization process, which batch normal-
izes the activations by using empirical estimates of their means and variances, is also 
helpful to prevent overfitting in the training process.

After learning the features by the three convolution layers, 128 × 1 feature vector is 
obtained. It will be used as the input of FC layers, which are composed of FC1 and FC2 
with 64 and 24 hidden neurons, respectively. Besides, the dropout method is employed 
on both FC layers with a dropout rate p = 0.5 to avoid overfitting.

Regarding the network configuration reported in Table  1, the network has 259,072 
trainable parameters in total. We use categorical cross-entropy as a loss function and 
Adam optimizer for all frameworks. The learning rate is initialized at 0.01 (dropped 90% 
after 10 epochs). The batch size for each iteration is set to 64. All experiments are carried 
out in Pytorch, and the performance is measured on a system equipped by a 3.40-GHz 
CPU, 16GB RAM, and a single NVIDIA GeForce GTX 1080Ti GPU.

Table 1  Configuration of the proposed architecture

Output volume Description

input N ×  4 N = 128, 256, 512, 1024

GRU1 N × 128 128 hidden neurons

GRU2 128 × 1 × 128 128 hidden neurons

Conv1 32 × 1 × 62 (32, 1, 7), s = 2, p = 1

Pooling1 32 × 1 × 31 max-pooling, s = 2

Conv2 64 × 1 × 14 (64, 1, 7), s = 2, p = 1

Pooling2 64 × 1 × 7 max-pooling, s = 2

Conv3 128 × 1 (128, 1, 7), s = 1, p = 0

FC1 64 Fully connected with 64 neurons

FC2 24 Fully connected with 24 neurons
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3 � Results and discussion
3.1 � Dataset description

DeepSig: RadioML [4] is one of the most challenging datasets of modulation classifica-
tion. The newest version includes both synthetic simulated channel effects, such as car-
rier frequency offset, symbol rate offset, delay spread, thermal noise, and over-the-air 
measurements of 24 digital and analog modulation formats. The dataset has over 2.5 
million 1024-length frames of modulation signal, signal-to-noise ratios (SNR) varying 
from − 20 to + 30 dB.

In the experiments, a part of RadioML2018.01 dataset is used as training and testing 
benchmark (SNR ranging from − 10 to + 20 with 2 dB apart). There are 4096 frames 
per modulation-SNR combination, where some 80% for training and the remainder for 
testing.

3.2 � Classification accuracy

In this section, extensive experiments are carried out to explore the impact of different 
network parameters and modules combination on the fusion of multichannel informa-
tion and the performance of the proposed framework FGDNN. Figure 4 illustrates the 
classification accuracy of the proposed FGDNN with different sample lengths. GRU is 
capable of dealing with input of arbitrary lengths due to the parameter sharing mecha-
nism. Such characteristics is very suitable for automatic modulation classification when 
mismatch between the lengths of testing signal sequences and training signal sequences 
occurs. After the AMC classifier is trained using signal sequences with length N = 128, 
256, 512, 1024, respectively, we evaluate the performance of it using signal sequences 
with N = 128. As Fig. 4 shows, the classification accuracy of our proposed AMC clas-
sifier is up with increasing in length of signal sequences. This shows the feasibility and 

Fig. 4  Classification accuracy of FGDNN for different sample lengths.presents the classification accuracy 
of the proposed FGDNN with different sample lengths, N = 128, 256, 512, 1024. After the AMC classifier 
is trained using signal sequences with length N = 128, 256, 512, 1024, respectively, we evaluate the 
performance of it using signal sequences with N = 128. Figure 4 shows that the classification accuracy of the 
proposed AMC classifier is up with increasing in length of signal sequences
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the convenience of the proposed method to classify the modulation scheme of signal 
sequences with different lengths.

Since different parameters utilized in the FGDNN perform different classification 
accuracies, the performance comparison of GRU with different hidden neurons is shown 
in Fig. 5. According to the comparison criterion, the sample length is set as 128 below. 
As in Fig. 5, it can be seen that GRU with 128 hidden neurons outperforms the others 
and further increasing the number of hidden neurons cannot improve the performance 
of the network, but ends with more computational complexity. On the other hand, the 
network suffers poor generalization when m is small. In other words, the number of hid-
den neurons in GRU layers can expand the multichannel inputs information and diver-
sify the features for performance improvement. In experiments, we explore the effects 
of different GRU layers on classification performance to test and verify the effectiveness 
of two-layer stacked GRUs. The result suggests that one-layer GRU is not as good as 
several-layer stacked GRUs, and that two-layer stacked GRUs reach a better classifica-
tion accuracy at high SNRs. When the number of GRU layer continues increasing, the 
simulation effect does not improve. Furthermore, the number of hidden neurons in each 
GRU layer plays a critical role in our framework, which is usually big. When more than 
two GRU layers with big number of hidden neurons is chosen, it dramatically increases 
the network capacity and the computational complexity. Thus, the framework based on 
two-layer stacked GRUs is suitable and chosen.

In experiments, we test three different kinds of frameworks, referring to as FGDNN 
with and without GRU layers, without CNN layers, as shown in Fig. 6. It is clear that 
FGDNN with GRU layers outperforms the others. The former yields almost 2 dB gain 

Fig. 5  Performance comparison of FGDNN with different neurons. This figure presents the performance 
comparison of GRU with different hidden neurons, m = 16, 32, 64, 128, 256. The sample length is set as 128 
here. This figure shows that GRU with 128 hidden neurons outperforms the others and further increasing the 
number of hidden neurons cannot improve the performance of the network. When m = 16, the Classification 
Accuracy is the worst
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over the one without CNN layers. The obviously degraded recognition performance of 
the one without GRU layers at high SNR illustrates the importance of temporal mod-
eling of input data. The missing temporal information results in the performance loss 
since the received signal samples are highly correlated in the time domain due to the 
channel effects.

