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1  Introduction
With the advancement of science and technology, human–computer interactions, 
including indoor crowd counting, indoor localization, and activity recognition, have 
become a new trend in the development of intelligent society. Crowd counting is the 
process of determining the number of people in a specific environment. As the urban 
population grows, various problems arise, such as the unreasonable allocation of public 
resources and declining service quality [1]. Consequently, the application requirements 
for crowd counting are also increasing. By utilizing effective crowd counting schemes, 
relevant departments or enterprises can obtain real-time information on the number 
of people in a specific area, thereby allocating public resources more reasonably, reduc-
ing resource waste, and improving service quality [2, 3]. For example, by counting the 
number of people applying for different businesses, more staff can be allocated to the 
business departments with larger queues. By counting the number of people in differ-
ent exhibition halls of museums or exhibition centers, the manager can provide more 
air conditioning for the exhibition halls with larger number of people. By counting the 
number of people near different shelves in a supermarket, managers can place products 
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with higher attention levels closer to the entrance or more easily visible to customers [4]. 
Therefore, crowd counting research has become an important research field in human–
computer interaction, and it is of great significance for achieving smart cities, architec-
tures, commerce, and homes.

Currently, crowd counting algorithms are categorized into four main categories: based 
on the video, based on the special sensors, based on the received signal strength (RSS), 
and based on the channel state information (CSI). Video-based crowd counting algo-
rithms acquire data through cameras, extract features, and perform crowd counting 
using machine learning algorithms. For instance, Wu et al. [5] proposed a video-based 
spatial–temporal graph network that fuses multi-scale features from both temporal and 
spatial perspectives to achieve efficient crowd counting in videos. The method is mature 
and has high accuracy. However, it is unsuitable for no-line-of-sight environments or 
environments with smoke, may breach privacy, and has high deployment costs. Special 
sensor-based crowd counting methods use RFID, infrared sensors, and other technolo-
gies to obtain data for crowd counting. For example, Ding et al. [6] proposed a system 
called R# that estimates the number of people using passive RFID tags. These methods 
have good environmental adaptability and high accuracy but are costly and not suitable 
for mass application. RSS-based crowd counting methods count the number of people 
using the obtained RSS. For example, Denis et al. [7] designed and tested their crowd 
estimation systems which are wireless sensor networks using RSS information to esti-
mate visitors. These methods have high device popularity, non-line-of-sight, and pro-
tect privacy but are susceptible to environmental factors that cause unstable RSS. With 
the popularity of commercial WiFi, CSI-based crowd counting methods have become 
the research focus of scholars. CSI is a fine-grained physical layer information that ena-
bles passive sensing using amplitude and phase information [8]. The advantages of this 
method are that no additional equipment needs to be deployed, it is not affected by light 
and occlusion, the signals are stable, and it can protect privacy.

CSI-based wireless sensing technology has been developed for over a decade, and 
numerous CSI-based crowd counting algorithms have emerged [2–4, 9–16]. In 2014, 
Xi et al. [9] proposed the Electronic Frog Eye system, the first to use CSI information 
for crowd counting. The system utilized gray theory for crowd prediction and proposed 
the dilatation-based crowed profiling algorithm, which was based on the positive cor-
relation between the change of CSI and the number of people. Since then, numerous 
CSI-based crowd counting research papers have been published. In 2018, Zou et  al. 
[10] proposed an indoor crowd counting system that achieved 96% recognition accu-
racy using a feature selection scheme based on information theory. However, the system 
had a high learning cost. Liu et al. [11] proposed the WiCount system in 2017, the first 
to use a neural network for crowd counting with an accuracy of 82.3%. They designed 
an online learning mechanism [12] to determine whether someone enters/leaves the 
room by using an activity recognition model, fine-tuning the deep learning model with 
an average accuracy of 87% for up to 5 people. Ma et  al. [13] proposed a device-free 
crowd density estimation system called Wisual, which predicted crowd density with 98% 
accuracy and accurately displayed the spectrum of mobile people based on CSI. Zhang 
et al. [2] proposed a queueing crowd counting system based on CSI and deep learning 
networks, called Quee-Fi system, which used a static model based on fully connected 
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neural networks with convolutional long short-term memory for queueing crowd count-
ing. Zhang et al. [3] proposed a WiFi-based cross-environment crowd counting system 
with the ability to estimate walking directions and perform crowd counting over only 
one link, called WiCrowd. Liu et al. [4] proposed a CSI-based device-free crowd count-
ing scheme, which utilized the intuition that different numbers of people wandering in 
the environment would have different effects on WiFi signals. The scheme achieved an 
experimental accuracy of 87.2%. Guo et al. [14] proposed a wall-piercing crowd counting 
system using ambient WiFi signals, called TWCC, which took the phase difference data 
of channel state information (CSI) and fed it into a BP neural network after preprocess-
ing, with an average recognition accuracy of 90%. Alizadeh et al. [15] proposed a HARC 
algorithm that simultaneously recognized human activity and counted the number of 
people at bus stops. The algorithm used a LSTM-RNN model as a classifier with 94% 
recognition accuracy. Choi et al. [16] proposed a simultaneous recognition system for 
headcount and localization using CSI and machine learning, achieving a counting error 
of 0.35 MAE (89.8% of 1-person internal error) and localization accuracy of 91.4%.

