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Abstract 

Real-time monitoring of heart rate (HR), i.e., extraction of heart rate variability (HRV), 
plays an important role in diagnosis and prevention of cardiovascular diseases. Com-
pared with traditional contact monitoring devices, the use of continuous wave (CW) 
Doppler radar to monitor HRV does not require contact and is not sensitive to light 
and temperature, which makes it more and more popular. To monitor the HRV based 
on CW Doppler radar, the time window must be shortened to less than 5 s, which will 
lead to the spectrum leakage and degrade the measurement accuracy of HRV. To solve 
this problem, a custom CW Doppler radar has been developed in an integrated fashion 
on a single PCB, whose transmitting frequency and power of the radar are 24 GHz 
and 3 dBm, respectively. Furthermore, four frequency interpolation algorithms are 
introduced to compare their extraction accuracy. Experiments are performed on three 
subjects, and results show that the Quinn algorithm can obtain best HRV extraction 
results compared with other algorithms. Specially, the average HRV extraction error 
is 3.61% using the Quinn algorithm.

Keywords:  Heart rate variability (HRV), Non-contact detection, Continuous wave (CW) 
Doppler radar, Frequency interpolation

1  Introduction
Physiological signal is of great significance in human health care, of which heart rate 
variability (HRV) is an important indicator for people’s condition, especially for patients 
with cardiovascular diseases [1, 2]. In addition, the monitoring of people’s HRV features 
is also required in numerous applications, such as anxiety treatments [3], stress and 
emotions recognition [4, 5], vigilance monitoring [6], training optimization [7], etc. As 
a result, monitoring the heart rate in real time to obtain the HRV is requisite in many 
applications.

To achieve the HRV monitoring, the traditional devices are mainly contact sensors, 
such as PPG (photoplethysmogram) sensors [8], ECG (electrocardiogram) sensors, and 
piezoelectric or piezoresistive sensors. However, there are obvious disadvantages for 
the use of contact sensors. First, they may limit the patients’ mobility caused by sen-
sors placed on the human body [9] and influence the measurement results due to the 
patients’ awareness of the measurement being performed [10]. Second, they are difficult 
to be applied to some special patients’ who have psychiatric illnesses or damaged skin, 
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such as burns, painful skin rashes, hives, etc. [11]. To obtain better usability, it is neces-
sary to realize remote monitoring of HRV using non-contact sensors [12].

The technology based on continuous wave (CW) Doppler radar is one of the most 
promising methods for non-contact measurement of HRV [13–20]. With the non-con-
tact and noninvasive characteristics, the CW Doppler radar can detect micro-motions 
caused by human physiological movements due to respiration and heartbeat through the 
phase modulation effect without contacting patients’ body [21]. Compared with the tra-
ditional contact sensors, the CW Doppler radar possesses evident advantages, such as 
insensitive to light and temperature [22], availability to the patients with burn or skin 
disease [23], and good penetrability of electromagnetic wave that can pass through 
clothing [24].

Although given these advantages of CW Doppler radar, there are still two challenges 
when implementing the measurement of HRV, the first is how to cope with the harmon-
ics interference originated from respiration signals [25] and the second is how to extract 
heart rate (HR) in real time, in other words, how to monitor HR in a short time window 
with low computation complexity [26]. According to the equation ∆f = 1/T, where ∆f is 
the frequency resolution and T is the length of the time window, a short time window 
will reduce the frequency resolution. For these challenges, many researches have been 
carried out to achieve HR measurement using the CW Doppler radar. A novel respi-
ration harmonics cancellation technique for HR extraction is applied, which applies 
complex signal demodulation [27]. An adaptive harmonics comb notch digital filter is 
proposed to remove respiration harmonics without removing the heartbeat signal [28]. 
Apart from this, a supervised learning approach for harmonics cancellation is proposed 
in [29]. However, this method requires a more accurate external HR reference source, 
making it impractical in practical applications. In addition, these methods mentioned 
above deal with the interference of respiratory harmonics, but all of them require a long-
time window to achieve HR acquisition. For this reason, a wavelet transform-based data 
length variation algorithm is proposed in [30], which can distinguish between heartbeat 
signals and respiratory harmonics, and extract HR using 3–5 s data length. Nevertheless, 
this method is computationally intensive since the high-resolution wavelet frequency 
spectrum requires multiple wavelet transforms [26].

In this paper, the frequency interpolation algorithm for real-time measurement of 
heart rate with CW Doppler has been proposed. Specifically, in order to suppress res-
piratory harmonics and extract HRV with high precision, this paper proposes to use 
high-pass filter (HPF) to filter respiratory harmonics. Then, four frequency interpola-
tion algorithms, i.e., the Quinn estimation method, the Macloed estimation method, 
the Jacobsen estimation method and the Candan estimation method, are introduced to 
extract HRV and compare their accuracy in extracting HRV.

