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1 Introduction
With the increasing demand for high-speed data transmission, it is increasingly impor-
tant to improve network capacity. One promising solution that has garnered significant 
attention recently is the heterogeneous networks (HetNets). By deploying different types 
of elements, such as picocells, femtocells, and relay stations, within the macrocells cov-
erage, HetNets can increase the potential for spatial resource reuse and enhance the 
quality of service (QoS) of wireless users [1]. Meanwhile, due to the explosive growth of 
multimedia traffic, broadcasting/multicasting has recently received much interest as an 
efficient means for dissemination of multimedia information to wireless users, e.g., 5G 
New Radio Multimedia Broadcast/Multicast Service (NR-MBMS) [2, 3].

In this paper, we consider a fundamental problem of minimum-delay file dissemina-
tion in two-hop relay-based HetNets. As shown in Fig. 1, the system is composed of a 
macro base station (BS), a half-duplex relay station (RS), and multiple wireless users 
associated with the RS. Such a two-hop relaying structure is a key building block from 
which to construct versatile networks in 5G/6G [4, 5]. The BS intends to disseminate 
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a block of packets to all users over time-varying channels. To minimize the dissem-
ination delay, rateless code [6] is employed at the BS, such that coded packets are 
disseminated to the users, and the original packets can be decoded by a user once a 
sufficient number of coded packets are received.

At each time slot, the half-duplex RS can either broadcast a coded packet to the 
users or fetch a coded packet from the BS. Due to the dynamic nature of the wireless 
environment, at each time slot, only a subset of users are able to receive a transmitted 
packet successfully. The goal is to minimize the file dissemination delay by making 
optimal channel-aware scheduling decisions at the RS, i.e., either fetching or broad-
casting a packet at each time slot.

Due to the time-varying nature of wireless channels, it is desirable for the RS to 
broadcast a packet if the overall channel states between the RS and the users are 
favorable, e.g., when most of the users are able to receive the broadcast packet at the 
current time slot successfully. Note that, the users’ channel conditions are typically 
asymmetric in practice, such that the dissemination delay is usually bottlenecked by 
the users with poor channel conditions. Hence, the RS should also pay more atten-
tion to the users with poor channel conditions. Moreover, making a decent balance 
between fetching and broadcasting packets at the RS is important, such that the RS 
buffer can be replenished with new packets in time during the transmission, and also 
the users can receive packets with high rates. However, it is challenging to make opti-
mal scheduling decisions at the RS, even for small-sized systems (i.e., the number of 
users is small).

Our contributions are summarized below. We study a channel-aware scheduling 
problem for efficient file dissemination in two-hop relay-based HetNets. We model 
the scheduling problem at the half-duplex RS as a Markov decision process (MDP) 
and propose a deep reinforcement learning (DRL)-based intelligent scheduling 

Fig. 1 Relay-based HetNet



Page 3 of 18Chen et al. J Wireless Com Network        (2023) 2023:116  

algorithm. The proposed scheduling algorithm does not rely on the knowledge of 
statistic channel parameters, and can be used in general scenarios where the BS-to-
RS channel is not ideal. We also extend the proposed algorithm to adapt to the net-
work dynamics. Through simulations, we show that the proposed algorithm performs 
close to a lower bound on dissemination delay and significantly outperforms baseline 
schemes such as the uncoded Automatic Repeat-reQuest (ARQ).

The organization of this paper is summarized below. The related work is presented in 
Sect. 2. Section 3 describes the system model. The MDP formulation of our problem and 
the proposed scheduling algorithm are presented in Sect. 4. Simulation results are pro-
vided in Sect. 5. Finally, Sect. 6 concludes this paper.

2  Related work
There have been numerous studies on multicast/broadcast in single-hop networks. In 
[7], the authors provide precise bounds on the maximum throughput after analyzing the 
throughput performance of rateless code in single-hop broadcast networks. The study in 
[7] is focused on symmetric channel distributions; however, in our study, we consider a 
generic asymmetric channel distribution. Sim et al. [8] and Low et al. [9] study oppor-
tunistic coded multicast scheduling policies over a single-hop network, where the key 
trade-off is between multi-user diversity and multicast gain. Khamfroush et al. [10] pro-
poses a scheduling policy for the transmission of coded packets in cooperative networks. 
However, the authors in [10] employ a dynamic programming-based approach, that is 
computationally intractable when the network size increases. Coded multicast sched-
uling over relay-based HetNets is investigated in [11], where the authors employ fluid 
relaxation to formulate the scheduling problem at the half-duplex RS. A threshold-based 
policy termed WBP-TRACK is proposed, and a lower bound on dissemination delay is 
derived. However, they only consider the special case where the BS-to-RS channel is 
perfect, which is different from ours.

