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Abstract 

This paper focuses on energy-efficient resource allocation in reconfigurable intelligent 
surface (RIS)-assisted multiple-input-single-output (MISO) communication systems. 
Specifically, it revisits the solution to the energy efficiency (EE) problem using the alter-
nating optimization (AO) approach. In each AO iteration, the RIS phase optimization 
is achieved using the gradient descent method, which unfortunately does not guaran-
tee convergence. To overcome this limitation, we propose two alternatives: the Wolfe-
based gradient-descent (GAW) EE maximization Algorithm and the trust region 
(TR)-based EE maximization algorithm. Additionally, we use Dinkelbach’s algorithm 
to obtain the optimal transmit power allocation. Our results demonstrate that the pro-
posed methods outperform the existing approach that uses sequential fractional 
programming (SFP) for phase optimization and the traditional relay-based method.

Keywords: RIS-assisted Network, Power allocation, Energy efficiency, RIS phase design

1 Introduction
Existing cellular generations will not be able to meet the extraordinary performance 
demands, such as high spectral efficiency (SE) and massive connectivity, brought on by 
the innovative new applications anticipated for the 2030 era, which will lead to a need 
for 6G technology [1, 2]. 6G wireless networks are expected to support the connectiv-
ity of a huge variety of users and equipment through the dense deployment of multi-
antenna base stations (BSs) and access points (APs). Consequently, the energy-efficiency 
(EE) behavior of 6G is a crucial topic [3–5]. One of the potential solutions for green 
communication in 6G is the reconfigurable intelligent surface (RIS), a recently emerging 
hardware technology with increasing potentiality for large energy consumption reduc-
tions [3]. In its simple form, an RIS is a meta-surface made up of numerous inexpensive 
passive antennas that may effectively reflect the electromagnetic waves impinging on it 
in a controllable way to favorably alter the propagation environment [5].

However, several obstacles, ranging from performance characterization to net-
work optimization, must be overcome for the effective deployment of energy-efficient 
RIS systems [7]. Optimizing RIS-aided wireless networks involves employing various 
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approaches [6]. Model-based methods, such as alternating optimization (AO), decom-
pose the joint optimization problem into smaller sub-problems. These are usually solved 
using techniques like successive convex approximation (SCA), fractional programming 
(FP), and branch-and-bound (BnB) techniques. These model-based algorithms offer the 
advantage of providing theoretical guarantees and insights into the optimality of their 
performance. However, they may be limited by the complexity of the problem and the 
need for full knowledge of the system. On the contrary, heuristic algorithms focus on 
local optima and offer low-complexity solutions. They provide a pragmatic approach to 
optimization but may not guarantee optimality or handle complex dynamic environ-
ments effectively. On the other hand, machine learning (ML) techniques, such as rein-
forcement learning (RL) and supervised learning, offer data-driven approaches that can 
adapt to dynamic wireless environments. ML techniques have the advantage of learning 
from data and capturing complex patterns and interactions, allowing them to potentially 
discover more efficient solutions. However, the effectiveness of ML techniques mainly 
depends on the quality and quantity of training data and the computational resources 
required for training and inference.

The use of RISs in wireless networks has been examined in some recent papers, includ-
ing [4, 5, 9–17]. Among them, [4, 5, 15–17], focused on either power minimization or EE 
maximization in RIS-assisted wireless networks using model-based optimization meth-
ods that are briefly described in Table 1. On the other hand, the authors in [18] and [19–
21] use heuristic and ML techniques, respectively, to solve the EE maximization problem 
in RIS-aided communications. The downlink sum-rate maximization of a wireless com-
munication system with RIS assistance was examined in [9]. By jointly optimizing the 
transmit beamforming of the AP and the continuous phase shift of RIS’s element, a joint 
beamforming problem is developed in [10] to maximize the received signal power at the 
user in RIS-assisted multiple input single output (MISO) system. The authors in [11] 
studied the RIS-enhanced MISO orthogonal frequency division multiplexing (OFDM) 
downlink system, whereby the RIS’s passive beamforming and the BS’s transmit power 
allocation is jointly optimized using the AO framework for increasing the downlink 
attainable rate. In [12], the use of several RISs to support mm-Wave MISO communi-
cations has been studied. The received signal power is maximized by jointly optimizing 
active and passive beamforming vectors. Meanwhile, the authors in [13] have suggested 
an element grouping approach of RIS elements, and then jointly optimized the RIS’s 

Table 1 Power minimization or EE maximization in RIS-assisted wireless networks

References System setup Objective Design variables Decoupling

 [15] MISO downlink Min.transmit power Transmit and passive beam-
forming

AO

 [5] MISO downlink-single carrier Max. energy efficiency Transmit and passive 
beamforming, On-off status 
of each RIS