Fig. 6  Performance comparison for FGDNN with and without GRU layers, without CNN. This figure presents 
performance comparison for FGDNN with and without GRU layers, without CNN. It shows that FGDNN with 
GRU layers outperforms the others. The FGDNN yields almost 2 dB gain over the one without CNN layers

Fig. 7  Classification performance comparison among FGDNN and other SoA frameworks. This figure 
presents the comparison result among FGDNN and five frameworks from [14–18], here named as LSTM-FC, 
CNN-LSTM2, CNN-LSTM, LSTM2, and GRU2, respectively. As of network input, CNN-LSTM2 uses both I/Q and 
A/P data, LSTM2 uses only A/P data as input, and the others utilize I/Q data directly. The FGDNN outperforms 
the other frameworks, especially at low SNRs. Specifically, FGDNN is better than CNN-LSTM2 and CNN-LSTM 
by 3 % and 2 % at + 10 dB SNR. This figure also shows that AMC frameworks using A/P data as input get better 
result in low SNR range
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Then, we compared the FGDNN with five frameworks from [1, 14, 16–18], here 
named as LSTM-FC, CNN-LSTM2, CNN-LSTM, LSTM2, and GRU2, respectively. And 
the comparison result is given in Fig. 7. As of network input, CNN-LSTM2 uses both 
I/Q and A/P data, LSTM2 uses only A/P data as input, and the others utilize I/Q data 
directly. With high-relevant temporal information acquired from the fusion of multi-
channel inputs, FGDNN outperforms the other frameworks, especially at low SNRs. 
Specifically, FGDNN is superior to the CNN-LSTM2 and CNN-LSTM models in terms 
of classification accuracy, for instance, better than them by 3 % and 2 % , respectively, at 
+ 10 dB SNR. It also can be observed from Fig. 7 that AMC frameworks using A/P data 
as input get better result in low SNR range.

Regarding the computational complexity, the network capacity (the number of train-
able parameters) and the average prediction time are summarized in Table 2. As shown 
in Table 2, the number of trainable parameters in the FGDNN is larger than LSTM2 and 
GRU2 but smaller than the other models. The tradeoff between improved recognition 
accuracy and computational complexity is still acceptable.

3.3 � Information fusion analysis

In the stacked GRU layers, which consists of two layers of GRU, the outputs of the pre-
vious layer are sent directly into the second layer, which helps to extract the temporal 
representations in a hierarchical manner. The inherent non-linearity and recurrent 
structures makes understanding the information fused by stack GRU layers sort of dif-
ficult. In order to obtain better insightful understanding, we use visualization techniques 
to show feature maps obtained by GRU. These visualizations can help to understand how 
stack GRU layers behave for multi-channel inputs. Figure 8 presents the input features 
and the temporal activation of stack GRU layers in the trained model for a 16QAM input 
signal with 18 dB SNR.

It can be noticed in Fig.  8 that activations of many time steps correspond to the 
amplitude and phase changes in the input waveform. With aggregating multi-chan-
nel inputs, the second layer stores much long term dependencies from the tempo-
ral representations obtained by the first layer. So the strong temporal correlation 
in feature maps can help the following CNN layers to extract spatial features more 
efficiently.

Table 2  Comparison of computation complexity

Trainable parameters (K) Inference 
time (ms)

FGDNN 253 0.265

LSTM-FC 321 0.248

CNN-LSTM2 1117 0.477

CNN-LSTM 397 0.311

LSTM2 196 0.201

GRU2 148 0.183
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4 � Conclusion
During the last decade, deep learning (DL) has been applied to the FBAMC method. 
We present the related DL-based AMC works in two aspects. Firstly, we survey related 
works whose contributions are mainly about achieving a high classification performance 
through combining different network layers or deepening the network depth. Sec-
ondly, we survey related deep learning works based on input data formats, that include 
I/Q-based, A/P-based, I/Q + A/P-based, constellation-based, and other formats. Aim-
ing to improve classification accuracy, combination of different network layers and 
multichannel input information are studied in this paper to learn spatial and temporal 

Fig. 8  The (top) input and (bottom) output of stacked GRU layers. This figure presents the input features 
and the output activation of stack GRU layers for a 16QAM modulated signal with 18 dB SNR. The top figure 
is the input of stacked GRU layers, including in-phase/quadrature (I/Q) data, amplitude/phase (A/P) data, 
and the bottom one is the output of the second GRU layer along time step (N = 128). This figure shows that 
activations of many time steps correspond to the amplitude and phase changes in the input waveform. The 
visualization techniques can help us to understand how stack GRU layers behave for multichannel inputs
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characteristics from each signal sequence. Based on that, a novel data-driven AMC 
method with fusion of multichannel information using GRUs is proposed. The proposed 
method utilizes GRU to fuse multichannel inputs and expand the dimension of the signal 
features, and takes advantage of CNN to extract features and classify. It turns out that 
the strong temporal correlation in feature maps obtained by GRU can help the following 
CNN layers to extract spatial features more efficiently. The method is tested extensively 
with comparisons in order to verify its effectiveness and superiority. The comparison 
shows that the recognition rates of our method outperform other deep learning frame-
works. Specifically, FGDNN is superior to the CNN-LSTM2 and CNN-LSTM models 
in terms of classification accuracy, for instance, better than them by 3 % and 2 % , respec-
tively, at + 10 dB SNR. Our future research direction involves the modification of the 
structure of the proposed FGDNN framework to respectively achieve lower execution 
latency and higher classification accuracy in order to improve the efficiency of the pro-
posed framework.
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