Recently, reinforcement learning (RL) has seen wide spread applications for wireless 
communication networks, particularly in decision-making problems [12, 13]. Iqbal et al. 
[14] studies the adaptive resource allocation scheme based on Q-learning in HetNets. 
The cell handover problem in HetNets is studied in [15], where a context-aware sched-
uling algorithm based on RL is proposed. The authors in [16] propose a sleep schedul-
ing algorithm based on RL for compressive data gathering, which aims to enhance the 
energy efficiency and prolong the lifespan of wireless sensor networks. The authors in 
[17] investigate a downlink power allocation problem in HetNets and propose power 
allocation algorithms based on Q-learning. The spectrum sharing issue in cognitive 
radio networks is studied in [18] using RL, where the authors propose an RL-based 
channel sensing and selection algorithm, which does not rely on the knowledge of sys-
tem parameters. The above works are all based on the framework of RL. However, when 
the state and/or action space grows large, the effectiveness of RL decreases. In that case, 
DRL becomes a more appropriate choice for decision-making problems. Tang et  al. 
[19] proposes a DRL-based algorithm for real-time wireless resource allocation in high 
mobility HetNets. The authors in [20] study efficient power allocation in HetNets and 
propose a DRL-based power allocation algorithm. The work [21] considers end-to-end 
network slicing enabling HetNets, and proposes a switching algorithm using DRL. Ma 
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and Wong [22] and Lie t al. [23] investigate dynamic content caching in HetNets and 
propose efficient DRL-based scheduling algorithms for updating cache content. Cong 
and Lang [24] studies the dynamic multichannel access problem in multi-user wireless 
networks, and proposes a DRL-based algorithm to enhance the spectrum utilization in 
dynamic spectrum access. In [25], the authors consider a joint relay selection and power 
allocation problem in two-hop cooperative relay networks, and propose a hierarchical 
reinforcement learning-based policy to minimize the outage probability. However, they 
simply assume a fixed operation pattern at half-duplex relays, i.e., one time slot for fetch-
ing a packet and the next time slot for broadcasting a packet, which is different from our 
paper.

In summary, the existing scheduling schemes used in relay-based HetNets either have 
high computational complexity or only apply to systems with special structures. By con-
trast, in this paper, we consider a general system model and propose a DRL-based sched-
uling scheme that surpasses the performance of existing schemes.

3  System model
As shown in Fig. 2, we consider a relay-based HetNet in which a macro BS aims to dis-
seminate a common data file to a group of N users via a half-duplex RS. The set of user 
indices is denoted as I := {1, . . . ,N } . The data file contains K original (raw) packets, each 
of which can be represented as a vector of length v over a finite coding field Fd where d 
is the size of the coding field. Hence, each packet has a length of v⌈log2 d⌉ bits. To mini-
mize the file dissemination delay, rateless code is employed at the BS. That is, an infinite 
number of coded packets are generated and backlogged at the BS buffer initially. The 
buffers of the RS and users are initially empty. We consider a time-slotted system, where 
the half-duplex RS can either fetch a coded packet from the BS or broadcast a previously 
received coded packet to the users at each time slot. Once a packet is broadcast by the 
RS, it will be removed from the RS buffer. For the sake of simplicity, we assume that once 
a user receives any K coded packets, it can recover (decode) the original packets, and the 
coding overhead is negligible [26].

