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1 Introduction
The huge market demand for wireless localization-based services has aroused great 
research interest [1, 2]. Satellite signals do not perform effectively in airports, prisons, 
hospitals, warehouses, shopping, valleys, etc. Therefore, other wireless positioning ser-
vices are needed to supplement satellite positioning.

At present, in addition to the satellite positioning technology, there are positioning 
technologies such as bluetooth [3, 4], radar [5], radio frequency identification (RFID) 
[6], ultra-wideband (UWB) [7], geomagnetic field [8], visible light [9], thermal infrared 
[10] and sound [11]. Most of these positioning technologies, however, require additional 
hardware anchor points, increasing business costs. The ubiquitous WiFi [12–14] radio 
signal provides broader convenience for the promotion and use of a business.

In recent years, there have been two kinds of signals collected in the methods based 
on WiFi localization. One is the technology based on the received signal strength 
indicator (RSSI) of radio signals [15–20], and the other is the CSI-based [21] technol-
ogy that reflects the state of the radio signal. RSSI is sensitive to time-varying mul-
tipath fading, and RSSI is obtained by power integration in the digital domain and 
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then backward pushing to the antenna port. The inconsistent transmission charac-
teristics of reverse channel signals and the sensitivity to multipath fading will affect 
the positioning accuracy of RSSI. CSI describes signal decay factors along each trans-
mission path, providing phases and amplitudes of multiple sub-carriers, i.e., signal 
scattering, environmental fading, etc. Information, such as multipath fading or shad-
owing fading and power decay of distance, is accurate information about the environ-
ment while signals are being relayed. Therefore, it is possible to achieve more accurate 
positioning through CSI. However, due to interference signals and different position-
ing scenes, it is difficult to estimate the TOA used for positioning by CSI accurately.

Recently, there are three main methods based on CSI localization research: one is 
based on fingerprint localization method, the second is based on data fusion localiza-
tion method, and the other is based on geometry localization method. Fingerprint-
based localization method needs to collect real-time data in advance. ILCL proposed 
by Zhu et al. [22] is an intelligent positioning scheme based on incremental learning 
without retraining model, in a 200 square meter location scene, and the average accu-
racy of the location of the conference room average positioning error is 1.39968 m. 
Wei et al. [23] used a regression formula to train the positioning accuracy of convolu-
tional neural networks (CNNs) to reach about 50% within the range of 1 m. CiFi pro-
posed by Wang et al. [24] achieves the mean distance error reaches the lowest value 
of 2.3863 m in the corridor experiment. Chen et al. [25] adopted a convolutional neu-
ral network (CNN) to localization in a room, which performs the best with results 
in maximal localization error of 0.92 m with a probability of 99.97% . Jing et al. [26] 
proposed a fingerprinting localization system based on a dual-stream three-dimen-
sional convolutional neural network (DS-3DCNN) in a room, and the mean distance 
error reaches the lowest value of 0.984 m in the laboratory environment. In [27], a 
multi-view discriminant learning approach was developed for indoor localization that 
exploits both the amplitude and the phase information of CSI to create feature images 
for each location, and the minimum distance errors for the laboratory and corridor 
experiments are 0.205 m and 0.109 m, respectively. Y. -W. he combines unsupervised 
learning with supervised learning in neural network (NN) model for indoor location 
based on channel state information (CSI). In the case of a bandwidth of 20 MHz, the 
error is about 50% within 1 m. In [21], the authors proposed to transform the meas-
ured data of CSI into images and use the classification ability of CNN for localization, 
and 70% of the test cases have a localization error under 1.5 ms.

It can be seen from the above paper that the fingerprint-based positioning method 
has the advantage of high positioning accuracy. Still, it needs to pre-sample the field 
data to build the positioning model. Once the location of the positioning reference 
node changes, it needs to re-collect the field data and update the positioning system, 
which brings inconvenience to commercial applications.

Zhao et al. [28] proposed a data fusion method of fingerprinting using RSS and CSI 
data from single access points, which can achieve a positioning accuracy of 1.79 ms in 
a typical laboratory. Li et al. [29] proposed an enhanced particle filter based position-
ing method that combines CSI information and inertial sensor information to achieve 
an average accuracy of 1.3m. A data fusion-based positioning method can obtain 
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higher positioning accuracy, but it needs more data sources, which is not very favora-
ble for commercial promotion.