AO

 [16] MISO downlink Min.transmit power Transmit beamforming, 
discrete phase control

AO

 [17] RIS-aided MISO downlink 
system

EE maximization Active and passive beam-
forming

AO

 [4] MISO downlink-single carrier Max. energy efficiency Transmit and passive beam-
forming,

AO
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passive beamforming and the BS’s power distribution using the AO technique to increase 
the achievable rate. The authors in [14] integrate RIS into an orthogonal frequency divi-
sion multiple access (OFDMA)-based multi-user (MU) downlink system. Joint optimiza-
tion of the RIS’s passive beamforming and OFDMA resource block (RB), as well as power 
allocations are leveraged to maximize the minimum user rate.

The goal of [15] is to minimize the AP’s transmit power while taking into account the 
individual users’ signal-to-interference-plus-noise ratio (SINR) restrictions by jointly 
optimizing the BS transmit beamforming and RIS’s passive beamforming. The authors in 
[5] have used distributed RIS-enabled network to manage the RIS states. They investigate 
how to maximize EE by dynamically managing each RIS’s on/off status and improving 
the reflection coefficients matrix of the RISs using two iterative techniques. In contrast, 
the paper proposed in [16] addresses the problem of minimizing transmit power in an 
RIS-aided wireless network with discrete phase shifts. The authors propose an AO tech-
nique as a suboptimal and low-complexity solution. Simulation results are provided to 
evaluate the performance compared to benchmark schemes. The authors in [17] present 
an optimization technique to maximize the EE of a RIS-aided system by jointly opti-
mizing the BS’s active beamforming and the RIS’s passive beamforming. The proposed 
algorithm is shown to be effective through numerical results. The authors in [4] exam-
ined the maximization of EE in RIS-aided MISO systems. They tackled the problem by 
employing the gradient descent approach (GA). In each iteration of GA, they utilized 
a second-order approximation of the problem, assuming the convexity of the approxi-
mation. However, it is important to note that this assumption is not universally valid, 
as the objective function may not exhibit a shape resembling a second-order function. 
Therefore, to ensure that the optimization algorithm progresses in a decreasing man-
ner, two line search strategies with the Wolfe condition and the trust region (TR) were 
employed in this paper. These strategies provide a guarantee of a monotonic decrease in 
the objective function values. Therefore, compared to the previously mentioned works, 
this paper addresses the limitations of existing optimization techniques when solving the 
EE problem in RIS-assisted communication networks. In this paper, we revisit the EE 
resource allocation problem in a RIS-assisted MISO communication system, focusing on 
overcoming the aforementioned limitations. As a result, the contributions of this paper 
can be summarized as follows:

• Due to concave nature of the problem at hand, the GA’s success is not guaranteed. 
We, therefore, propose a Wolfe based gradient-descent algorithm (GAW) to solve 
the EE maximization problem with respect to RIS passive beamforming in the AO 
framework. The simulation results show that GAW improves the system’s EE since 
using Wolf conditions in GAW guarantees a sufficient decrease in the objective func-
tion by producing an acceptable step size.

• We propose another novel approach using TR method for solving the EE prob-
lem with respect to RIS phase shifts design. By searching within a trust region, TR 
improves the search space of the problem compared to line search methods, which 
only search in a given direction. The improved search space helps TR to escape from 
saddle points [22, 23], resulting in better performance compared to GAW and other 
existing methods. Simulation results demonstrate the efficiency of the TR method.
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Notation: The symbols AT , AH , A−1 , A+ , and ‖A‖F stand for the transpose, hermitian 
(conjugate transpose), inverse, pseudo-inverse, and Frobenius norm of a matrix A , 
respectively. Besides, the functions R(·) , I(·) , | · | , (·)∗ and arg(·) indicate distinct prop-
erties of a complex number, namely its real part, imaginary part, modulus, complex 
conjugate, and angle, in that order. The notation tr(·) indicates the matrix trace, and 
In(with n ≥ 2) refers to the n× n identity matrix. To represent the Hadamard and Kro-
necker products of matrices A and B , we use the symbols A ◦ B and A⊗ B , respectively. 
We use vec(A) to denote a vector obtained by stacking all the columns of A , and diag(a) 
represents a diagonal matrix with entries from vector a.
R and C stand for the sets of real and complex numbers, respectively, and the notation 

x ∼ CN (0, σ 2) indicates that the random variable x follows a complex circularly sym-
metric Gaussian distribution with zero mean and variance σ 2.

2  Methods
2.1  System description and problem formulation

In this section, we provide an overview of the system model used in the RIS-assisted 
downlink multi-user MISO system. We also describe the formulation of the EE problem, 
which involves jointly optimizing the transmit powers and the phase shifts of the RIS.