We assume that the RS broadcasts packets utilizing a single frequency-time 
resource block (RB) and a predetermined modulation and coding scheme (MCS). 
Let the random process Ci(t) ∈ Z0 denote the number of bits that can be successfully 
transmitted from the RS-to-user i on the transmission RB at time slot t. We assume 

Fig. 2 System model
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that users’ channels undergo fast fading, i.e., Ci(·) varies independently over time slots 
for all i ∈ I  . If the RS chooses to broadcast a packet at time slot t, two possibilities 
can occur for the user i: it either successfully receives the packet, i.e., Ci(t) is greater 
than the packet length v⌈log2 d⌉ , or it fails to receive the packet. Thus, we define users’ 
channel states as binary random processes

where 1(·) is the indicator function. Thus, the channels are inherent ‘ON-OFF’ channels. 
In the sequel, we say that the RS-to-user i channel is in ON (resp. OFF) state if user i can 
successfully receive a packet at time slot t, i.e., Xi(t) = 1 (resp. Xi(t) = 0 ). Similarly, we 
let C0(·) denote the number of bits that can be successfully transmitted from the BS to 
the RS at time slot t, and define the BS-to-RS channel’s state as a binary random process

Let X(t) := (X0(t),X1(t), . . . ,XN (t)) denote the aggregate channel state information 
(CSI) at time slot t. We assume that CSIT such that X(t) is known at the RS at the start of 
each time slot t. The probability that the RS-to-user i channel is in ON state at time slot t 
is denoted by pi := P(Xi(t) = 1) , and the probability that the BS-to-RS channel is in ON 
state at time slot t is denoted by p0 := P(X0(t) = 1) . Let p := (p0, p1, . . . , pN ) denote the 
aggregate channel parameters of the system.

Let Bi(t) (resp. B0(t) ) denote the number of coded packets backlogged in the buffer 
of user i (resp. the RS) at time slot t. Define B(t) := (B0(t),B1(t), . . . ,BN (t)) as the 
aggregate buffer state information (BSI) of the system at time slot t. B(t) can be easily 
tracked over time by the RS based on the CSI and scheduling decisions made in previ-
ous time slots.

The goal is to minimize the dissemination delay, which is defined as the number of 
time slots it takes for all users to receive at least K coded packets, through making 
optimal scheduling decisions (fetching a packet from the BS or broadcasting a packet 
to the users) at each time slot. Table 1 provides a list of the major notations used in 
this work.

(1)Xi(t) := 1(Ci(t) ≥ v⌈log2 d⌉), ∀i ∈ I ,

(2)X0(t) := 1(C0(t) ≥ v⌈log2 d⌉).

Table 1 Summary of the notation

Notation Description

N Number of users

I := {1, . . . ,N} , set of user indices

K Number of packets in a data block

d Coding field size

X0(t) BS-to-RS channel’s state at time slot t

Xi(t) RS-to-user i channel’s state at time slot t

X(t) := (X0(t), X1(t), . . . , XN(t)) , aggregate CSI of the system at time slot t

B0(t) Number of coded packets backlogged at the buffer of the RS at time slot t

Bi(t) Number of coded packets backlogged at the buffer of user i at time slot t

B(t) := (B0(t), B1(t), . . . , BN(t)) , aggregate BSI of the system at time slot t

p0 Probability that the BS-to-RS channel is in ON state at each time slot

pi Probability that the RS-to-user i channel is in ON state at each time slot

p := (p0, p1, . . . , pN) , aggregate channel parameters
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4  Methods
In this section, we first model our problem as a Markov decision process (MDP), and 
then propose an intelligent DRL-based scheduling policy.

Our problem is a complex decision-making problem in stochastic networks, where 
the aggregate channel parameters p may not be known to the RS. Generally, when the 
system model is unknown, there are two main approaches to solving decision-making 
problems: model-based and model-free methods [27]. In the model-based method, 
the decision maker first estimates the system model according to the observations and 
then applies a dynamic programming or heuristic policy based on the estimated sys-
tem model. By contrast, in the model-free method, the decision maker learns a policy 
directly through interactions with the system without estimating the system model. The 
model-based method may not be applicable due to incorrect estimations of the system 
model caused by the limited observation ability of the decision maker. Moreover, even if 
the system model can be accurately estimated, solving a decision-making problem with 
a large model size is typically computationally intractable. Thus, in this paper, we will 
adopt the model-free method to solve our problem.

4.1  MDP formulation

The MDP formulation of our problem can be described as follows: 
 (i) System State

 The system state at time slot t, denoted by s(t), is defined as 

 That is, the system state includes both the aggregate CSI and BSI. Let S denote the 
state space. The RS selects an appropriate action at the beginning of each time slot 
according to the current system state s ∈ S.