After analyzing the existing CSI-based crowd counting algorithms, we discovered that 
most previous studies focused on counting crowds with the same activity state, such as 
stationary or walking in sequence (known as single-state crowd counting in this paper). 
However, in real-world scenarios, crowds can exhibit different states, such as stationary, 
walking in sequence, raising one hand, or running. Some applications not only need to 
count the number of people in the monitoring area, but also need to recognize the activ-
ity states of the crowd. For example, in fitness venues, in order to count the number of 
people who are exercising and the items that people are training, the total number of 
people in the venues and the number of people for each training item need to be recog-
nized, so that the managers can adjust fitness equipment and improve business strate-
gies. In nursing homes or kindergartens, the managers need to master the number and 
activity state data of the elderly or children to understand their living habits and provide 
better services. This type of application requires simultaneous recognition of multiple 
activity states and a total number of people (referred to as multi-state crowd counting 
in this paper), which is an important problem faced by CSI-based crowd counting algo-
rithms. Additionally, previous studies ignored the real-time performance of algorithms 
and often used algorithms with high time complexity to recognize the number of people, 
such as deep learning algorithms, which made them not suitable for applications requir-
ing high real-time performance. This is another important problem currently faced by 
CSI-based crowd counting algorithms. To address the two problems, we propose a tex-
ture features-based lightweight passive multi-state crowd counting algorithm, referred 
to as TF-LPMCC, which can recognize both the number and activity state of volunteers 
at the same time by utilizing texture features of CSI images. The specific contributions of 
this paper are summarized as follows:

(1)	 The existing research results have shown that the temporal stability of CSI can 
ensure capturing abnormal entities and their activities that cause environmental 
changes, and the frequency diversity of CSI can reflect the multipath reflection of 
wireless signals [17]. Therefore, in order to ensure the high recognition accuracy of 
multi-state crowd counting algorithms, we construct CSI amplitude data into the 
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form of amplitude images (utilizing the temporal stability of CSI) and time–fre-
quency images (utilizing the frequency diversity of CSI). Then, two texture analysis 
methods of digital images, the gray-level co-occurrence matrix (GLCM) method 
and the gray-level difference statistics (GLDS) method, are used to extract the fea-
tures of two types of images, which can characterize the local changes and spatial 
distribution of image pixels. The extracted features form feature vectors for recog-
nizing the states and quantity of crowds. This above novel method extracts the fea-
tures of CSI amplitude changes caused by different numbers and states of people 
from both time-domain and frequency-domain aspects, thereby achieving high-
precision and more complex multi-state crowd counting.

(2)	 To reduce the time complexity of the algorithm, we construct CSI amplitude data 
of multiple subcarriers into CSI amplitude images and time–frequency images with 
matrix form, and extract CSI data features using the faster matrix operations. In 
addition, the linear discriminant analysis (LDA) algorithm with lower time com-
plexity is used to recognize the state and number of people.

(3)	 Numerous experiment results demonstrate that, compared with the other two 
state-of-the-art algorithms, the proposed TF-LPMCC algorithm achieved an aver-
age recognition accuracy of 98.27%, which increased by 4.04% and 4.42%, respec-
tively. The running time was 0.068  s, which decreased by 46.88% and 65.48%, 
respectively.

The remaining sections of this paper are structured as follows: Sect. 2 details the TF-
LPMCC algorithm; Sect. 3 gives the experimental results, and Sect. 4 discusses the limi-
tations of the algorithm; Sect. 5 concludes the paper and presents future work.

2 � TF‑LPMCC algorithm
2.1 � Algorithm framework

The TF-LPMCC algorithm proposed in this paper consists of four primary modules: 
data acquisition and preprocessing, image construction, texture feature extraction, 
and crowd counting. In the data acquisition and preprocessing module, two comput-
ers equipped with Intel 5300 network cards are utilized as transceiver devices to collect 
and preprocess CSI data at the receiving end. The image construction module involves 
using the preprocessed CSI information to construct amplitude-subcarrier images (also 
known as amplitude images) and frequency-time images (also known as time–frequency 
images). In the texture feature extraction module, texture features are extracted from the 
amplitude images and time–frequency images using GLCM and GLDS methods. Finally, 
in the crowd counting module, the feature vectors obtained from the texture feature 
extraction module are input to the LDA algorithm for crowd counting. The framework 
of the TF-LPMCC algorithm proposed in this paper is shown in Fig. 1.

2.2 � Data acquisition and preprocessing

The Pt and Pr antennas are connected to the wireless network card of the transmitting 
and the receiving device, respectively. This setup allows for simultaneous reception of 
data from P links ( P = Pt × Pr ) at the receiving end. The measurement value matrix of 
CSI for the i-th data packet can be expressed as follows:
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P and Q represent the total number of wireless links and subcarriers, respectively. The 
variable hp,q(i) is a complex number that includes amplitude and phase, representing a 
CSI value. Given a certain data packet sending rate, the CSI data of a sample can be 
expressed as follows:

The matrix H is three-dimensional, with dimensions of P × Q × I . Here, I represents 
the total number of CSI data packets for a sample, which includes all the data received 
by the wireless network card within a fixed period.

To reduce the amount of data processed in this study and the time complexity of the 
algorithm, we employ a setup where one antenna transmits and one antenna receives, 
with the transmitting link containing 30 subcarriers. As a result, each experimental sam-
ple contains 30 sets of CSI data. The CSI phase information is typically affected by fac-
tors such as carrier frequency offset and sampling frequency offset, so it needs to be 
corrected before use, which increases the algorithm’s time complexity. However, the CSI 
amplitude information is generally more stable [18] and is used for multi-state crowd 
counting in this paper. Due to the influence of transceiver hardware and the surround-
ing environment, each set of CSI data contains a significant amount of noise. Figure 2 
illustrates a set of CSI amplitude data without any processing, showing that raw CSI 
amplitude data cannot be directly used for crowd counting. Therefore, we needed to 
preprocess the collected CSI amplitude data to maximize the accuracy and stability of 
multi-state crowd counting.

To handle outliers in the raw CSI amplitude data that deviate from the normal range, 
we use the PauTa Criterion to remove them [19]. This involves selecting a sliding win-
dow of data with a fixed length and calculating the mean and standard deviation of the 
data within the window. Then, we subtract the mean value from each data within the 

(1)h(i) =

h1,1(i) · · · h1,q(i) · · · h1,Q(i)
...