2.1.1   System description

The system model, depicted in Fig.  1, consists of an M-antenna base station commu-
nicating with K single-antenna users via an RIS comprising N elements [4]. The RIS 
is installed on the exterior surface of a building that is located near both communica-
tion endpoints. Owing to adverse propagation conditions, the direct path between BS 

Fig. 1 The considered RIS-based multi-user MISO system
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and mobile users is blocked. This RIS-assisted MISO communication model is widely 
described in [4, 11, 14].

The channel vector between the RIS and user k, the channel matrix between the BS 
and the RIS, and the diagonal matrix of RIS phase shifts, are denoted by h2,k ∈ C

1×N , 
H1 ∈ C

N×M , and � = diag[φ1,φ2, . . . ,φN ] , respectively, where φn = ejθn for all 
n = 1, 2, . . . ,N .

The transmitted signal is denoted by x =
∑K

k=1

√
pkgk sk , with pk , sk , and gk ∈ C

M×1 
representing, respectively, the transmit power, unit-power complex valued informa-
tion symbol chosen from a discrete constellation set, and precoding vector of user k. 
The transmitted signal’s power is also identified by E[|x|2] = tr(PGHG) ≤ Pmax , where 
G = [g1, g2, . . . , gK ] ∈ C

M×K  and P = diag[p1, . . . , pK ] ∈ R
K×K .

Subsequently, yk = h2,k�H1x + wk denotes the discrete-time signal received by 
mobile user k, where k = 1, 2, . . . ,K  . The thermal noise power at receiver k is repre-
sented by wk ∼ CN (0, σ 2).

Next, the formula for the experienced SINR for k-th mobile user and the associated SE 
in bps/Hz is as follows:

Consider the total power dissipation at an intelligent surface with N reflecting elements, 
denoted as PRIS . It is given by the product of N and Pn(b) , where Pn(b) represents the 
power consumption of a single phase shifter with b-bit resolution [4]. Therefore, the 
total power consumption of the system is represented as:

where ζ = ν−1 and ν represents the power amplifier’s efficiency. Besides, PUE,k , PBS , PRIS 
identifies the static power consumption of k-th user, BS, and RIS respectively.

2.1.2   Problem formulation

Consider H2 = [hT2,1,hT2,2, · · · ,hT2,K ]T ∈ C
K×N . Then, assuming M ≥ K = N  , there 

exists a right inverse for H2�H1 , which enables perfect interference suppression using 
the zero-forcing (ZF) beamforming scheme. The ZF precoding matrix G = (H2�H1)

+ 
can then be used for this purpose. Substituting G in SINR formula (1, 2), the EE prob-
lem with respect to P = diag[p1, p2, . . . , pk ] and � = diag[φ1,φ2, . . . ,φN ] is formulated 
as follows:

(1)γk =
pk h2,k�H1gk

2

K
i=1,i �=k pi h2,k�H1g i

2 + σ 2
.

(2)SE =
∑K

k=1 log2(1+ γk)

B
.

(3)Ptotal =
K
∑

k=1

(ζpk + PUE,k)+ PBS + PRIS,

(4)max
�,P

∑K
k=1 log2(1+ pkσ

−2)

ξ
∑K

k=1 pk + PBS + KPUE + PRIS
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 where the interference is thought to be completely suppressed by the ZF precoding 
matrix. The EE problem in Eq. (4) is not easy to solve due to the coupling of P and � 
in the second constraint and unit modulus constraint on � . In order to obtain a sub-
optimal solution, alternating optimization is applied by splitting the problem (4) to two 
sub-problems with respect to P and � . As depicted in Table 1, many works have relied 
on AO to solve the EE optimization problem. However, the novelty of this paper relies in 
investigating the limitation of such a scheme that mainly relies on GA with non-guaran-
teed convergence.

2.2  Problem solution

The alternating optimization algorithm is employed to solve the problem according to 
the following steps:

• Optimization with respect to the RIS elements values �
• Optimization with respect to transmitted power P.

2.2.1  Optimization with respect to the RIS element values �

For the fixed values of P , the problem (4) is converted to the following problem:

 within this context, Co represents an arbitrary constant value. Then, Eq. (5) reformu-
lated as an unconstrained problem as follows:

where � = diag[θ1, θ2, ..., θN ] , � = diag[ejθ1 , ejθ2 , ..., ejθN ] , P = QQT and H2 = Q−1H2 . 
We proposed two efficient approach to solve the problem in Eq. (6) that will be described 
in the next subsections.

Gradient Descent Approach
The gradient descent method can be applied for solving the problem in Eq. (6) .