 (ii) Action
 Since RS operates in the half-duplex mode, the RS can either broadcast or fetch 

a packet at each time slot. Therefore, the action a is defined as a binary number 
such that a = 0 (resp. a = 1 ) denotes that the RS chooses to broadcast (resp. fetch) 
a packet. The action space A is given by {0, 1} . Note that, it is optimal to fetch a 
packet when the RS buffer is empty, i.e., B0(t) = 0.

 (iii) Reward
 The bottleneckuser is defined as the one with the fewest buffered packets. Note 

that there may exist multiple bottleneck users at each time slot. For given s ∈ S and 
a ∈ A , the reward is defined as 

 Intuitively, the reward is set to a high value (1000) if all users receive K coded pack-
ets and hence successfully decode the original data block, i.e., mini∈I {Bi(t)} ≥ K  ; if 
one of the bottleneck users receives a packet, the reward is set to 1. This is because, 

(3)
s(t) = {B(t),X(t)}

= {B0(t),B1(t), ...,BN (t),X0(t),X1(t), ...,XN (t)}.

(4)r(s, a) =
1000, if the block transmission is completed,
1, if one of bottleneck users receives a packet,
0, otherwise.
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in practical systems, the users are typically heterogeneous and the dissemination 
delay is usually dominated by the performance of the bottleneck user. In the sequel, 
we use r(t) to denote the reward received at time slot t.

 (iv) Transition Probability
 pss′(a) denotes the transition probability from the present system state s to another 

system state s′ under action a. Specifically, for given s = {B,X} and s′ = {B′,X ′} , if 
the following conditions are satisfied 

 the transition probability is given by 

 Otherwise, we have that pss′(a) = 0.

4.2  Deep reinforcement learning

DRL is an efficient model-free method for decision-making problems that can learn 
optimal policies through trial-and-error. It allows learning the optimal policies directly 
from observations without estimating the system model, making it suitable for large and 
complex systems.

The goal of DRL is to adopt a policy to maximize long-term return

where γ ∈ [0, 1] is the discount factor for future rewards. Moreover, DRL defines the 
state–action value function

under policy π , and iteratively solves the Bellman Equation

The optimal policy,π∗ , can be derived as

Deep Q-network (DQN) is the most representative method within the field of DRL 
[28]. It involves using a neural network (referred to as the Q-value network) with weight 
parameters w to approximate the state–action value function. DQN is an empirical value 
iteration approach that seeks to find the Q-value of each state–action pair (s, a).

(5)
B′
0 = max{B0 − a+ (1+ a)X0, 0},

B′
i = Bi + aXi(B0 > 0),∀i ∈ I ,

(6)pss′(a) =

N
∏

i=0

p
B′i
i (1− pi)

1−B′i .

(7)Gt =

∞
∑

τ=0

γ τ r(t + τ + 1),

(8)qπ (s, a) = Eπ [Gt |s, a],

(9)qπ (s, a) = r(s, a)+ γ
∑

s′∈S

pss′(a)

[

∑

a′∈A

π(a′|s′)qπ (s
′, a′)

]

.

(10)π∗(s) = arg max
a∈A

qπ∗(s, a).
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DQN takes a state–action pair as the input and outputs the corresponding Q-value 
Qπ (s, a;w) . Through the analysis of the historical states, actions, and rewards, DQN iter-
atively updates the weights of the neural network w to minimize the loss function

where U = r(s, a)+ γ maxa Qπ (s
′, a;w) is the target output of DQN [29].

Since the Q-value update of DQN includes a maximization operation, it can lead to an 
overestimation of the Q-value. Dueling Double DQN (Dueling-DDQN) addresses this 
issue by combining the approaches of Double DQN and Dueling DQN as follows. Firstly, 
Double DQN adopts different update formulas for action selection and evaluation, 
which helps reduce the overestimation error. It involves the use of a double network 
structure [30], consisting of an evaluation network Qeval(s, a;w) for action selection, i.e., 
amax = arg maxaQeval(s

′, a;w) , and a target network Qtarg(s, a;w
′) for action evaluation, 

such that

Secondly, the Dueling DQN separates the Q-value into two components: a state value 
function V(s) that only depends on the state, and an advantage function A(s,  a) that 
depends on both the state and the action [31], i.e.,

where α and β are the unique parameters associated with V(s) and A(s, a), respectively.