...
...

...
...

hp,1(i) · · · hp,q(i) · · · hp,Q(i)
...

...
...

...
...

hP,1(i) · · · hP,q(i) · · · hP,Q(i)

,

(2)H = [h(1), · · · , h(i), · · · h(I)],

Fig. 1  TF-LPMCC algorithm framework
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window. If the difference is greater than three times the standard deviation, we consider 
it an outlier and replace it with the mean value. This method was applied to the data in 
Fig. 2, and the results are shown in Fig. 3, which depicts the removal of outliers in Fig. 2.

The raw CSI amplitude data not only contains outliers affecting crowd counting, but 
also contains high-frequency noise caused by the surrounding environments and mul-
tipath effects. CSI amplitude changes caused by human bodies and their activities are 
mainly concentrated in the low-frequency part of CSI amplitude data, so CSI-based 
wireless sensing algorithms generally use low-pass filters to filter CSI amplitude data 
[20], such as moving average filter, Gaussian filter [8], and wavelet threshold method 
[21]. This paper focuses on reducing the time complexity of the algorithm, so we use 
the moving average filter with lower time complexity [22] to filter the high-frequency 
noise of CSI amplitude data. Moreover, this paper aims to use CSI amplitude for recog-
nizing the number and states of people, which belongs to coarse-grained information 

Fig. 2  A set of CSI amplitude data without any processing

Fig. 3  The CSI amplitude data after removing outliers by using the PauTa Criterion
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recognition. Therefore, the TF-LPMCC algorithm using the moving average filter can 
already achieve high enough recognition accuracy for the coarse-grained crowd count-
ing algorithm, which can be verified by the experimental results in Sect. 3.

The moving average filter is expressed as follows:

where i is the serial number of the data packet, N  is the length of the sliding window 
and is set as 5 in the paper, and q is the serial number of the subcarrier. We applied the 
moving average filter to the CSI amplitude data shown in Fig. 3, and the resulting filtered 
data is presented in Fig. 4. As can be seen from the figure, the filter effectively reduced 
the amount of noise present in the data.

2.3 � Image construction

In this paper, each link contains 30 subcarriers, and each subcarrier contains a few sec-
onds of CSI data. The sampling frequency of CSI date is 1000 Hz. Therefore, one sample 
of raw CSI data includes a large amount of CSI amplitude data. If raw CSI amplitude 
data is directly used, the algorithm’s running speed will be very slow. To reduce the time 
complexity of the algorithm, we construct raw CSI amplitude data for each sample into 
the matrix form of amplitude image. On the one hand, the optimized matrix operation 
can greatly reduce the time complexity of the algorithm, such as the matrix operation in 
MATLAB. On the other hand, mature digital image processing technology can be used 
to extract the features that characterize differences between amplitude images such as 
texture and color. After experimental verification in this paper, these features can ensure 
that the multi-state crowd counting algorithm achieves high accuracy.

To leverage the data correlation between CSI subcarrier and the temporal features of 
the CSI amplitude data, we represent the preprocessed CSI amplitude data as an ampli-
tude image, using the following approach:

(3)
∣
∣h1,q(i)

∣
∣ =

(∣
∣h1,q(i)

∣
∣+

∣
∣h1,q(i + 1)

∣
∣+

∣
∣h1,q(i + 2)

∣
∣+ · · · +

∣
∣h1,q(i + N − 1)

∣
∣
)

N
,

Fig. 4  The CSI amplitude data after denoising by using the moving average filter
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where Am is a two-dimensional matrix representing the amplitude image, q is the sub-
carrier serial number (q = 1, . . . ,Q) , i represents the serial number of data packets 
(i = 1, . . . , I) , and 

∣
∣h1,q(i)

∣
∣ represents the amplitude of the ith data packet in the q-th 

subcarrier. According to the Am matrixes of the samples, i is set as the x-axis and q is set 
as the y-axis, and the examples of amplitude images are drawn as shown in Fig. 5. From 
Fig. 5, the texture features of CSI amplitude images corresponding to the different states 
of 2 people and 4 people are also different, which shows that it is rationality to recognize 
the number and states of people by using the texture features of images.

While the amplitude image provides information on the trend of CSI amplitude changes 
over time, it does not capture the frequency-domain variations caused by different human 
actions. To address this limitation and enable to recognize the number of people in multi-
states, we apply the Morlet wavelet transform to the preprocessed CSI amplitude data. 
Thus, we can construct a time–frequency image of CSI amplitude, using the calculated 
wavelet coefficients as follows:

where i denotes the ith time component (i = 1, . . . , I) , j denotes the jth frequency com-
ponent 

(
j = 1, . . . , J

)
 , and xji denotes the wavelet coefficient. As the action frequencies 

(4)Am =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∣
∣h1,1(1)

∣
∣ · · ·

∣
∣h1,1(i)

∣
∣ · · ·

∣
∣h1,1(I)

∣
∣

... · · ·
... · · ·

...
∣
∣h1,q(1)

∣
∣ · · ·

∣
∣h1,q(i)

∣
∣ · · ·

∣
∣h1,q(I)

∣
∣

... · · ·
... · · ·

...
∣
∣h1,Q(1)

∣
∣ · · ·

∣
∣h1,Q(i)

∣
∣ · · ·

∣
∣h1,Q(I)

∣
∣

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

,

(5)TF =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

x11 · · · x1i · · · x1I
... · · ·

... · · ·
...

xj1 · · · xji · · · xjI
... · · ·

... · · ·
...

xJ1 · · · xJi · · · xJI

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

,

Fig. 5  The amplitude images of CSI
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of humans are low, the number of frequency components J  can be set to a fixed value. 
For example, in this paper, J  is set to 60, which can fully represent the change frequency 
of human action. Using the TF matrixes of the samples, we set i as the x-axis and j as 
the y-axis, and draw the examples of time–frequency images as shown in Fig. 6. From 
Fig. 6, it can also be seen that the texture features of CSI time–frequency images affected 
by different number and states of people are also different. Therefore, using the texture 
features of CSI amplitude images and time–frequency images can more accurately count 
multi-state crowds.