In [30], Manikanta et  al. used multiple measurement angle-of-arrival (AoA) to 
achieve positioning on standard WiFi equipment, and 60% of localization error 
reaches about 1-meter indoor office deployment. In [31], WiFi devices were located 
by using the round-trip delay (RTD) and AOA measurements, which requires changes 
to the firmware of target devices. The MUSIC algorithm proposed by Schmidt et al. 
[32] has a good effect in terms of resolution, estimation accuracy and stability under 
the condition of multiple antennas. ArrayTrack [33] proposed by Jie et al. is similar 
to [32], requiring eight antennas. However, the number of antennas of commercial 
WiFi devices is generally small, and it is difficult to use the multi-antenna method for 
positioning in application and promotion. Finding a suitable commercial application 
promotion and better positioning effect positioning method urgently needs to solve 
the problem.

This paper proposes a CSI-based localization algorithm that locates standard WiFi 
devices, achieving higher accuracy than existing approaches based on the celebrated 
MUSIC and ESPRIT algorithms, with low communication and computational cost in 
applications. The main contributions of this work are as follows: 

1. An efficient algorithm based on subspace projection is proposed for ToA estimation, 
providing coarse TOA measurements with low computational complexity.

2. An accurate ToA estimation algorithm is proposed, which refines the coarse ToA 
measurement through CSI reconstruction and achieves higher accuracy than exist-
ing MUSIC and ESPRIT-based algorithms.

3. Experimental verification is carried out on an outdoor positioning system with six 
anchor points which were used in 900 m2 of outdoor measurement. The results show 
that the proposed algorithm has high precision and broad application prospects.

The proposed algorithm can effectively reduce the cost of commercial deployment 
and improve the versatility of the equipment because it does not need to collect the 
data of the localization area in advance. The positioning error is reduced to 0.75 m in 
80% and 1 m in 90% in an outdoor environment. In the indoor positioning environ-
ment, the positioning errors of the algorithm are reduced to 0.75 m and 1 m in the 
range of 60% and 74%, respectively.

The remainder of this paper is organized as follows. The system model, including 
system architecture and signal structure, is presented in Sect. 2. The problem-solving 
process is presented in Sect. 3. We present the process of solving TOA by the signal 
reconstruction proposed. Experimental validation is provided in Sect. 4, followed by 
concluding remarks in Sect. 5.

2  System model
In the section, we briefly introduce the positioning equipment and system structure, 
then introduce the source and data structure of the positioning data, and finally pre-
sent the Saleh-Valenzuela propagation model.
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2.1  System architecture

In this paper, we use the WiFi-based wireless ad hoc system for positioning (WiFi-
WASP) [34–36] developed by the Commonwealth Scientific and Industrial Research 
Organization (CSIRO) of Australia for our experiments. The WiFi-WASP platform is a 
software-defined radio built with low-cost off-the-shelf hardware, which operates in the 
5.8 GHz ISM band.

Figure 1 shows the structure of the time-difference-of-arrival (TDOA)-based passive 
WiFi localization system. The localization system consists of six custom-built WiFi sniff-
ers that act as anchors for deployment at known locations, a target device for locali-
zation, an access point (AP) for WiFi communication and a computer. Ordinary WiFi 
access points can replace sniffers with a sniffing function. Not only can the sniffer be 
used to monitor the traffic in the WiFi network [37], but also has the ability to sniff the 
communication between the target device and WiFi. More importantly, it will not inter-
fere with the operation of existing standard WiFi systems. The clock skew and clock 
offset of the system clock is estimated by the timestamps of the access point communi-
cation measured by all the sniffers [38], which solves the clock synchronization problem 
by using the time-of-arrival (TOA). The target device used for positioning is located in 
the standard WiFi wireless network. When the target device communicates with the AP, 
all the sniffer measurements will measure the communication time stamp. At the same 
time, combined with the AP communication time stamp measured by the sniffer, the 
location of the target device can be estimated on the computer.

2.2  Signal structure

802.11a/g/n/ac WiFi devices adopt the OFDM modulation scheme [39, 40]. Figure 2 
illustrates the architecture of a WiFi system. On the transmitter side, the transmitted 
symbols that need to be transmitted are encoded, the serial-to-parallel data stream 
is converted, and then the signal is converted from the frequency domain to the 
time domain using the inverse Fourier transform. To reduce inter-symbol interfer-
ence, circular prefixes (CP) are inserted to form OFDM codes. When framing, the 

Sniffer Sniffer

Sniffer
Sniffer

Sniffer
Sniffer

Access Point

Target Device

Fig. 1 Structure of the time-difference-of-arrival (TDOA)-based passive WiFi localization system
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synchronization sequence and channel estimation sequence must be added to facili-
tate the burst detection, synchronization and channel estimation of the receiver, and 
finally output the orthogonal baseband signal. The reception of OFDM is the inverse 
of the transmission process, which is used to recover the data at the receiver. How-
ever, CSI for TOA estimation is the frequency-domain data after the signal has passed 
through the discrete Fourier transform (DFT), the instantaneous CSI measured by 
the receiver, in Fig. 2. The CSI is extracted without any computing overhead and pro-
vides a wealth of fine-grain information, such as dye out, multipath fading or shadow-
ing fading, power decay of distance and noise.