4.3  Intelligent DRL‑based scheduling policy

In this subsection, we adopt Dueling-DDQN to learn the optimal scheduling policy at 
the half-duplex RS to minimize the file dissemination delay. Figure 3 shows the structure 
of the proposed Intelligent DRL-based Scheduling (IDS) algorithm. It consists of four 
functional modules at the RS: a DRL agent, a transmitter/receiver module, an experience 
replay memory, and an action selection module.

At the start of each time slot t, the DRL agent observes the current state 
s(t) = {B(t),X(t)} and receives a reward r(t − 1) based on the last state s(t − 1) . Then, 
the DRL agent generates an experience e(t) = �s(t − 1), a(t − 1), r(t − 1), s(t)� based on 
the state, action and reward of the previous time slot. Once an experience is obtained, 
it is saved in the experience replay memory, which uses a first-in-first-out replacement 
policy. That is, when the experience replay memory is full, the oldest experience will be 
removed. Meanwhile, the DRL agent inputs the current state s(t) to the action selection 
module, which uses the ǫ-greedy algorithm to select an action,a(t), for the current time 
slot: with probability ǫ , the action is chosen uniformly from the action space; with prob-
ability 1− ǫ , the action with the highest Q-value, as determined by the evaluation net-
work, is selected. The selected action a(t) is then executed at the transmitter/receiver 
module.

Meanwhile, at each time slot, the DRL agent randomly chooses a mini-batch of experi-
ence samples, denoted as Z, from the experience replay memory and inputs them into 

(11)L(w) = [U − Qπ (s, a;w)]
2,

(12)U = r(s, a)+ γQtarg(s
′, arg max

a∈A

Qeval(s
′, a;w);w′).

(13)Q(s, a;w,α,β) = V (s;w,α)+ A(s, a;w,β),
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the Dueling-DDQN in the action selection module for batch training, i.e., updating the 
weights of the evaluation network. This allows the agent to efficiently learn from mul-
tiple experiences at once and avoid the inefficiency of training on a single experience 
sample. Since the experience replay memory is empty initially, batch training will not be 
carried out in the first T time slots. The weights of the target network, w− are updated 
(set as to the weights of the evaluation network w) every M time slot. Once the evalua-
tion network has converged, set Qtarg = Qeval , and Qtarg is the optimal Q-value network 
found by IDS. The RS will then be scheduled according to Qtarg . The details of the pro-
posed algorithm are shown in Algorithm 1. 

Algorithm 1 Intelligent DRL-based Scheduling (IDS)

 

Fig. 3 The structure of IDS algorithm
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The goal of the ǫ-greedy algorithm is to balance experience exploitation and explo-
ration of the optimum actions [32]. Specifically, since the number of experience sam-
ples stored in the local memory is seldom in the early stage of the training process, the 
DRL agent should spend most of the time on the exploration of the best policy. With 
the accumulation of experience samples, the DRL agent should increase the time frac-
tion spent on the exploitation of the obtained experience. As a result, the parameter ǫ is 
updated as follows

where ǫ0 is the initial value, ǫmin is a lower bound of ǫ , and αǫ is the attenuation factor.
Next, we discuss the complexity of the proposed algorithm. The number of multiplica-

tions in IDS is given by D .
= K̃d1 +

∑G−2
g=1 dgdg+1 + (ẽ + t̃)dG−1 , where G is the number 

of layers in network, K̃  is the size of the input layer which is proportional to the number 
of users, dg is the number of units in the gth full connected layer, and ẽ and t̃ are the 
numbers of units in the evaluation network and target network, respectively. Therefore, 
the computational complexity is given by O(D) at each time step of IDS.

4.4  Adaptive IDS for dynamic network environment

In practice, the network environment could be dynamic, meaning that certain param-
eters, such as aggregate channel parameters p , may change over time due to factors 
such as user mobility. An ideal scheduling policy should be able to adapt to the network 
dynamics. In this subsection, we will explore the design of adaptive scheduling policies 
for our problem.