(4a)subject to log2

(

1+ pkσ
−2

)

≥ Rmin,k ,∀k = 1, 2, . . . ,K ,

(4b)tr((H2�H1)
+P(H2�H1)

+H ) ≤ Pmax,

(4c)|φn| = 1,∀n = 1, 2, . . . ,N ,

(5)max
�

Co

(5a)subject to tr((H2�H1)
+P(H2�H1)

+H ) ≤ Pmax,

(5b)|φn| = 1,∀n = 1, 2, . . . ,N ,

(6)
min
�

F(�(�)) = tr((H2�(�)H1)
+P(H2�(�)H1)

+H)

= vec(�−1(�))H(H
+H
2 ⊗H+

1 )
H(H

+H
2 ⊗H+

1 )vec(�
−1(�)),
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GA as a line search algorithm minimizes the linear approximation of f(x) by first cal-
culating a search direction, s(t) , and then deciding how far to move in that direction. The 
GA iterates as follows:

where α(t) is step size. For the line search method to be effective, the direction s(t) and 
step length α(t) must be carefully selected [22].

So, considering the problem in Eq. (6), the following matrices are defined:

so that,

in which

where l(n) is the index map l(n) = (n− 1)N + n , for all n = 1, . . . ,N  , and al(n),l(m) 
denotes the l(n), l(m)-th element of A . By substituting α(t) and s(t) in Eq. (7) with µ and 
d(t) respectively, the iteration of the gradient descent approach for the problem in Eq. (6) 
can be expressed as:

and

where vec(�)(t) is the phase of y at iteration t [4].
The descent direction is updated using the Polak-Ribiere-Polyak conjugate gradient 

algorithm according to the following formula:

where q(t+1) for the first iteration of the algorithm is obtained as follows:

(7)x(t+1) = x(t) + α(t)s(t),

(8)A =(H
+H
2 ⊗H+

1 )
H (H

+H
2 ⊗H+

1 ) ∈ C
N 2×N 2

,

(9)y =vec(�−1(�)) ∈ C
N 2×1,

(10)F(�(�)) = yHAy,

(11)yHAy =
N
∑

n=1

al(n),l(n) + 2R

{

N
∑

n=1

N
∑

m≥n

al(n),l(m)e
j(θn−θm)

}

,

(12)vec(�)(t+1) = vec(�)(t) + µd(t),

(13)y(t+1) = exp(j · vec(�)(t+1)) ◦ vec(IN) = y(t) ◦ exp(jµd(t)),

(14)d(t+1) = −q(t+1) + (q(t+1) − q(t))Tq(t+1)

�q(t)�2 d(t),

(15)

−∇�(y
HAy) = 2R

{

jejθi
N
∑

m>i

al(i),l(m)e
−jθm

− je−jθi

N
∑

n<i

al(n),l(i)e
jθn
}

.
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Next, to ensure that it is a descent direction, the following formula should be checked:

In the subsequent subsections, two approaches based on Wolfe condition and trust 
region are proposed. The limitations of the GA is addressed in details in section IV.

Wolfe Condition Based GA
A common inexact line search condition mandates that α(t) in Eq. (7) must first suffi-

ciently reduce the objective function f. Wolfe conditions, including the Armijo condition 
and the curvature condition (CC), can be used to achieve this adequate reduction where 
their formulation is as follows [22]:

• Armijo Condition 

• Curvature Condition 

Armijo condition ensures that the algorithm is making sufficient progress in each itera-
tion towards the optimal solution. By requiring a minimum decrease in the objective 
function value, the algorithm avoids taking overly conservative steps that may converge 
slowly. The curvature condition ensures that the search direction points towards the 
optimal solution, rather than away from it. By requiring that the search direction is a 
descent direction, the algorithm ensures that it is moving towards the optimal solution 
in each iteration.

Trust-Region Method Trust-region methods use a quadratic model of the objective 
function to generate steps. These methods define a region around the current solution 
and trust that the model is a good representation of the objective function within this 
region. The method then simultaneously selects the direction and length of the step by 
approximating the minimizer of the model in this region. If the step is not acceptable, 
the trust region size is reduced and a new minimizer is found. The direction of the step 
changes whenever the size of the trust region is changed. The size of the trust region 
is critical to the effectiveness of the method because if it is too small, a significant step 
opportunity can be missed, and if it is too large, the model minimizer may be far from 
the objective function minimizer in the region, necessitating the reduction of the trust 
region size and go over another attempt. This method utilizes Algorithm 5 and applies it 
to the merit function:

(16)d(t+1) =
{

d(t+1) : (q(t+1))Td(t+1) < 0

−q(t+1) : (q(t+1))Td(t+1) ≥ 0.

(17)
F(�(�(t+1))) ≤ F(�(�(t)))

+ c1µ(d
(t))T∇�F(�(�))|�=�(t) .