The WiFi-WASP devices platform implements a traditional OFDM receiver, along 
with a sub-system that estimates the ToA of each received frame from channel state 
information using the proposed subspace projection and gradient descent method. In 
order to improve the positioning accuracy, the instantaneous automatic gain control 
data of the sensor is also extracted to compensate the signal delay [41, 42].

The CSI data collected by the WiFi-WASP system is processed on PC for TOA 
estimation. Specifically, the CSI associated with each received WiFi frame can be 
expressed as:

where H collects all CSI values between the sniffer and the AP and between the target 
device measured by the sniffer and the AP. hi is the ith the TOA signal sampled from the 
WASP. H is defined in the frequency domain as [43]:

where Hij is the ith sub-carriers of CSI, amplitude ‖Hij‖ , and phase ∠Hij , show sig-
nal attenuation and phase shift, and j indicates that each CSI group has 256 complex 
numbers.

The CSI is fine-grained information from the physical layer that describes channel fre-
quency response (CFR) from the transmitter to the receiver. However, to estimate the 
TOA used for positioning, channel impulse response (CIR), which can describe the mul-
tipath effect, is needed to represent the channel. In the case of infinite bandwidth, CFR 
and CIR are converted to each other by Fourier transforms. Therefore, the received CSI 
data, under the assumption of linear time invariance, CIR can be expressed as:

(1)H = [h1,h2, ...,hi]T , i ∈ [1,∞),

(2)Hij = ||Hij||ej∠Hij , j ∈ [1, 256],

Channel
coding S/P IDFT Insert CP P/SConstellation 

mapping

S/PRemove CPDFTP/S
Decoding/d
einterleavi

ng
demapping A/D

D/As(n)

ŝ (n)

y(n)

y(n)

Subspace 
and 

Gradient 
mothed

Estimated TOA 

Fig. 2 Point-to-point transmission of model using OFDM
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where ak and τk denote the amplitude of the multipath component and the complex 
attenuation and propagation delay of the kth path, respectively. δ(τ ) is the Dirac delta 
function, and L is the number of multipath components, while 1 ≤ k ≤ L are in ascend-
ing order. L is related to the sampling points that CFR converts into CIR by Fourier 
transform, and 256 sampling points are used in this paper. So, τ0 in the model denotes 
the propagation delay the direct line-of-sight path, which is the TOA used to calculate 
the location. CIR shows the signal energy value of the signal reaches the receiver at dif-
ferent times.

2.3  Channel modeling

In order to reconstruct the signal space in the frequency domain, the Saleh-Valenzuela 
propagation model (SVPM) and Monte Carlo simulation were used to obtain the charac-
teristics of amplitude and propagation delay [44, 45]. Figure 3 shows three clusters, each 
containing four paths. In the SVPM channel model, the two-stage Poisson process is used 
to simulate the arrival of the multipath cluster and the multipath component within the 
cluster received by the receiver. The TOAs of both are independent and identically distrib-
uted exponential distribution, so the complex amplitude of each path can be expressed as 
[44, 45]:

where k indicates the number of path, and N (0, σ 2
k ) shows a value which is according 

with the normal distribution. (4) creates the Rayleigh fading. The variance σ 2
k  is the aver-

age power of the k path, so the strength of the paths within the clusters is given as [44, 
45]:

(3)h(τ ) =
L−1

k=0

αkδ(τ − τk), k ∈ [1, 256],

(4)ak = N
(

0, σ 2
k

)

+ jN
(

0, σ 2
k

)

,

(5)σ 2(k) = e−Tl/Ŵe−τ il/γ ,
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Fig. 3 Saleh-Valenzuela propagation model
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where Tl is the arrival time of the lth cluster and τil is the arrival time of the ith path in 
the lth cluster. And we set the time constants Tl and τil or the inter- and intra-cluster as 
300 ns and 5 ns, respectively, as Poisson distributions. Ŵ is a constant of cluster arrival 
decay time, γ indicates a constant of ray arrival decay time, Ŵ = 60 ns and γ = 20 ns.