2.4 � Texture feature extraction

The TF-LPMCC algorithm aims to classify the texture features of the constructed CSI 
amplitude and time–frequency images to recognize the number of people in different 
states. The texture is a feature that reveals the local variations and spatial distribu-
tion of image pixels. In this paper, the GLCM method [23–25] is utilized to extract 
the texture features of the CSI amplitude and time–frequency images to achieve effi-
cient crowd counting. GLCM can capture the amplitude change of images in different 
directions and neighboring intervals, and analyze the relevant features of spatial dis-
tribution and arrangement of image pixels. However, the CSI amplitude images also 
contain a significant number of local difference texture features. To improve the accu-
racy of crowd counting, the GLDS method is also used to extract texture features of 
the CSI amplitude images, and both sets of texture features are combined to form the 
feature vector for crowd counting.

2.4.1 � GLCM

GLCM is a statistical method proposed by Haralick et al. [26] in 1973, which is used 
to represent the joint probability density between pixels of a certain distance and ori-
entation. Its mathematical expression is shown below.

Fig. 6  The time–frequency images of CSI
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where #{X} represents the number of elements in the set X , a, b = 0, 1, 2, · · · ,K − 1 , K  
is the total number of gray levels of the pixel values, p1, p2 are two arbitrary gray levels, 
x, y are the column and row numbers of the pixels in the image, c and d denote the rela-
tive distances of two pixels in the x and y directions, respectively, and f (x, y) denotes the 
pixel value in the x-th column and y-th row.

To reduce the time complexity of the algorithm, we select four mutually uncorrelated 
statistics of energy, entropy, contrast, and correlation as the texture features of GLCM. 
Although Haralick et  al. [26] proposed 14 kinds of statistics calculated according to 
GLCM, most of these statistics are correlated.

(1)	 The feature known as energy, or angular second-order moment, is used to measure 
the uniformity of image texture. It is calculated using the following equation:

where 
∑

a · and 
∑

b · denote 
K−1∑

a=0

· and 
K−1∑

b=0

· , respectively.

(2)	 Entropy is a feature that characterizes the level of confusion, complexity, and ran-
domness in an image. It is calculated using the following equation:

(3)	 Contrast is a feature that characterizes the sharpness and intensity of the transitions 
between neighboring pixel values in an image, indicating the presence of edges or 
boundaries, and is calculated as follows:

(4)	 Correlation is a feature that measures the degree of linear dependence between 
local pixels in an image and is calculated as follows:

where

(6)P(a, b|c, d) =
#
{
(x, y)|f (x, y) = a, f (x ± c, y± d) = b

}

#
{
(x, y)|f (x, y) = p1, f (x ± c, y± d) = p2

} ,

(7)ASM(c, d)=
∑

a

∑

b

P(a, b
∣
∣c, d)2,

(8)ENT(c, d) = −
∑

a

∑

b

P(a, b
∣
∣c, d) log(P(a, b

∣
∣c, d)).

(9)CON(c, d) =
∑

a

∑

b

(a− b)2P(a, b
∣
∣c, d).

(10)COR(c, d) =

∑

a

∑

b abP(a, b
∣
∣c, d)− µ1(c, d)µ2(c, d)

σ 2
1 (c, d)σ

2
2 (c, d)

,
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The above four features are all functions of c and d . To comprehensively characterize 
the features of multiple directions of pixels and reduce the time complexity of the algo-
rithm, in this paper, we set c and d as (1,0) and (1,1), respectively, and realize that the 
orientation angle θ of the pixel is 0◦ and 45◦ , respectively. Then, we calculate the mean 
and standard deviation of the above two texture features, respectively, which constitute 
the feature vector extracted according to GLCM as follows:

where µASM , σASM , µENT , σENT , µCON , σCON , µCOR and σCOR represent the mean and 
standard deviation of ASM(c, d) , ENT(c, d) , CON(c, d) , and COR(c, d) of the GLCM, 
respectively.

Since the GLCM of the CSI amplitude and time–frequency images are calculated sep-
arately and the texture features are extracted, the GLCM-based texture features can be 
represented as follows:

where FGLCM1 and FGLCM2 denote the texture feature vectors extracted from the GLCM 
of the amplitude and time–frequency images, respectively.

2.4.2 � GLDS

GLDS is a statistical technique that characterizes the variation of grayscale values among 
adjacent image pixels, allowing for the analysis of differences and fluctuations in local-
ized regions of the image.

If the position of a pixel is 
(
x, y

)
 and the position of a neighboring pixel is 

(
x +�x, y+�y

)
 , then the grayscale difference between the two pixels can be expressed 

as:

The grayscale difference, denoted as f�
(
x, y

)
 , represents the variation between adja-

cent pixel values in an image. Typically, both �x and �y are small deviations, and for the 
purposes of this paper, both �x and �y have been fixed at a value of 1.

Given M possible levels for grayscale differences, a histogram of f�
(
x, y

)
 can be con-

structed to compute the probability, P�(m) , for each value of f�
(
x, y

)
 using the histo-

gram, where m = 1, 2, · · · ,M . In this paper, we utilize the grayscale difference probability 
distribution, P�(m) , to extract four texture features from the amplitude images, namely 

(11)


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�
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σ 2
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�
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.

