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Abstract 

The most important function of the deep learning (DL) channel equalization and sym-
bol detection systems is the ability to predict the user’s original transmitted data. 
Generally, the behavior and performance of the deep artificial neural networks 
(DANNs) rely on three main aspects: the network structure, the learning algorithms, 
and the activation functions (AFs) used in each node in the network. Long short-term 
memory (LSTM) recurrent neural networks have shown some success in channel 
equalization and symbol detection. The AFs used in the DANN play a significant role 
in how the learning algorithms converge. Our article shows how modifying the AFs 
used in the tanh units (block input and output) of the LSTM units can significantly 
boost the DL equalizer’s performance. Additionally, the learning process of the DL 
model was optimized with the help of two distinct error-measuring functions: default 
(cross-entropy) and sum of squared error (SSE). The DL model’s performance with dif-
ferent AFs is compared. This comparison is conducted using three distinct learning 
algorithms: Adam, RMSProp, and SGdm. The findings clearly demonstrate that the most 
frequently used AFs (sigmoid and hyperbolic tangent functions) do not really make 
a significant contribution to perfect network behaviors in channel equalization. On 
the other hand, there are a lot of non-common AFs that can outperform the frequently 
employed ones. Furthermore, the outcomes demonstrate that the recommended loss 
functions (SSE) exhibit superior performance in addressing the channel equalization 
challenge compared to the default loss functions (cross-entropy).

Keywords: Activation functions, Deep artificial neural networks, Deep learning, 
Channel equalization, Symbol detection, Long-short-term memory, Recurrent neural 
networks

1 Introduction
Over the past few years, providing customers with access to broadband wireless 
communication services has become the top priority for businesses. As a result, 
researchers have focused on developing new wireless technologies that can handle 
high data rates while remaining unaffected by radio frequency (RF) impairments. In 
recent years, multi-carrier orthogonal frequency division multiple access (OFDMA) 
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schemes have emerged as the dominant principle for broadband wireless applica-
tions due to their high spectral efficiency obtained by selecting a special set of over-
lapping orthogonal subcarriers [1].

It is challenging perfectly recover the transmitted data at the receiver side due 
to the significant inter-symbol interference (ISI) effect that is formed between the 
highly broadcasted symbols in the multi-path environment of wireless communica-
tion channels. As a result, it is crucial for wireless communications systems to find a 
solution to the ISI issue. Hence, to reduce the inferior consequences of ISI, you can-
not get around the need for strong channel equalization techniques.

The objective of the channel equalization is to produce a nearly flat response 
in the frequency domain (FD) from the cascade of the channel and the equalizer, 
thereby minimizing or eliminating the negative effects of the ISI in the multi-path 
fading channels. Various types of equalizers, including linear equalizers and nonlin-
ear equalizers, are used in the digital broadband wireless communication receivers 
[2].

Furthermore, it is possible to think of the channel equalization as a classification 
problem in which an equalizer is built as a decision-making device to reconstruct 
the symbol sequence with the highest possible accuracy [3]. Complex classification 
tasks are within the capabilities of artificial neural networks (ANNs) because they 
can form arbitrary nonlinear decision boundaries [3, 4]. In general, the ANN equal-
izers are superior to linear and nonlinear equalizers in terms of equalizer perfor-
mance and symbol error rate (SER) [5–8].

Machine learning (ML) [9, 10] techniques especially deep learning (DL) ANN-
based methods has been significantly developed to aid in the resolution of numerous 
challenging issues, including face recognition [11, 12], image synthesis and semantic 
manipulations [13], sentiment classification [14], image recovery [15], digital image 
augmentation [16] and many other aspects. DL uses different kinds of neural net-
works such as convolutional neural networks (CNN [17, 18], multilayer perceptron 
(MLP) [19], and recurrent neural networks (RNN) [20]; to learn abstract features 
from data. Additionally, the availability of high-speed computational power as well 
as the effectiveness of DL in different fields have prompted its utilization for the 
development of strong broadband wireless communication systems [21, 22]. Numer-
ous researchers have proposed the use of DL in the design of broadband wireless 
communication systems and exhibited enhanced Bit Error Rate (BER) results. In this 
regard, deep ANNs have recently received a lot of attention in the field of channel 
equalization because of their abilities to accomplish the mapping between input and 
output domains in a way that’s not linear [3, 23, 24].

In this case, the deep ANN approach is a good choice among the available chan-
nel equalization options. However, there are still some concerns and questions that 
require answers, such as the following:

1. Is it possible to improve the performance gain of the equalization process of the DL 
model in terms of BER by changing the activation functions (AFs).

2. Is it possible to improve the learning process by varying the loss functions, and how 
does this affect the robustness and efficiency of the proposed DL model.
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1.1  Motivations and contributions

Hochreiter and Schmidhuber [25] came up with Long short-term memory (LSTM), 
which is an architecture for a RNN that has been proven to efficiently work for different 
learning issues, particularly those with sequential data [26]. The LSTM structure con-
tains blocks, which are a set of recurrently interconnected nodes. In RNNs, the gradient 
of the error function could rise or decline exponentially with time, which is identified as 
the vanishing gradient problem. LSTMs reconfigure their network units to address this 
issue. Each LSTM block is made up of one or more memory cells that are self-connected, 
as well as input, forget, and output multiplicative gates. The gates improve the perfor-
mance by giving the memory cells more time to store and retrieve data [26].