3  Problem solving
In the section, roughly estimating the amplitude and TOA based on the subspace pro-
jection is introduced, the signal space is reconstructed using the roughly estimated 
amplitude and TOA, and the high-precision TOA is calculated by the gradient descent 
method.

3.1  Process of solved

In Fig.  4, the WiFi network collected by the PC contains CSI between sniffers and 
between the target device and AP. The CIR peak is shifted to the center of the index 
and filtered. In a short time period, the amplitude is roughly estimated by least 
squares estimation, and the TOA is roughly estimated by subspace projection. The 
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Fig. 4 Algorithm framework is based on CSI localization
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roughly estimated amplitude and the TOA can reconstruct the signal space. Through 
the Euclidian distance between the reconstructed signal space and the sampled signal 
space and the exponential distribution density product and amplitude normal distri-
bution density product of TOA, the high-precision TOA can be estimated by gradient 
descent. The timestamps between sniffers are used to estimate the system clock syn-
chronization and clock offset correction of the acquired TOA. Then, weighted mean 
filtering is used to improve positioning performance further. Finally, TDOA is used to 
locate the target device online on a PC.

3.2  Subspace projections give rough estimates of TOA and amplitude

In the section, we propose to filter the CIR and shift the peak value to the center of 
the index, estimate the amplitude by least square, and finally estimate the TOA by 
subspace projection.

3.2.1  Signal of CSI filter

The sampled TOA signal contains white noise and interference. This information is 
going to have a significant impact on our TOA estimates. So we need to attenuate 
and filter out these distracting messages. As shown in Fig. 5, the impulse response is 
found from the channel estimate by taking the inverse fast Fourier transform (IFFT). 
The resulting impulse response has samples spaced by 10ns. This oversamples the 
impulse response somewhat. The impulse response peak on the left can easily be con-
sidered the wave peak in the region where the estimated TOA is located, making the 
algorithm easy to fall into a local optimum. Therefore, we determine the approximate 
TOA region for positioning by finding the highest peak and then shift the peak signal 
to the center of the index by using the signal offset method to estimate the TOA, as 
shown in Fig. 6.

Fig. 5 CSI time-domain raw signal
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3.2.2  Least squares amplitude estimation

According to (3) and SVPM, and the CIR sampled from the time-domain CSI [44], there 
are two random numbers in the model, one is the amplitude obeying Poisson distribu-
tion, the other is the diameter of arrival time following an exponential distribution. The 
existence of two random numbers makes it difficult to estimate TOA. The least squares 
method is used to obtain the amplitude estimation, thus solving the problem of estimat-
ing TOA by the subgradient method and providing important reference data for signal 
reconstruction.

This paper considers super-resolution TOA estimation based on frequency-domain 
measurement of the channel response. The sampled CFR from the frequency-domain 
CSI (2) can also be expressed as [46, 47]:

where f denotes frequency bands or bandwidth. The parameters τk and αk are random 
time-variant functions because of environmental state changes and communication 
equipment factors. According to the SVPM, τk and αk follow the exponential distribu-
tion and Poisson distribution, respectively. L indicates the total number of propagation 
paths.

In fact, we collected the measurement data are discrete data by sampling channel at 
equally spaced frequencies, and considering white noise in signal, so the discrete fre-
quency-domain channel response is expressed as:

(6)H(f ) =
L

∑

k=0

αke
−j2π f τk ,

(7)y(k) = H(fk)+ n(k) =
L−1
∑

k=0

αke
−j2π(f0+k�f )τk + n(k),

Fig. 6 CSI time-domain shift signal
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where n(i) denotes white measurement noise with mean zero. f is the center frequency, 
and �f  is the kth frequency subband. Then, this signal model in vector form can be writ-
ten as

where

where the superscript T expresses the matrix transpose operation.
Because the number of path τk is far smaller than the number of CSI sampled. At 

the same time, in the indoor positioning scene, the amplitude value of the signal 
transmitted in a short time is a relatively stable value. Therefore, there exists a set of 
m , such that

So the amplitude value m̂ can be estimated by the least squares estimation, we have

3.2.3  Subspace projection TOA estimation

The subspace projection plays an important role in the initial estimated TOA. As 
shown in Fig. 7, in order to estimate TOA [46], we project the multidimensional vec-
tor y onto the time axis t , and according to the amplitude value remains constant for a 
shorter time and formula (11) [48], so we get y′0.