(12)FGLCM = [µASM, σASM,µENT, σENT,µCON, σCON,µCOR, σCOR],

(13)F1 = [FGLCM1, FGLCM2],

(14)f�
(
x, y

)
= f

(
x, y

)
− f

(
x +�x, y+�y

)
,



Page 12 of 26Tian et al. J Wireless Com Network         (2023) 2023:79 

contrast, angular second-order moment, entropy, and mean. The following equations are 
employed for their computation:

The texture features of the amplitude image, which are based on the four aforemen-
tioned statistics (i.e., contrast, angular second-order moment, entropy, and mean), can 
be expressed using the following equations:

The feature vector for multi-state crowd counting consists of the texture features 
extracted from amplitude and time–frequency images using both GLCM and GLDS 
methods.

2.5 � LDA algorithm

To increase the running speed of the algorithm, we utilize the LDA algorithm, which has 
low time complexity, to recognize the number of people. The LDA algorithm transforms 
the high-dimensional classification problem into a one-dimensional classification prob-
lem using the projection method. The specific algorithm is outlined below.

The intra-class dispersion matrix for the same category samples is calculated as 
follows:

where u denotes the serial number of the category ( u = 1, 2, · · · ,U , where U is the num-
ber of categories for multi-state crowd counting.), v denotes the serial number of the 
sample ( v = 1, 2, · · · ,V  , where V  is the number of samples collected for each category.), 
F(u, v) denotes the eigenvector of the v-th sample of the u-th category, µu is the mean of 
the V  samples for the u-th category, and T  denotes the transpose of the matrix.

The inter-class dispersion matrix is calculated as follows:

(15)CONGLDS =

M−1∑

m=0

m2P�(m),

(16)ASMGLDS =

M−1∑

m=0

P2
�(m),

(17)ENTGLDS = −

M−1∑

m=0

P�(m) lg P�(m),

(18)MEANGLDS =
1

M

M−1∑

m=0

mP�(m).

(19)FGLDS = [CONGLDS, ASMGLDS, ENTGLDS,MEANGLDS].

(20)F = [FGLCM1, FGLCM2, FGLDS].

(21)Sic =

U∑

u=1

V∑

v=1

(F(u, v)− µu)(F(u, v)− µu)
T ,
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where µ denotes the mean value of all µu.
To achieve the minimum intra-class dispersion and the maximum inter-class dis-

persion, the following objective function must be optimized:

where 
∏

diag

 denotes the product of the main diagonal elements of the matrix, 

W = [w1,w2, · · · ,wr] is a low-dimensional matrix in the projection direction with 
dimension R× r , R denotes the length of the eigenvector F  , and r denotes the total num-
ber of basis vectors in W  . Generally, r is taken as the largest integer that is smaller than 
U . Equation (23) can become:

The maximum value of the objective function is the product of the largest r eigen-
values of the matrix S−1

ic Sbc . The eigenvectors corresponding to the largest r eigen-
values are w1,w2, · · · ,wr.

3 � Results
3.1 � Experimental setup and data acquisition

In this study, experiments were conducted in a 3.5m× 5m laboratory containing 
tables, chairs, cabinets, and experimental equipments. The experimental scenario 
is depicted in Fig.  7. Two computers with Intel 5300 network cards and Ubuntu 
12.04 operating systems were used. One computer was connected to one antenna 
as the transmitter, while the other computer was connected to three antennas as the 
receiver. The antennas were placed 0.5 m from the ground, and the distance between 
the transmitting and receiving devices was 3 m. The channel bandwidth of WiFi 
was set to 20 MHz, and the operating frequency was 2.4 GHz. Data was transmit-
ted through three channels, each with 30 subcarriers, resulting in each data packet 
containing 1× 3× 30 groups of CSI data. The experiment involved four volunteers, 
including two males and two females. Thirteen different experimental cases were 
conducted, as shown in Table  1. The crowd counting in these states has potential 
applications in smart education, such as calculating the number of students in dif-
ferent states in a classroom. The experimental setup required recognizing a total of 
3× 4 + 1 = 13 categories, including the case of no people. The device had a sending 
packet frequency of 1000 Hz, and 4 s of data were collected for each sample, consist-
ing of 4000 data packets. Seventy samples were collected for each category, with 40 
randomly selected for training and the remaining 30 for testing during algorithm 
simulation.

(22)Sbc =

U∑

u=1

(µu − µ)(µu − µ)T ,

(23)arg max
︸ ︷︷ ︸

W

J (W ) =

∏

diagW
TSbcW

∏

diagW
TSicW

,

(24)arg max
︸ ︷︷ ︸

W

J (W ) =

r∏

g=1

wT
g Sbcwg

wT
g Sicwg

.
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3.2 � Parameter analysis

3.2.1 � Analysis of parameter J

The TF-LPMCC algorithm’s resolution of frequency components varies with the num-
ber of frequency components J  , which may affect the recognition accuracy of action 
and crowd counting. To evaluate the impact of J  , we tested the algorithm’s perfor-
mance with J  values of 20, 40, 60, 80, and 100, and compared the average recognition 

Fig. 7  The experimental scenario 1

Table 1  Setup of experimental scenes

Serial Number Action Number 
of 
people

1 Sitting 1

2 Sitting 2

3 Sitting 3

4 Sitting 4

5 Walking in sequence 1

6 Walking in sequence 2

7 Walking in sequence 3

8 Walking in sequence 4

9 Raising one hand 1

10 Raising one hand 2

11 Raising one hand 3

12 Raising one hand 4

13 Empty 0
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accuracy. The results are presented in Fig. 8, which shows that the algorithm achieves 
the highest average recognition accuracy of 98.27% when J = 60 . However, for all 
other J  values, the average recognition accuracy was above 96%, indicating that J  has 
a minor impact on the algorithm’s performance. This is because human action fre-
quency is relatively slow, and all tested J  values can adequately capture the changes in 
human action frequency. In conclusion, when applying the TF-LPMCC algorithm, the 
parameter J  can be set to 20 for high operation speed or 60 for high average recogni-
tion accuracy.