(18)(d(t))T∇�F(�(�))|�=�(t+1) ≥ c2(d
(t))T∇�F(�(�))|�=�(t) .

(19)F(�(�)) = 1

2

∥

∥

∥
(H

+H
2 ⊗H+

1 )vec(�
−1(�))

∥

∥

∥

2

2
= 1

2

∥

∥By
∥

∥

2

2
= 1

2
�r(�)�22,
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where B = (H
+H
2 ⊗H+

1 ) ∈ C
N 2×N and y = vec(�−1(�)) ∈ C

N 2×1 . The model function 
m(t)(s) is usually defined as follows:

Where r(t) = r(�(�))|�=�(t) , J (t) = ∇T r(t)(�(�)) and B(t) = (J (t))T J (t) is an approxi-
mation of the Hessian matrix. Considering B =

[

bij
]

∈ C
N 2×N , the Jacobian of the r(�) 

is formulated as follows:

where L(m) = (m− 1)N +m.
Then, the step s(t) is obtained by solving the following sub-problem:

 where the scalar 
�

> 0 is called the trust-region radius. A crucial aspect in several 
trust-region algorithms is the ratio ρ(t) , which represents the actual reduction to pre-
dicted reduction. Its value is determined as follows:

If the obtained s(t) does not result in a significant reduction in F(�(�)) , it will result in 
a trust region being too large and shrink it before solving the problem in Eq. (22) again.

2.2.2  Optimization with respect to the transmitted power P

Solving the EE problem, with respect to the transmit power P for a fixed RIS phase 
shift matrix, rely on the Dinkelbach algorithm [4]. The Dinkelbach algorithm, known 
as a powerful fractional programming tool, is widely employed for optimizing wire-
less networks, as evidenced by its application in various studies [23–26].

The Backtracking line search algorithm, the trust region method, the GAW-based 
EE maximization algorithm, and the TR-based EE maximization algorithm are out-
lined in Tables 2, 3, 4, and 5, respectively.

(20)m(t)(s) = 1

2

∥

∥

∥
r(t) + J (t)s

∥

∥

∥

2

2
= f (t) + sT (J (t))T r(t) + 1

2
sT (J (t))T J (t)s(t),

(21)J (�(�)) =
[

−jbn,L(m) exp(−jθm)
]

,

(22)min
s

m(t)(s)

(22a)subject to �s� ≤
(t)�
,

(23)ρt =
F(�(�(t)))− F(�(�(t) + s(t)))

m(t)(0)−m(t)(s(t))
.

Table 2 Backtracking line search
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Table 3 Trust region method

Table 4 GAW-based EE maximization algorithm
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3  Results and discussion
In this section, we present the results of our study and provide a comprehensive dis-
cussion of the findings.

3.1  Discussion: Investigating the limitation of the GA and the convergence rate

In the following subsection, we analyze the drawbacks of the GA and conduct a compre-
hensive assessment of its convergence rate, shedding light on its effectiveness in solving 
the optimization problem.

3.1.1  Investigating the limitation of the GA

The gradient descent approach solves the following minimization problem to obtain the 
step length.

where

In order to reduce the complexity, the authors in [4], consider a quadratic approxima-
tion of Eq. (25) by considering the second order Taylor expansion of the term ejµ(d

(t)
m −d

(t)
n ) 

around µ = 0 , which yields the following approximation of h(µ):

(24)min
µ>0

h(µ) = (y(t+1))HAy(t+1),

(25)h(µ) =
N
∑

n=1

al(n),l(n) + 2R{
N
∑

n=1

N
∑

m>n

al(n),l(m)e
j(θ

(t)
n −θ

(t)
m )ej(d

(t)
m −d

(t)
n )}.

(26)
ĥ(µ) =

N
∑

n=1

al(n),l(n) + 2R{
N
∑

n=1

N
∑

m>n

al(n),l(m)e
j(θ

(t)
n −θ

(t)
m )

×(1+ jµ(d(t)m − d(t)n )+ (Jµ(d
(t)
m − d

(t)
n ))2

2
)},

Table 5 TR-based EE maximization algorithm
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 which can be expressed in a simple form as:

where the value of µ∗ is given by µ∗ = z1
(2z2)

 . For µ∗ to be a minimizer, the constraint 
µ > 0 must be satisfied. This requires z1 and z2 to have the same sign. The relation 
between convexity of ĥ(µ) and the condition for µ∗ to be a maximum or minimum is as 
follows:

where ĥ′′(µ) is the second-order derivative of ĥ(µ) . As a result, it is not appropriate 
to use the condition ĥ′′(µ) < 0 or z2 > 0 , as this may lead to incorrect results. Also, if 
z2 < 0 but z1 > 0 , the resulting µ will be negative, even though a positive step size is 
acceptable.