(8)y = H+ n = Sm + n,

(9)

y = [y(0) y(1) . . . y(L− 1)]T ,
H = [H(f0) H(f1) . . . H(fL−1)]T ,
n = [n(0) n(1) . . . n(L− 1)]T ,
S = [s(τ0) s(τ1) . . . s(τL−1)],
s(τk) = [1 e−j2π(f0+�f )τk . . . e−j2π(f0+(L−1)�f )τk ]T ,
m = [α0 α1 . . . αL−1]T ,

(10)min

L
∑

k=0

(y − Sm)2.

(11)m̂ = (SHS)−1SHy.

y
1

t0

C

y0'
Fig. 7 Projection of y in t generated vector
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where y1 is the residual of y0 and y′0 in Fig. 7, and it can be written as

Due to the change of y changing in subspace, when y is the closest to the time axes t , 
the corresponding time τk value is TOA. In other words, the inner product of y1 should be 
minimum, at the same time,y1 is perpendicular to y′0 [49, 50]. So we have

Since both yHy and SHS are constant [50, 51], the subspace peak search can be written 
as

Then, τk can be estimated as follows:

where τ1 is the first arrival time. Obviously, the second arrival time τ2 is taken when the 
inner product of y2 is the minimum from Fig. 7. So the proposed algorithm can be sum-
marized in Algorithm 1.

(12)y′0 = S(SHS)−1SHy0,

(13)

y1 = y0 − y′0,

= y0 − S(SHS)−1SHy0,

= [I− S(SHS)−1SH ]y0.

(14)

min
τk

yHy =min
τk

yH⊥ y,

=min
τk

(

yH [I − S(SHS)−1SH ]

× [I − S(SHS)−1SH ]y
)

,

=min
τk

(yHy − yHSSHy

SHS
),

(15)Psubspace = yHS.

(16)τ̂k = arg max
τk

(yHS),
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3.3  Gradient descent methods to estimate TOA

The TOA estimated by the least squares estimation and subspace projection is based 
on the principle that the amplitude value is unchanged in a short time, so the esti-
mated TOA still has a significant error, and the noise space is not very good. Still, 
it provides a reference data reconstruction according to the signal. Therefore, the 
method improves the operation efficiency of estimating TOA and effectively avoids 
the gradient descent method into a local optimum. We use the exponential distribu-
tion of time and the normal amplitude distribution to get their distribution density. 
We use the estimated TOA and amplitude to get the Euclidean distance between the 
sampled frequency-domain signal and the reconstructed frequency-domain signal 
gradient descent method.

The gradient descent method is a common first-order optimization method, which 
is one of the simplest and most classical methods for solving unconstrained optimiza-
tion problems [52]. Based on (6), the signal space H(f) in the frequency domain is 
reconstructed by using the arrival time obtained by the subspace projection and the 
amplitude value obtained by the least squares, so we consider an unconstrained opti-
mization problem min

f
F(f )

The domain of H(f) is in (0,∞) , so H(f) is defined in the domain H(f) we would have

where f ∈ (0,∞) , αk and τk are two constants; for any point f in the interval, there is a 
derivative that corresponds to it, so H(f) and F(f) are continuous differentiable functions 
in the domain. If we can construct a sequence f0, f1, f2, . . . , fn that can be able to satisfy 
F(ft+1) �= F(ft),t ∈ (0, n) , then we can perform the process continuously to converge to 
the local minimum.

(17)min
f

F(f ) = H(f )−H1(f ),

(18)

H ′(f ) = lim
�f→0

H(f +�f )

H(f )
,

= lim
�f→0

L
∑

k=0

αke
−j2π(f+�f )τk −

L
∑

k=0

αke
−j2π f τk

�f
,

= lim
�f→0

L
∑

k=0

αke
−j2π(�f )τk

�f
,

= lim
�f→0

L
∑

k=0

αke
−j2πτk

e(�f )

�f
,

= lim
�f→0

L
∑

k=0

αke
−j2πτk e

(�f )
ln�f ,

= lim
�f→0

L
∑

k=0

αke
−j2πτk e(�f )2 ,

= lim
�f→0

L
∑

k=0

αke
−j2πτk ,
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However, in order to obtain the optimal value, we according to the gradient descent of 
τ and α , changing in the process of using the amplitude of normal distribution and arrival 
time of exponential distribution characteristic, to obtain the distribution of t and h den-
sity product, as a parameter of gradient evaluation, at the same time using the received fre-
quency-domain signals and according to the time and frequency-domain signal amplitude 
of the Euclidean distance, as the parameters of gradient evaluation.