Let us assume that there are an infinite number of data blocks to be disseminated to 
the users. These data blocks are transmitted sequentially, i.e., once a data block is suc-
cessfully disseminated, the buffer contents of the RS and all users will be removed, and 
the transmission of the next data block begins. To detect network dynamics, we employ 
the following method: Let D∗ denote the average dissemination delay of the scheduling 
policy learned by the IDS algorithm, and let Di denote the dissemination delay of the ith 
data block. Once a data block i is successfully transmitted, we calculate the average dis-
semination delay of the previous L data blocks, i.e.,

If Eq. (15) is greater than D∗(1+ ξ) for some constant ξ , the IDS algorithm will be used 
for a new round of training based on neural network parameters to adjust the scheduling 
policy to network dynamics adaptively. Since we use the average dissemination delay of 
L data blocks, i.e., Eq. (15), to detect network dynamics, the fluctuation in the dissemina-
tion delay of a data block is reduced, and we can set ξ as a small number, e.g., 0.1. The 
details of the adaptive IDS algorithm are shown in Algorithm 2. The performance of the 
adaptive IDS algorithm will be evaluated through simulations in the following section.

(14)ǫ(t + 1) = max{ǫmin, ǫ(t)− (ǫ0 − ǫmin)/αǫ},

(15)
1

L

i
∑

j=i−L+1

Dj .
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Algorithm 2  Adaptive IDS

 

5  Results and discussion
In this section, we will evaluate the performance of our IDS by simulation. We will com-
pare the performance of our algorithms to the following baseline schemes. 

 (i) ARQ
 This is a traditional transmission scheme without employing rateless code. An 

original packet is fetched from the BS by the RS and is then broadcast to the users 
until it has been received by every user. The retransmissions of the lost packet are 
triggered by ACK/NAK feedbacks which are assumed to be free and perfect. The 
above procedure will be repeated for K times so that all users receive the data block 
successfully.

 (ii) GREEDY
 Whenever possible, the RS greedily broadcasts a packet to the users; That is, the 

RS chooses to fetch a packet when its buffer is empty or when all of the user chan-
nels are in the OFF state.

 (iii) WBP-TRACK [11]
 This is a state-of-the-art scheme for file dissemination in two-hop half-duplex relay 

networks using rateless code. At each time slot, the RS chooses to fetch a coded 
packet from the BS if the overall quality of the broadcast channel between the RS 
and the users is not ‘high’ enough, and broadcasts a buffered packet to the users 
otherwise.

 Once all users have received the K coded packets and successfully decoded the 
original data block, the transmission is considered complete. However, WBP-
TRACK relies on a perfect BS-to-RS channel, i.e., it can only function when p0 = 1 
and cannot easily be extended to the general case that p0 falls within the range 
(0, 1).

In our simulation, we also include a lower bound of the dissemination delay proposed 
in [11], which is obtained by numerically solving the fluid approximation [33] of our 
problem.

We use the open-source framework PyTorch [34] for the implementation of the IDS 
algorithm and use MATLAB for performance comparison of all the algorithms. The sim-
ulation runs on a PC platform equipped with Windows 10 operating systems, 16G RAM, 
Intel i5 4.10GHz CPU and Nvidia GTX 1080 Ti GPU. The Dueling-DDQN is composed 
of an input layer with 2N + 2 ports, corresponding to 2N + 2 elements in s(t), two fully 
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connected hidden layers, then connected to the state value function network and advan-
tage function network with 50 neurons, respectively, and an output layer of two ports, 
which correspond to two candidate actions available to the RS. One hundred neurons 
with the ReLU activation function are present in each hidden layer. Thus, the number of 
multiplications is (2N + 2)× 100+ 100× 100+ 100× 50× 2.

We use an ǫ-greedy algorithm with ǫ0 = 0.1, ǫmin = 0.001 and αǫ = 2000 . The param-
eters of the proposed algorithms are set as Z = 30,T = 128,M = 10 , reward discount 
rate γ = 0.99 and experience replay memory size is 104 . The Adam optimizer with a 
learning rate 10−4 is used for weights updating. The size of the block is set to K = 100 . 
All results are averaged over 104 random runs. A summary of the major parameters used 
in our simulation is shown in Table 2.

Figure 4 presents the dissemination delay of the trained policy using IDS and DQN as 
a function of the number of iterations when N = 2 and p = (1, 0.5, 0.9) . The dissemina-
tion delay decreases as the number of training iterations increases for both methods, 
and IDS has a faster convergence speed compared with DQN.