While simulating the GA-based EE maximization algorithm, it was found that the 
case z2 > 0 does occur, as shown in Table 6 for different number of RIS elements and 
AO iterations (Monte Carlo iterations). Moreover, the approximation of the exponen-
tial function with a second-order function may not be appropriate for obtaining the step 
size, as the values of the functions may be significantly different around µ = 0.

3.1.2  Complexity and convergence rate

In this subsection, we discuss the comparsion of CPU time and convergence rate of the 
gradient descent, gradient descent with Wolfe condition, and trust region methods.

Gradient descent: Gradient descent is a widely used optimization algorithm that itera-
tively updates the solution by taking steps in the direction of the negative gradient of the 
objective function. The step size is usually determined by a fixed learning rate, which 
can be tuned for optimal performance. Gradient descent can be computationally effi-
cient, but its convergence rate can be slow, especially for ill-conditioned or non-convex 
problems.

Gradient descent with Wolfe condition: Gradient descent with Wolfe condition is a 
variant of gradient descent that uses a line search to determine the step size at each iter-
ation. The Wolfe condition ensures that the objective function decreases sufficiently at 
each iteration, which can improve the convergence rate compared to standard gradient 

(27)ĥ(µ) = z0 + z1µ− z2µ
2,

(28)ĥ′′(µ) = −2z2 =











ĥ′′(µ) > 0 Minimizer,

ĥ′′(µ) < 0 Maximizer,

ĥ′′(µ) = 0 Indeterminate,

Table 6 Limitations of GA in determining optimal step size

Monte Carlo #2, N = 4 Z2 Monte Carlo, #2  N = 20  Z2

AO #2 8.0169 ×  10−6 AO #2 0.0014

AO #2 5.1880 ×  10−6 AO #2 9.8480 ×  10−4

AO #2 2.7067 ×  10−6 AO #2 1.6767 ×  10−4

AO #3 8.1225 ×  10−4 AO #3 1.8284 ×  10−6

AO #3 4.1678 ×  10−5 AO #3 1.3191 ×  10−6
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descent. However, the line search can add additional computational overhead, which can 
make this method slower than standard gradient descent.

Trust region methods: Trust region methods are a family of optimization algo-
rithms that aim to find the optimal solution within a trust region around the current 
point. At each iteration, a quadratic model of the objective function is constructed 
and solved within the trust region. This approach can lead to faster convergence and 
better accuracy than gradient descent or gradient descent with Wolfe condition, espe-
cially for highly non-convex or ill-conditioned problems. However, the trust region 
sub-problem can be computationally expensive to solve, which can make this method 
slower than standard gradient descent or gradient descent with Wolfe condition.

The convergence rate and complexity of gradient descent with the Wolfe condition, 
as well as trust region method, are examined in the following through the utilization 
of mathematical theorems.

Gradient Descent

• Complexity For the nonconvex optimization problem, it is known that the gradi-
ent method finds an ǫ-stationary point (i.e., the point satisfies �∇F� ≤ ǫ ) after at 
most o(ǫ−2) iterations. When applied to convex optimization, the gradient method 
[27] drove an interation complexity bound o(ǫ−1).

• Convergence rate

Consider the following assumption:

Assumption 1 (i) The level set L := {� : F(�(�)) ≤ F(�(�(0)))} is bounded. (ii) In 
some neighborhood N  of L , the objective function F is continuously differentiable, and 
its gradient is Lipschitz continuous i.e. there exists a constant L > 0 such that

Theorem 1 [28] Suppose that Assumptions 1 hold. Consider the Polak-Ribiere method 
with a line search satisfying the Wolfe conditions (17)-(18) and the sufficient descent con-
dition 

〈

d(t), q(t)
〉

≤ σ
∥

∥q(t)
∥

∥

2
for some 0 < σ ≤ 1 . Then,

Regarding the rate of convergence of gradient descent with the Wolfe condition, 
many theories typically make the assumption that the line search is exact, meaning 
that:

where [29] shows that in fact:

(29)||∇F(φ(θ))− ∇F(φ(θ̃))|| ≤ L||θ − θ̃ )||.

(30)lim inf
t→∞

F(�(�(t)) = 0.

(31)µk = argmin
µ

(F(�(�(t+1))),

(32)
∥

∥

∥
�(t+n) −�∗

∥

∥

∥
= O(

∥

∥

∥
�(t) −�∗

∥

∥

∥

2
).
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Trust region

• Complexity An early result of [30] shows that standard trust-region methods 
require O(ǫ−2

g ) iterations to find an ǫg-stationary point; and given a (small) real 
positive tolerance ǫg , the algorithm terminate when it finds a point �ǫ such that 

• Convergence rate The following theorem explains the global convergence of trust-
region Newton methods.