3.3.1  Exponential distribution of the arrival times

According to the SVPM [44], the TOA follows an exponential distribution, and the proba-
bility density function (PDF) of exponential distribution reflects the probability distribution 
effect TOA. The PDF is consistent with the problem constraints and any prior knowledge 
and mathematically tractable, so we use the PDF of the TOA as one of the evaluation 
parameters for gradient optimization. The PDF of the exponential distribution is written as

The arrival times include the intra-cluster and inter-cluster. If we use the delay of the lth 
cluster, � is 1

Ŵ
 . However, if using the delay of the kth path in the lth cluster, � is 1

γ
 . Ŵ and γ 

derive from formula (5), where τ is the time corresponding to each paths. Because time 
is qualitative, τ always is greater than zero. And we calculate is the PDF of exponential 
distribution of time, which can reflect the probability distribution of time, so it can be 
expressed as

where N is the total number of paths, k is the number of paths, and Fτ is the exponential 
distribution density product of all paths. Because the PDF of one of the time exponential 
distributions F may be zero, this will result in Fτ being zero, thus affecting the reliability 
of the system. Take Fe_density logarithm which can effectively avoid the occurrence of one 
of the F 0, Fe_density also is zero, and it is written as

3.3.2  Normal distribution density of the amplitude

The amplitude αk is obtained by the least squares from formula (11). According to the 
SVPM, it can be known that the amplitude follows the normal distribution [44], and the 
density of the normal distribution represents the distribution effect of the random variable 
amplitude αk , which can be written as

where we set µ = 0 , σ is the standard deviation [44], and k is the number of amplitude,

(19)Fexponent(τ ; �) =
{

�e−�τ , if τ ≥ 0;
+0, if τ < 0.

(20)Fe_density(τk=1; �) =
N
∏

k=1

�e−�τk , if τk ≥ 0,

(21)Fe_l(τk; �) =
N
∑

k=1

(log�−�τk), if τk ≥ 0.

(22)Fnormal(αk) =
1

σ
√
2π

e
− (αk )

2

2σ2 ,
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The product of the amplitude normal distribution density values of each path of the 
amplitude reflects the normal distribution effect of all the amplitude values, which can 
be expressed as

where k is the number of amplitude, and N is the total number of amplitude. How-
ever, since one of Fnormal may be zero, it takes the logarithm to avoid Fn_density = 0, thus 
improving the stability of the system. So it is written as

3.3.3  Euclidean distance between received and reconstructed frequency‑domain signals

Amplitude αk is given from formula (11). τk is given by subspace methods from formula 
(16), so the reconstructed frequency-domain channel response Γ  can be obtained by 
(6). Then, the Euclidean distance between the reconstructed frequency-domain channel 
response Γ  and the received frequency-domain channel response H is obtained, and it 
can be written as

 where N is both the number of paths τk and amplitude αk.
With estimation of the arrival time τ , H will also vary. When D(H ,Γ ) is the minimum, 

τk should be the closest to the ground truth arrival times.

3.3.4  Evaluation method

The evaluation of the gradient descent includes the probability density of exponential 
distribution, the probability density of normal distribution and Euclidean distance. 
Larger PDF values for both exponential and normal distributions indicate that the 
estimated arrival time τ corresponds better to the exponential distribution, and the 
amplitude α corresponds better to the normal distribution. The smaller the calculated 
Euclidean distance is, the closer the calculated arrival time τ and amplitude α are to the 
true values. Therefore, the evaluation of the gradient method is expressed as

3.4  The system clock synchronization

In the WiFi-WASP, each sniffer in the system has a local clock, and they are not synchro-
nized with each other, which makes it difficult to locate. Therefore, system clock synchro-
nization is an important problem to solve in location estimation. In order to solve the clock 
synchronization problem in the process of system positioning, the sniffer clock needs to be 

(23)Fk_density(αk) =
N
∏

k=1

1

σk
√
2π

e
− (αk )

2

2σk
2
,

(24)Fn_l(αk) =
N
∑

k=1

(

log
1

σk
√
2π

− (αk)
2

2σk
2

)

.