2 � CW Doppler radar sensor
Figure 1 depicts the HRV monitoring system using the CW Doppler radar sensor. In the 
sensor, a voltage-controlled oscillator (VCO) generates an unmodulated signal, which 
is divided equally by a power divider, the part of which is used as the transmitted signal 
T(t), and the other part is used as the local oscillator signal L(t). Neglecting amplitude 
variations, the T(t) can be expressed as [31]
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where f is the frequency of the transmitted signal, t is the elapsed time, and φ(t) is the 
initial phase noise of the transmitted signal. As depicted in Fig. 1, the transmitted signal 
T(t) will hit the chest of the target at a nominal distance of d0 from the radar, and then 
it will be reflected back and received by the antenna. Assume the movement of chest 
caused by respiration and heartbeat is x(t), so the received signal R(t) can be expressed 
as [32]

where λ is the wavelength of the transmitted signal, c is the velocity of radio wave (i.e., 
the propagation velocity of light in the vacuum). To retrieve the Doppler signals caused 
by respiration and heartbeat, a quadrature mixer is used to demodulate R(t) into in-
phase (I) and quadrature (Q) channels with phase shift of π/2, which can be expressed 
as [9]

where θ = (4πd0)/λ is the fixed phase shift which depends on the nominal distance d0 
and the wavelength λ of the transmitted signal, ∆φ(t) = φ(t) − φ(t − 2d0/c) is the residual 
phase noise, which can be neglected since the distance between CW Doppler radar and 
target is small [31]. And the x(t) can be expressed

where xh(t) and xr(t) represent chest-wall movement due to heartbeat and respira-
tion, respectively. Specifically, mh and mr are the amplitude caused by heartbeat and 
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Fig. 1  The HRV monitoring system using the CW Doppler radar sensor
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respiration, respectively; ωh and ωr are the angular frequency caused by heartbeat and 
respiration, respectively.

In general, the BI(t) and BQ(t) will be sampled by the analog-to-digital conversion 
(ADC) and combined as a complex signal in laptop to solve the null point problem [33], 
which can be expressed as [34]

where j is the imaginary unit. Equation (5) can be represented in its equivalent Fourier 
series form as [35]

where φ = θ + ∆φ(t) is the total residual phase. DCIQ is the direct current components 
of the signals. Cij = Ji(4πmr/λ) ∙ Jj(4πmh/λ) determines the amplitude of every frequency 
component and Jn is the Bessel function of the first kind. It can be seen from Eq. (6) that 
there are respiratory harmonics in the baseband spectrum. To solve the problem, the 
HPF is used to filter out the respiratory harmonics.

3 � The spectrum leakage effect
In Sect. 1, it has been described that a short time window will reduce the frequency res-
olution. In this section, it will be explained why the frequency extraction accuracy also 
decreases as the frequency resolution decreases.

For ease of illustration, it is assumed that the tested signal is a single frequency signal 
with angular frequency of ω0 and amplitude of A0, which can be expressed as

So, the Fourier transform of x(t) is

where δ(ω) is the Dirac Delta function. As a result, the spectrum of x(t) is a line located 
at ω0 when it is not truncated by any window functions, as the red solid line shown in 
Fig.  2. However, in real signal processing, the length of the signal cannot be infinitely 
long. Generally, the signal needs to be truncated to facilitate subsequent processing. The 
rectangular window function is the most commonly used, which can be described as

where T is the length of the rectangular window function.
Therefore, the signal x(t) with a time duration T can be considered to be truncated by a 

rectangular window function wT(t), which can be represented as
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As a result, the Fourier transform of x(t) can be expressed as

The amplitude of X(ω) is shown in Fig. 2 with the cyan solid line. It can be seen that 
the spectrum X(ω) of x(t) is no longer a single line but distributed along the whole 
frequency axis, which means that the energy is no longer concentrated and the leak-
age has arisen.