Theorem  2 [22] Let η ∈ (0, 14 ) in step 1 of the algorithm presented in Table  3. Sup-
pose that ||B(t)|| ≤ β for some constant β , that F  is bounded below on the level set 
S = {θ |F(φ(θ)) ≤ F(φ(θ(0)))} and Lipschitz continuously differentiable in S(R0) for 
some R0 > 0 (Eq. (34)), and that all approximate solutions s(t) of Eq. (20) satisfy the ine-
qualities in Eq. (35) and ||s(t)|| ≤ γ�(t)for some positive constants c and γ ≥ 1 . We then 
have

The following theorem explains the local convergence of trust-region Newton 
methods.

Theorem  3 [ [22]] Let F be twice Lipschitz continuously differentiable in a neighbor-
hood of a point θ∗ at which second-order sufficient conditions are satisfied. Suppose the 
sequence θ (t) converges to θ∗ and that for all t sufficiently large, the trust-region algorithm 
based on (22) chooses steps s(t) that satisfy Eq. (35) and are asymptotically similar to 
Newton steps eNk  in (37) whenever 

∥

∥eNk

∥

∥ ≤ 1
2�

(t) , that is,

Then the trust-region bound �(t) becomes inactive for all t sufficiently large, and the 
sequence θ (t) converges superlinearly to θ∗.

∥

∥∇F(�(�ǫ))
∥

∥ ≤ ǫg .

(33)lim
t→∞

(

J (t)
)T

γ (t) = 0.

(34)S(R0) = {θ |
∥

∥θ − θ̄
∥

∥ < R0 for some θ̄ ∈ S}.

(35)m(t)(0)−m(t)(s) ≥ c
∥

∥

∥
(J (t))Tγ (t)

∥

∥

∥
min

(

�(t),

∥

∥(J (t))Tγ (t)
∥

∥

∥

∥B(t)
∥

∥

)

.

(36)
∥

∥

∥
s(t) − eNk

∥

∥

∥
= o

(∥

∥

∥
eNk

∥

∥

∥

)

.

(37)B(t)eNk = −
(

J(t)
)T

γ (t).
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3.2  Simulation results

In this sub-section, we investigate the performance of the RIS-assisted K-user MISO 
communication system. The channels are generated according to the 3GPP propa-
gation environment described in [32]. An average of 103 independent realizations of 
the users’ positions and channel realizations are used in the simulations. In addition, 
similar individual rate constraints for all K users are considered. Rmin,k = Rmin , for all 
k is considered where Rmin is a fraction of the rate that each user would have in the 
genie case of mutually orthogonal channels and uniform power allocation. The genie 
rate is described as R = log2(1+ Pmax

Kσ 2 ) . Other simulation parameters are shown in 

Table 7 Simulation parameters

Parameters Values

Bandwidth of the BS B 180 KHz

Maximum transmit power of the AF relay PR 20 dBm

Small scale fading model ∀k, i, andj [H1i,j ], [h2k,i ] ∼ CN (0, 1).

Large scale fading model at distance d 10−3.53

d3.76

Circut power of the Bs PB 39 dBm

Circut disspitated power coefficients at the Bs/AF relay ν PB 1.2

Circut power of each user Pk 10 dBm

Circut power of each RIS element PR 10 dBm

Circut power of each AF relay transmit-receive antenna element PA 10 dBm

Fig. 2 Average SE using either RIS or AF relay versus Pmax for Rmin = 0.2 bps/Hz and M = 32, K = 16,N = 16
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Table 7. The achievable SE and EE performances as functions of Pmax in dBm are illus-
trated in Figs.  2 and 3, respectively. We evaluated the proposed GAW- and TR-based 
approaches for EE maximization. Additionally, we considered the frequently referenced 
model-based benchmark approaches, such as the GA-based, SFP-based, and amplify-
and-forward (AF) relay-based method [4] . In both figures, we have set the mini-
mum QoS constraint as Rmin = 0.2 bps/Hz for all K users, and considered the setting 
M = 32,K = 16, andN = 16.   Figure 2 depicts the relationship between the SE and the 
maximum transmit power of BS. It also highlights that for low values of Pmax , the prob-
lem is almost always infeasible. This outcome is anticipated as the BS lacks sufficient 
transmit power to fulfill the rate requirements of the users, resulting in very low SE val-
ues. However, when Pmax ≥ 16 dBm , the achievable SE begins to increase. The turning 
point is a result of optimizing for EE rather than SE. When maximizing SE, the objective 
is to fully utilize all available BS power, leading to a continuously increasing trend in 
SE. However, maximizing EE involves finding the optimal balance between spectral effi-
ciency and power consumption, which require increasing the BS transmit power beyond 
a threshold value. Due to the active structure of the AF relay, as opposed to the passive 
reflecting structure of the RIS, the AF relay exhibits the best performance, as shown in 
Fig. 2. However, as Pmax increases, the performance gap between the RIS and AF relay 
becomes smaller, as the SE is dominated by BS transmit power.