(25)D(H ,Γ ) =
N
∑

k=1

√

(H1 − Γ1)2 + (H2 − Γ2)2 + · · · + (Hk − Γk)
2,

(26)P(τ | �,α,H ,Γ ) = 1

Fe_l(τ , �)+ Fn_l(α)
+ D(H ,Γ ).
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post-synchronized by estimating and compensating the clock tilt and clock offset, so as to 
estimate the packet arrival time according to a common reference clock. The location of 
the sniffer and the location of the target are expressed as sj = [xj , yj , zj]T (j = 1, . . . , J) and 
Γ = [x, y, z]T , where J is the number of sniffers. Assuming that the target device transmits 
the packet at Γ  and at time tTx , the arrival time rj of the corresponding radio signal meas-
ured by any sniffer is

where αj and βj represent the clock skews and clock offsets of sniffer j, respectively. 
djΓ � |sj − Γ | represents the true distance between the target device and sniffer j, c is 
the speed of light, δtj is the hardware delay (e.g., the delay caused by radio frequency 
(RF) circuits), and ej is the time measurement error. In the process of system operation, 
in order to avoid clock drift, set the values of α and �t to be very small, Eq. (27) can be 
rewritten as

In a short period of time (less than 0.5 s), the synchronous arrival time measurement of 
sniffer j tTjcan be expressed as

Assume that the WiFi-WASP device sends two consecutive packets at tnand tn+1 , respec-
tively, with a time interval of less than 0.5 s. The time values received by different sniffers 
are denoted by rnj and rnk  , respectively. Therefore, the difference between the clock skews 
of different sniffers can be approximated as

where j and k are different sniffers. Using (31) to estimate the clock skews of the sniffer 
k by specifying one of the sniffers as a reference clock (i.e., αj = 0), it can be expressed as

Since the location of the sniffer is known, it is easy to measure the true distance between 
the transmitter and the sniffer. Using formula (27), the clock offset between different 
sniffers can be written approximately

ˆalphaj and α̂k , respectively  through (31) estimate the clock skew of the jth and kth 
sniffer. βjand βk indicate the clock offset of the jth and kth sniffer, respectively. Using (33) 

(27)rj = (1+ αj)

(

tT + djΓ

c
+ βj +�tj + ej

)

, j = 1, . . . , J ,

(28)rj = �tj + (1+ αj)

(

tTx +
dj

c
+ βj + ej

)

, j = 1, . . . , J ,

(29)tTj =
rj −�tj

1+ αj
− βj − ej ,

(30)αj − αk ≈
rn+1
j − rnj

rn+1
k − rnk

− 1,

(31)αk ≈
rn+1
j − rnj

rn+1
k − rnk

− 1.

(32)βj − βk ≈ rj

1+ α̂j
− rk

1+ α̂k
− dj

c
+ dk

c
.
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to estimate the clock offset of the sniffer k by specifying one of the sniffers as a reference 
clock (i.e., βk = 0), it can be expressed as

The estimated clock skews and clock offsets are used to correct the measured arrival 
time delay of data packets. Meanwhile, the time delay after system clock synchronization 
is estimated using the reference clock of the sniffer.

3.5  TDOA method

Based on WiFi-WASP system, the measurement error of the direct path of signal propa-
gation outdoors obeys Gaussian distribution, while the measurement error of signal 
propagation indoors does not. Therefore, Taylor algorithm of TDOA is used to locate 
the target device. Taylor algorithm A recursive form of hyperbolic equation solving algo-
rithm. In order to ensure the convergence of the algorithm, the initial position deviation 
should not be too large. There are J sniffers involved in locating the target device, and the 
position of the jth sniffer is sj = (xj , yj)

T , and the position coordinate of the target device 
is Γ = (x, y)T .

The distance between the target device and the kth sniffer is expressed as

The distance difference rj,1 between the target device and the sniffer j and 1 can be 
expressed as

The first step is to give an initial estimate of the location of the target device 
u0 = (x0, y0)

T , which can be obtained by the weighted least square method. For (35) at 
the initial estimation position, the first-order Taylor series expansion can be obtained

where η represents residuals and δ = (�x,�y)T represents the error vector estimated for 
the unknown position of the target device and

The weighted least squares solution of formula (36) is

(33)βj ≈
rj

1+ α̂j
− rk

1+ α̂k
− dj

c
+ dk

c
.