To process the signal x(t) in digital domain, it will be sampled and A/D transformed. 
Then, the sampled signal of x(t) can be written as

where N = T/∆t. And ∆t is the reciprocal of the sample rate fs. The discrete Fourier trans-
form (DFT) of x[n] can be expressed as

where ∆ω = 2π/T. The amplitude X[n] is shown in Fig. 2 with pink point. It can be seen 
from Fig. 2 that the ω0 is not an integral multiple of ∆ω. As a result, the accurate fre-
quency ω0 can’t be acquired without sampling in the whole time period, even though the 
measured signal only has a single frequency. This phenomenon is called grid effect. So, 
when the length T of window function is shorter, the ∆ω is bigger. As a result, the fre-
quency extraction accuracy may be lower.
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Fig. 2  The HRV monitoring system using the CW Doppler radar sensor
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4 � The frequency interpolation methods
According to Fig. 2, it is not appropriate to select the k∆ω as the extraction frequency of 
ω0. To solve the problem, three frequency-domain peak samples, i.e., X[k] , X[k + 1] and 
X[k − 1] , will be used to estimate the frequency ω0. In this section, four frequency inter-
polation algorithms which use these three frequency-domain peak samples will be intro-
duced to estimate the frequency and compare their HR extraction accuracy based on the 
CW Doppler radar and a signal of length 3 s.

4.1 � The Quinn estimation algorithm [36]

Let

and

If both γ1 > 0 and γ2 > 0, let γ = γ2; else, let γ = γ1. Finally, the estimated frequency is

4.2 � The Macloed estimation algorithm [37]

Let

where

As a result, the estimated frequency is same as Eq. (16).

4.3 � The Jacobsen estimation algorithm [38]

Let

Similarly, using Eq. (16) to estimate the frequency f based on the γ extracted in Eq. (19).

4.4 � The Candan estimation algorithm [39]
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where

So, the estimated frequency f can be obtained by applying Eq.  (16) based on the γ 
extracted in Eq. (21).

5 � Results and discussion
In order to evaluate the performance of these four different frequency interpolation 
algorithms, a CW Doppler radar is constructed as a platform for acquiring vital signs 
signals. The constructed Doppler radar system is shown in Fig. 3. The radio frequency 
(RF) front end circuits and the receiver circuits have been developed in an integrated 
fashion on a single PCB, which has a size of 4.3 × 4.1 cm as shown in Fig. 4. The substrate 
material used for the RF board is Rogers RO4350B (dielectric constant = 3.66, loss tan-
gent δ = 0.0037, conductor thickness = 35.56 μm, substrate thickness = 20 mil). In order 
to minimize the coupling between the receiver and the transmitter, which is a serious 
problem faced by many CW Doppler radars, two antennas are used, one of which is used 
as a receiving antenna and the other is used as a transmitting antenna. The transmit-
ting frequency and power of the radar are 24 GHz and 3 dBm, respectively. The output 
baseband I/Q signals are sampled at 20 Hz and digitized by the data acquisition system 
(National Instruments USB-6211) with LabVIEW running in real time on the laptop.
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Fig. 3  The photograph of the CW Doppler radar
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The measurement duration of each experiment is 90 s. During the experiment, three 
healthy subjects are asked to sit still in the chair. The distance between the human sub-
ject and the radar is 1.5 m. Meanwhile, a finger-pressure pulse sensor YX301 is attached 
to the subject’s index finger to measure the pulse rate simultaneously, which is used as 
the reference for HR.

Figure  5 shows the HR extraction results of these three subjects. The time window 
length is set to 3 s. It can be seen from Fig. 5 that, compared with other frequency esti-
mation algorithms, the HR extracted by the Quinn interpolation algorithm is closer to 
the reference frequency. However, it can also be seen that even the HR extracted by 
Quinn interpolation algorithm cannot well follow the change of the reference HR. This 
may be due to the fact that the filter does not filter out respiratory harmonics well. Fig-
ure 6 shows the HR extraction errors. The errors in Fig. 6 are calculated as

The average errors are calculated as

where L is the number of measurement conditions. And the average errors of three sub-
jects are shown in Table 1. It can be seen from Table 1 that the Quinn interpolation algo-
rithm has the lowest HRV estimation error, which is 3.61%.

6 � Conclusion
Extraction of HRV plays a great role in indicating the people’s condition, especially for 
patients with cardiovascular diseases. To extract HRV, the window length should be 
shortened to less than 5 s. However, the shortened window will reduce the HR meas-
urement accuracy due to the spectrum leakage. Aiming at this problem, this paper 
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Fig. 4  The RF broad of the CW Doppler radar sensor
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Fig. 5  The HR extraction results of three subjects
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Fig. 6  The HR extraction errors of three subjects
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introduces four frequency interpolation algorithms based on CW Doppler radar. Experi-
mental results show that the Quinn algorithm can obtain the best HRV extraction results 
compared with other frequency interpolation algorithms. Specifically, based on a signal 
window length of 3 s, the average error of extracted HR using Quinn algorithm is 3.61%.

Abbreviations
HR	� Heart rate
HRV	� Heart rate variability
CW	� Continuous wave
HPF	� High-pass filter
VCO	� Voltage-controlled oscillator
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