The EE performance is shown in Fig. 3. The result confirms the non-monotonicity of 
EE versus Pmax for all the schemes. When Pmax ≥ 25 dBm, the excess transmit power is 
not used since it will decrease the energy efficiency. Also, the proposed algorithms for 

Fig. 3 Average EE using either RIS or AF relay versus Pmax for Rmin = 0.2 bps/Hz and M = 32, K = 16,N = 16



Page 17 of 22Bidabadi et al. J Wireless Com Network         (2023) 2023:89  

Fig. 4 Average SE using RIS versus Pmax and M = 32, K = 16,N = 16 as well as different values for Rmin

Fig. 5 Average EE using RIS versus Pmax and M = 32, K = 16,N = 16 as well as different values for Rmin
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the RIS-based system case significantly outperform the AF relay-assisted one in terms of 
EE, as the RIS is a passive terminal. Moreover, the performance of TR-based algorithm is 
better than other methods as can be observed in both Figs. 2 and 3.

The effect of the different values for Rmin in the TR-based algorithm’s SE and EE ver-
sus Pmax in dBm is depicted in Figs. 4 and 5, respectively. All of the schemes’ SE val-
ues are extremely low for small Pmax values at BS, which cannot meet the consumers’ 
minimum rate requirements. However, increasing Rmin values results in increasing 
the achievable SE for Pmax > 37 dBm. Increasing Rmin leads to higher achievable SE, 
outperforming the unconstrained case of Rmin = 0bps/Hz . A larger Rmin value result 
in a steeper slope in the SE curve.The performance behavior in Fig. 5 follows the same 
trend as in Fig. 4. It is shown that for larger Pmax , higher values of Rmin results in faster 
reduction of the EE, since the extra BS transmit power is used to satisfy the user rate 
requirements. Besides, the achieved EE versus number of RIS reflecting elements N 
for different methods is shown in Fig. 6. The figure shows that, as the number of RIS 
reflecting elements N increases, the EE performance of all schemes initially improves, 
but it eventually reaches a saturation point for N > 12 values and it predicted to have 
a decreasing trend for a very large number of N. Therefore, there is an optimal num-
ber of reflecting elements for EE maximization problem.

We also compared the performance of different algorithms in terms of EE and CPU 
run time. Figure 7 illustrates that the TR-based method achieves faster convergence 
towards a highly accurate optimal solution, leading to its superior EE performance. 

Fig. 6 EE using RIS versus N for SNR = 20 dB and Rmin = 0.2 bps/Hz, as well as Pn(b) = 0.01dBm, M = 64 , and 
K = 16
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Fig. 7 EE and CPU time consumption of different algorithms for SNR = 20 dB and Rmin = 0.2 bps/Hz, as well 
as Pn(b) = 0.01 dBm, M = 64 , and K = N = 8

Fig. 8 EE versus number of iterations of different algorithms for SNR = 20 dB and Rmin = 0.2 bps/Hz, as well 
as Pn(b) = 0.01 dBm, M = 64 , and K = N = 8
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However, this advantage comes with the trade-off of requiring more CPU time com-
pared to the other methods. Furthermore, Fig.  8 presents the convergence behav-
iors of the proposed methods. The EE is plotted against the number of iterations. 
The TR-based method demonstrates a faster convergence behavior compared to the 
GAW-based method. From the figure, it can be observed that the TR-based method 
converges rapidly in approximately one iteration. On the other hand, the GAW-
based method takes more time to converge, reaching convergence after around three 
iterations.

4  CONCLUSION
In this paper, energy-efficient design and power allocation for RIS-based MISO 
networks in the downlink direction is investigated. After the introduction and for-
mulation of the problem, RIS phase design and power allocation using TR- and 
GAW-based EE maximization methods are presented. Then, simulation results are 
compared with those of GA-based and SFP-based method and also a conventional 
method using the relay. Results show that TR- and GAW-based EE maximization 
method has improved energy efficiency in comparison to these methods.

This work primarily focuses on AO-based approaches for energy-efficient RIS-
assisted MISO systems, leveraging the benefits of model-based optimization. How-
ever, we acknowledge the potential of ML techniques to further enhance our solutions 
by exploiting their adaptive capabilities and ability to capture complex system behav-
iors. Future work will explore advanced ML techniques and consider their integration 
with model-based algorithms to maximize the energy efficiency of RIS-aided wireless 
networks.
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