Figure 5 shows the average dissemination delay performance for symmetric-user sys-
tems with N = 2 , p0 = 1 , and p1 = p2 = q , where the value of q is varied. The figure 
shows that, as the channel conditions improve, i.e., as q increases, the dissemination 
delay of each scheme decreases. IDS performs the best, incurring a dissemination delay 
that is only 2–5% higher than the lower bound, and it reduces the dissemination delay by 
up to 7%, 23%, and 36% compared with WBP-TRACK, ARQ, and GREEDY, respectively.

The dissemination delay performance for asymmetric-user systems with vary-
ing N is presented in Fig.  6. For each N, we set the aggregate channel parameters as 
pi = 0.5+ 0.4(i − 1)/(N − i) for all i ∈ I . The performance of GREEDY is almost con-
stant in this scenario, since it mainly depends on the channel parameter of the “worst” 
user, i.e., user 1 with p1 = 0.3 . The performance of ARQ decays rapidly with N, and one 
can expect that GREEDY would be outperformed by ARQ as N increases. IDS performs 
closest to the lower bound and reduces the dissemination delay by 4% compared to 
WBP-TRACK.

Table 2 List of parameters

Parameters Values

K 100

T 128

Z 32

M 10

ǫ0 0.1

ǫmin 0.001

αǫ 2000

γ 0.99

Optimizer Adam

Activation Function ReLU

Learning rate 10−4

Experience replay memory size 104
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The previous simulations focus on systems with a perfect BS-to-RS channel. Next, we 
will compare the dissemination delay performance for systems with an imperfect BS-to-
RS channel, and WBP-TRACK will not be included in the following simulations.

The average dissemination delay performance for symmetric-user systems with N = 2 , 
p0 = 0.5 , and p1 = p2 = q with varying q is displayed in Fig. 7. IDS significantly reduces 
dissemination delay, where the gains are up to 22% and 40% compared with ARQ and 
GREEDY, respectively. Figure 8 considers the case that N = 2, pi = 0.7 for all i ∈ I and 
varying p0 . The performance of all schemes improves as the quality of the BS-to-RS 
channel increases. GREEDY incurs 23–32% higher dissemination delay than IDS, and 
ARQ achieves 16–22% higher delay than IDS.
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With p0 = 0.7 and pi = 0.5+ 0.4(i − 1)/(N − 1) for all i ∈ I  , Fig. 9 shows how the 
dissemination delay changes varies with N for asymmetric-user systems. The dis-
semination delay incurred by IDS is within 10% of the lower bound. The dissemina-
tion delays for GREEDY and ARQ are up to 24% and 40% higher than that of IDS, 
respectively.

Next, we evaluate the performance of the adaptive IDS in Fig. 10, we set N = 2, L = 20 
and ξ = 0.1 . The aggregate channel parameters are set as p = (1, 0.7, 0.7) initially, such 
that the dissemination delay of IDS is around 230 for each data block. At the begin-
ning of the transmission of the 200th data block, the aggregate channel parameters are 
reduced to p = (1, 0.5, 0.5) . We observe that the dissemination delay of the proposed 
algorithm quickly increases, since the previous learned policy is no longer efficient in 
the changed network environment. However, our adaptive IDS is able to detect the net-
work dynamics by measuring the average dissemination delay of the previous L data 
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blocks, i.e., (15) in our paper, and comparing it with the average dissemination delay of 
the learned algorithm. If an abnormal change is detected, it will perform a new round 
of training based on the previously learned parameters to update the scheduling policy. 
Thus, in Fig. 10, we can observe that the dissemination delay of our algorithm reduces 
from 450 to 300 gradually from the 200th data block to 220th data block. That is, our 
algorithm automatically adjusts with changes in the environment.

6  Conclusions
In this paper, we examined the minimum-delay file dissemination problem using rate-
less code in two-hop relay-based HetNets. We constructed the MDP formulation of 
the scheduling problem at the half-duplex RS. Due to the large state of the MDP sys-
tem, we proposed an intelligent DRL-based scheduling algorithm. We also extended the 
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proposed algorithm to adapt to dynamic network conditions. Simulation results demon-
strated that the proposed algorithm outperforms other transmission schemes and per-
forms nearly as well as a lower bound of the dissemination delay.
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