(34)rj =
√

(xj − x)2 + (yj − y)2

(35)rj,1 =
√

(xj − x)2 + (yj − y)2 −
√

(x1 − x)2 + (y1 − y)2

(36)η = h− Gδ

(37)h =







r2,1 − (r2 − r1)
r2,1 − (r2 − r1)

· · ·
rM,1 − (rM − r1)







(38)G =











x1−x0
r1

− x2−x0
r2

y1−x0
r1

− y2−x0
r2

x1−x0
r1

− x3−x0
r3

y1−x0
r1

− y3−x0
r3

· · · · · ·
x1−x0
r1

− xM−x0
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where Q represents the covariance matrix of the measured values of TDOA, and the ini-
tial value of the next iteration can be obtained through formula (39)

Plug this value into the next iteration, and the general ε threshold takes 10−3 until it 
recurs to

At this point, we can get the coordinate estimate value of the target device to be tested 
(x

′
0, y

′
0).

4  Experimental results
The system performance was evaluated under outdoor line-of-sight (LOS) conditions 
and indoor conditions. During each experiment, an 802.11ac wireless local area network 
was set up, which operates in channel 149 with 80 MHz bandwidth. A laptop with a WiFi 
USB dongle is used as the target device and regularly pings the AP to generate WiFi traf-
fic. The packets transmitted by the APs were used for synchronizing the sniffers.

4.1  Outdoor test

The system was tested under outdoor line-of-sight (LOS) conditions to evaluate its per-
formance. We deployed six sniffers around a WiFi network for the outdoor LOS tests 
with one access point and one WiFi dongle. The topology of the system is shown in 
Fig. 8. The size of the experimental area was 900 m2 . The target moved across the test 
area. Figure 5 shows the positioning results for the outdoor test. It can be seen that the 
positioning results are consistent with the actual locations.

Figure  9 shows the positioning accuracy of our system when the TOA is estimated 
using the subspace and gradient descent (SGD) and MUSIC and ESPRIT algorithm. It 
can be seen that the 80 percentile positioning error is 0.75 m, and 1 m in 90% with the 
SGD. Compared with MUSIC and ESPRIT’s TOA estimation methods, the accuracy of 
SGD’s TOA estimation method is much higher.

4.2  Indoor test

The indoor experiment is shown in Fig.  10. With the same conditions as the outdoor 
experiment, we deployed six sniffers in the assembly hall, covering an area of around 
700 m2 . One standard WiFi device was placed at known locations for synchronizing the 
sniffer clocks. The target was to collect data from 17 locations in the assembly hall. Fig-
ure 11 shows the target position and estimated position. It can be seen that except for the 
poor reflection effect of the seat in the Y-axis direction, the estimated position is consist-
ent with the actual position, which can meet the needs of many indoor positioning.

Figure  12 shows the positioning effect of our system when using SGD, MUSIC 
and ESPRIT algorithms to estimate TOA. It can be seen that the about 48 percentile 
positioning error is 0.5 m and 1  m in 74% . Compared with MUSIC and ESPRIT’s 

(39)δ = (�x,�y)T = (GTQ−1G)−1GTQ−1h

(40)x
′
0 = x0 +�x, y

′
0 = y0 +�y.

(41)| �x | + | �y |< ε.
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TOA estimation method, SGD’s TOA estimation method has higher accuracy. Under 
similar conditions, the SpotFi is the method proposed in [31], M. Kotaru et al. has a 
positioning error of 0.5 m with less than 40% , and the 60 percentile positioning error 
is 1 m.
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Fig. 8 Positioning results in outdoor LOS environments
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Fig. 9 Cumulative distribution function of the positioning errors for the outdoor LOS test



Page 19 of 22Hu et al. J Wireless Com Network        (2023) 2023:114  

5  Conclusion
With the increasing demand for positioning, the existing positioning methods are 
challenging to meet the convenience of deploying equipment without satellite posi-
tioning. The proposed method for estimating TOA is expected to better adapt to the 
business needs of device deployment. In this paper, a rough estimation of amplitude 
based on least squares and a rough estimation of TOA based on subspace projec-
tion is designed. The signal space is reconstructed using the estimated amplitude and 
TOA, which reduces the complexity of the calculation. The normal distribution of 
amplitude, the exponential distribution of TOA and the Euclidean distance between 
the reconstructed signal and the sampled signal are used to improve the position-
ing accuracy. The proposed algorithms were validated experimentally on an outdoor 
localization system deployed with six anchors covering 900 m2 . The results show that 

Fig. 10 Estimated target locations in the indoor environment data collection
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Fig. 11 Estimated target locations in the indoor experiment
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the proposed algorithm has high precision. At the same time, it has been verified that 
the positioning effect is better indoors. Compared with the fingerprint positioning 
method, the positioning method adopted in this paper has the advantage of not need-
ing to sample data in the positioning environment in advance, so it has a broad appli-
cation prospect.
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