3.2.2 � Analysis of parameters c and d

The TL-LPMCC algorithm uses texture features calculated according to the GLCM, 
where the texture features are functions of parameters c and d . To analyze the effect 
of the values of parameters c and d on the performance of the algorithm, the authors 
set the parameters c and d according to Table 2 and compared the average recognition 
accuracy of the TL-LPMCC algorithm. The experimental results, as shown in Fig. 9, 
demonstrate that the TL-LPMCC algorithm achieves the highest average recognition 
accuracy when the parameters c and d are set to (1,0) and (1,1). As the parameters 
c and d vary from Cd1 to Cd6, the average recognition accuracy of the TL-LPMCC 

Fig. 8  Effect of parameter J on average recognition accuracy

Table 2  The values of parameters c and d

The values of c and d Orientation angle of the pixel θ

Cd1 (1,0), (1,1) 0◦ , 45◦

Cd2 (0,1), (− 1,1) 90◦ , 135◦

Cd3 (1,0), (1,1), (0,1), (− 1,1) 0◦ , 45◦ , 90◦ , 135◦

Cd4 (1,0), (1,1), (2,0), (2,2) 0◦ , 45◦ , 0◦ , 45◦

Cd5 (0,1), (− 1,1), (0,2), (− 2,2) 90◦ , 135◦ , 90◦ , 135◦

Cd6 (1,0), (1,1), (0,1), (− 1,1), (2,0),(2,2),(0,2),(− 2,2) 0◦ , 45◦ , 90◦ , 135◦ , 0◦ , 45◦ , 90◦ , 135◦
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algorithm gradually decreases. The authors note that the algorithm complexity is sig-
nificantly lower when c and d are set to Cd1 and Cd2 than when other values are used. 
Therefore, the values of parameters c and d can be set to (1,0) and (1,1) when using 
the TL-LPMCC algorithm.

3.2.3 � Analysis of transmitting and receiving antennas

In the experiment, the transmitter is connected to 1 antenna, and the receiver is con-
nected to 3 antennas. To analyze the impact of the number of transmitting and receiv-
ing antennas on the accuracy of the TF-LPMCC algorithm, we number the receiving 
antennas as 1, 2, and 3. 1 Antenna, 2 Antenna, and 3 Antenna represent the experi-
ments using CSI data received by antennas 1, 2, and 3 for multi-state crowd counting, 
respectively, and 1 + 2 Antennas represent the experiments using CSI data received 
by antennas 1 and 2, and so on. Figure 10 shows the average recognition accuracy of 

Fig. 9  Effect of parameters c and d on average recognition accuracy

Fig. 10  Experimental results of transmitting and receiving antennas



Page 17 of 26Tian et al. J Wireless Com Network         (2023) 2023:79 	

the TF-LPMCC algorithm under different combinations of transmitting and receiving 
antennas. From Fig. 10, the average recognition accuracies obtained by using CSI data 
from different receiving antennas are also different. When only one antenna is used, 
the algorithm has the highest accuracy. The more antennas are used, the lower the 
accuracy of the algorithm, and the higher the time complexity of the algorithm. This 
is because the CSI data received by different antennas are affected differently by mul-
tipath interference effects. Therefore, we evaluate the performance of the TF-LPMCC 
algorithm using CSI data from the first receiving antenna in the paper.

3.2.4 � Analysis of subcarriers and bandwidth

To analyze the impact of the number of subcarriers on the accuracy of the TF-LPMCC 
algorithm, we compare the average recognition accuracy of the TF-LPMCC algorithm 
when using CSI data of 1, 5, 10, 20, and 30 subcarriers from the first link. The experi-
mental results are shown in Fig. 11. From Fig. 11, the average recognition accuracy 
of the TF-LPMCC algorithm shows an upward trend as the number of subcarriers 
increases. When using 30 subcarriers, the recognition accuracy of the algorithm is 
the highest. Therefore, we use 30 subcarriers in the subsequent experiments.

It is necessary to analyze the impact of channel bandwidth on the accuracy of the 
TF-LPMCC algorithm, as signals with different frequencies are subject to different 
environmental interference and different impact of multipath effects. We set the 
bandwidth to 10, 20, 30, and 40 MHz, respectively, and then evaluate the average rec-
ognition accuracy of the TF-LPMCC algorithm. The experimental results are shown 
in Fig.  12. From Fig.  12, the average recognition accuracy of the TF-LPMCC algo-
rithm increases with the increase in bandwidth, because the greater the frequency 
difference between subcarriers, the less interference between them. However, when 
the bandwidth changes from 10 to 40 MHz, the accuracy of the algorithm does not 
change much.

Fig. 11  Experimental results of subcarriers
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3.3 � Performance of TF‑LPMCC algorithm

3.3.1 � Ablation study

In the TF-LPMCC algorithm, amplitude and time–frequency images of CSI are con-
structed and texture features are extracted using the GLCM method for both images. 
Additionally, texture features are extracted from the amplitude images using the 
GLDS method. The composed feature vectors are then input to the LDA algorithm for 
classification. To evaluate the contribution of each step in the TF-LPMCC algorithm, 
we compare its performance with five other algorithms: (i) TF-LPMCC(1) which uses 
only the GLCM method for texture feature extraction, (ii) TF-LPMCC(2) which uses 
only the GLDS method for texture feature extraction, (iii) TF-LPMCC(3) which uses 
only the CSI amplitude image, (iv) TF-LPMCC(4) which uses only the GLCM method 
for texture feature extraction of the CSI amplitude image without using the GLDS 
method or CSI time–frequency image, and (v) TF-LPMCCR(5) which extracts texture 

Fig. 12  Experimental results of bandwidths

Fig. 13  The results of the ablation study
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features only from the CSI time–frequency image without using the CSI amplitude 
image.

Figure  13 shows the simulation results of the TF-LPMCC algorithm and the five 
other algorithms. The TF-LPMCC algorithm achieves the highest average recogni-
tion accuracy of 98.27%. In contrast, the TF-LPMCC(2) and TF-LPMCC(5) algorithms 
have significantly lower average recognition accuracies, suggesting that using only the 
CSI time–frequency images or the GLDS methods results in poorer performance. The 
average recognition accuracies of the TF-LPMCCR(1), TF-LPMCCR(3), and TF-LPM-
CCR(4) algorithms are all above 93%, indicating that the CSI amplitude image and the 
GLCM method contribute much more to the recognition accuracy of the TF-LPMCC 
algorithm than the CSI time–frequency image and the GLDS method. However, the CSI 
time–frequency image and the GLDS method can further improve the average recogni-
tion accuracy. Therefore, the TF-LPMCC algorithm can adjust the composition of the 
algorithm based on the application’s requirements. If high average recognition accuracy 
is required, the TF-LPMCC algorithm can be used. If less running time is required, the 
TF-LPMCC(1), TF-LPMCC(3), or TF-LPMCC(4) algorithms can be used.

3.3.2 � Comparing different algorithms

Currently, there are fewer studies on CSI-based crowd counting compared to CSI-based 
activity recognition. Two existing works [14] and [10] achieved good crowd counting 
results using the SVM algorithm (referred to as PNR-SVM) and naive Bayesian clas-
sification algorithm (referred to as PNR-NB), respectively. In this paper, we compare 
the average recognition accuracy of TF-LPMCC, PNR-SVM, and PNR-NB algorithms, 
as shown in Fig.  14. The results demonstrate that the TF-LPMCC algorithm achieves 
the highest average recognition accuracy of 98.27%, which is 4.04% and 4.42% higher 
than that of PNR-SVM and PNR-NB algorithms, respectively. In TF-LPMCC algorithm, 
the amplitude image of CSI fully utilizes the temporal stability of CSI, and the time–
frequency image of CSI fully utilizes the frequency diversity characteristics of CSI. The 
GLCM and GLDS methods extract the local changes and spatial distribution features 

Fig. 14  Comparison results of different algorithms



Page 20 of 26Tian et al. J Wireless Com Network         (2023) 2023:79 

of CSI data. Therefore, the superior performance of the TF-LPMCC algorithm is attrib-
uted to its ability to extract more fine-grained features of multi-state crowd information 
contained in the CSI amplitude. In addition, we compare the confusion matrices of the 
three algorithms, as shown in Figs. 15, 16 and 17, respectively, where the meanings of 
the serial numbers in the confusion matrix are shown in Table 1. The results indicate 
that the recognition accuracy of TF-LPMCC algorithm is above 90% for all categories, 
while the recognition accuracy of PNR-SVM algorithm is below 85% for categories 5 and 
6, and the recognition accuracy of PNR-NB algorithm is below 80% for categories 5 and 
11. This demonstrates that the TF-LPMCC algorithm not only has a high average recog-
nition accuracy but also has a high recognition accuracy of all categories.

To evaluate the computational efficiency of the TF-LPMCC algorithm, we meas-
ured the running times of the three algorithms on a laptop computer equipped with 
an Intel I5-7200U 2.5 GHz CPU and 8 GB RAM. The TF-LPMCC, PNR-SVM, and 

Fig. 15  Confusion matrix of TF-LPMCC algorithm

Fig. 16  Confusion matrix of PNR-SVM algorithm
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PNR-NB algorithms took 0.068 s, 0.128 s, and 0.197 s, respectively, to recognize one 
sample. Notably, the TF-LPMCC algorithm had the shortest running time compared 
to the PNR-SVM and PNR-NB algorithms, with a reduction of 46.88% and 65.48%, 
respectively. These results demonstrate that the TF-LPMCC algorithm exhibits both 
high accuracy and low time complexity.

Fig. 17  Confusion matrix of PNR-NB algorithm

Fig. 18  The experimental scenario 2
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3.3.3 � Analysis of algorithm scalability

In the previous analysis and experiments, we have verified that the TF-LPMCC algo-
rithm has low time complexity and high recognition accuracy in the experimental 
scenario described in Sect.  3.1. However, the scalability of this algorithm in other 
experimental scenarios and different states of volunteers still needs further analysis. 
For this purpose, we conducted an experiment in another laboratory that was differ-
ent from the experimental scenario in Fig. 7, as shown in Fig. 18. In this experimental 
scenario, we still collect CSI data for 1–4 people, but the volunteers also add three 
states of chest-expanding exercise (State 4), bending and lifting both arms in front of 
the chest (State 5), and arm pulling from high to low (State 6), in addition to the three 
states of sitting (State 1), raising one hand (State 2), and walking in sequence (State 3). 
Therefore, the number and states of people are classified into 24 categories to recog-
nize. The experimental setup is the same as Sect. 3.1. Fifty samples are collected for 
each category, where 30 samples are randomly selected for training and the remaining 
20 samples are tested (Fig. 19). The experimental results are shown in Table 3.

Table 3 shows that in the new experimental scenario, the average recognition accu-
racy of the TF-LPMCC algorithm for State 1, 2, and 3 is 98.75%, which is consistent 
with the experimental results in the scenario shown in Fig. 7. After adding State 4, 5, 

Fig. 19  Confusion matrix for 19 types of scenarios

Table 3  The experimental results in the new scenario

Activity/Number of 
people

1 people 2 people 3 people 4 people Average

State 1 1 1 1 1 1

State 2 1 1 1 0.95 0.9875

State 3 1 1 0.95 0.95 0.975

State 4 1 0.90 0.90 0.80 0.90

State 5 1 0.95 1 0.95 0.975

State 6 1 1 1 1 1

Total average recognition accuracy 0.9729
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and 6, the average recognition accuracy of the algorithm slightly decreased, but it can 
still reach as high as 97.29%. However, in the case that there are four people who are 
in State 4, the recognition accuracy of the algorithm is only 80%, which shows that 
the number of people and the complexity of the state have a certain impact on the 
recognition accuracy of the algorithm. From Table 3, the more the number of people 
and the more complex the state of people, the lower the recognition accuracy of the 
algorithm. In summary, the TF-LPMCC algorithm can still achieve high recognition 
accuracy of crowd size and state in different experimental scenarios and more states, 
which shows that this algorithm has good scalability. Although the number and states 
of people are limited, the average recognition accuracy of the algorithm can already 
meet the needs of most applications.

4 � Discussion and limitation
Although the TF-LPMCC algorithm performs well, there are still some issues that 
require further discussion.

(1)	 In this paper, we conducted experiments on thirteen cases as shown in Table 1, col-
lecting 70 samples for each case. Consequently, a total of 910 samples were col-
lected, making the sample collection process labor-intensive. As the number and 
states of crowds to be recognized by the TF-LPMCC algorithm increase, so does 
the workload of collecting training samples. This hinders the applicability and scope 
of the TF-LPMCC algorithm.

(2)	 The TF-LPMCC algorithm is capable of accurately recognizing the crowd size 
when all individuals perform the same action. However, in real-world applications, 
people may perform different actions. For example, in a room with four people, two 
may be sitting while the other two are walking. To test the performance of the TF-
LPMCC algorithm in such scenarios, we followed the same experimental setup as 
in Sect. 4.1 and conducted additional experiments in six new scenarios: 1 person 
walking with 1, 2, and 3 people sitting, respectively, 2 people walking with 1 and 2 
people sitting, respectively, and 3 people walking with 1 person sitting. Therefore, 
the TF-LPMCC algorithm needed to classify a total of 19 scenes. The experimen-
tal results show that the algorithm’s average recognition accuracy can still reach 
96.58%, indicating that the TF-LPMCC algorithm can still perform well in counting 
crowds in arbitrary states. However, the confusion matrix shown in Fig. 15 reveals 
that the recognition accuracy of the algorithm decreased to less than 90% in the 
11th, 14th, and 17th cases, indicating that while the algorithm’s average recognition 
accuracy decreases less, the recognition accuracy of the algorithm decreases signifi-
cantly for a few categories after adding six scenarios where the crowd is in arbitrary 
states.

(3)	 If a human and an object, such as a robot or a chair, enter the monitoring area at the 
same time, the TF-LPMCC algorithm cannot distinguish between the human and 
the object, and the object is also recognized as a human. Therefore, the TF-LPMCC 
algorithm is only applicable to the scenarios where only humans are dynamically 
changing in the monitoring area.
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5 � Conclusion
As artificial intelligence continues to advance, the demand for crowd counting appli-
cations is increasing. However, existing studies cannot still count crowds in different 
states, and the accuracy and time complexity of crowd counting algorithms need further 
improvement. In response to this need, we propose the TF-LPMCC algorithm, which 
constructs CSI data into amplitude images and time–frequency images, and extracts 
texture features from the two images using the GLCM method. To enhance the algo-
rithm’s recognition accuracy, we also extract texture features from the amplitude images 
using the GLDS method. The features extracted from both methods form the input fea-
ture vector of the LDA classification algorithm. We conducted extensive experiments to 
analyze the effects of the parameters and on the recognition accuracy of the TF-LPMCC 
algorithm. Through an ablation study, we illustrated the contribution of each method 
of the TF-LPMCC algorithm to recognition accuracy. Results compared with existing 
algorithms demonstrate that the TF-LPMCC algorithm not only achieves a higher aver-
age recognition accuracy of up to 98.27%, but also has a lower algorithm running time of 
0.068 s.

Moving forward, we will focus on two aspects related to our work: (i) The TF-LPMCC 
algorithm currently requires a large and expensive workload for testing training sam-
ples to recognize the number of people in multi-states. To address this issue, we will 
explore algorithms that can achieve high recognition accuracy using smaller samples 
and also aim to enhance the cross-domain performance of the algorithm when adapting 
to new application environments. (ii) As the number of people increases, the stability 
of the TF-LPMCC algorithm decreases when counting crowds in arbitrary states. This 
not only increases the human and financial cost of collecting training samples but also 
reduces the algorithm’s performance. We will work toward developing algorithms that 
can effectively recognize the number of people in arbitrary states, even when counting 
more people.

6 � Methods/experimental
The existing crowd counting algorithms struggle with low counting accuracy and high 
algorithm complexity when counting humans in multiple states. For this problem, we 
construct CSI amplitude data into amplitude and time–frequency images, and then 
extract texture features using the gray-level co-occurrence matrix (GLCM) and gray-
level difference statistic (GLDS) methods, and finally use the linear discriminant analysis 
(LDA) algorithm to count the crowd in three states. To verify the TF-LPMCC algorithm 
proposed in this paper, we conducted experiments in a laboratory. The layout of the lab-
oratory, the devices and settings used in the experiments, the volunteers in the experi-
ments, the activity design of the volunteers, and the data collection are all described in 
detail in Sect. 3.1. Using the collected data and a large number of simulations, we ana-
lyzed the performance of the proposed algorithm from many aspects and verified the 
accuracy and robustness of the proposed algorithm for multi-state crowd counting.
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