LSTMs and bidirectional LSTMs have considerable impacts in a wide range of applica-
tions, particularly classification ones. For example, these networks can be used in online 
mode detection [27], sound classification [28, 29], and handwriting recognition [30, 31]. 
Additionally, LSTMs are utilized for speech synthesis [32], acoustic modeling [33], emo-
tion identification [34], and speech translation [35]. Moreover, these networks are used 
for protein structure prediction [36, 37], language modeling [38], human activity analy-
sis [39], video and audio data processing [40], and have been successfully utilized in 5G 
wireless communication systems [41–43].

In general, a neural network’s performance depends on a variety of aspects, includ-
ing the network’s structure, the learning algorithm, and the activation functions (AFs) 
utilized in each node. The importance of AFs has not received as much attention as 
learning algorithms and architectures have in neural network research [44–46], though 
the AFs are very important to NNs due to their assistant in learning abstract features 
through nonlinear transformations [46]. The value of the AFs determines the decision 
borders as well as the total input and output signal strength of the node. Choosing the 
right AFs can have an effect on how well networks work, how complicated they are, and 
how well the algorithms converge [45, 47].

Throughout this work, we formulate the channel equalization dilemma in the modified 
version of orthogonal frequency division multiple access (OFDMA), known as single-
carrier FDMA, which gives a moderate peak-to-average power ratio (PAPR) compared 
to the OFDMA, and has been used in the long-term evolution (LTE) standard for uplink 
(UL) transmission, as a DL task. In the DL model, the channel equalization and sig-
nal detection processes are treated as a black boxes, and their functions are constantly 
approached by a DNN model based on the recurrent feedback LSTM-NN. This model 
can do equalization and symbol decoding at the same time, even though it does not have 
any knowledge about channel state information (CSI). The DL model takes features from 
the SC-FDMA system’s received messages and labels them based on the constellation 
map used at the transmitter.

In this study, we evaluate the performance of several AFs to improve the learning pro-
cess that improve the learning process of the DL model by fixing the issue of vanishing 
gradients and leading to more accurate classifications than traditional ones. These AFs 
will be utilized in the LSTM block’s input and output instead of the currently used "tanh" 
AF, which is known as a state activation function (SAF). Thus, we will build a reliable 
SC-FDMA wireless communication system using the modified LSTM DNNs. Finally, 
simulation findings demonstrated that our proposed scheme outperforms other widely 
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employed signal equalization schemes in terms of bit error rate (BER). This effective 
illustration demonstrates the value of DL in SC-FDMA systems.

In summary, our contributions are:

1. We construct a novel LSTM network with different SAFs in the equalization and 
symbol detection process as an alternative to the conventional hyperbolic tangent 
(tanh) function.

2. We construct a reliable and efficient SC-FDMA receiver for combined channel state 
equalization and symbol detection implicitly.

3. We evaluate the influences of the alternative optimization algorithms, like Adam, 
RMSProp, and SGdm, on the learning stage of the proposed network to produce the 
most efficient and reliable model and, consequently, on the equalization and symbol 
detection performance of the deep network.

4. We assess the effects that varying loss functions, e.g., cross-entropy and sum-squared 
errors, have on the learning process and how this affects the robustness and the effi-
ciency of the proposed model.

5. We compare the performance of the proposed framework with that of linear equal-
izers (LEs) such as zero-forcing (ZF) and minimum mean squared error (MMSE).

6. To figure out how well the proposed DL model works, we compare its BER per-
formance with that of the other existing NN-based blind equalization algorithms, 
such as both the convolutional neural network-based (CNN-based) blind equali-
zation algorithm described in [48] and the Bi-LSTM-based equalization algorithm 
described in [24].

The following sections will organize the remainder of the paper: Sect. 2 is devoted to 
describing the methods including the system description subsection, the DL model sub-
section, and the activation functions subsection. Meanwhile, Sect. 3 introduce the offline 
training of the suggested scheme. The results and discussions are then shown in Sect. 4. 
Finally, Sect. 5 concludes the study.

2  Methods
2.1  System model

Figure 1 shows the proposed SC-FDMA system according to [49]. The system’s overall 
subcarriers are M. Each of the N subcarriers is assigned to a single user from among 
those Nu users, where M = Nu × N. All of this is achieved just after the N-point FFT 
transformation. Following the M-point IFFT, a cyclic prefix of length Lcp, equal to or 
greater than the length of the channel’s transfer function Lch, would be inserted. This 
formula gk = FH

MTkFN sk , represents the time domain (TD) transmitted signal that cor-
responds to the kth user in vector form, without the Lcp. Where sk is the kth user’s N × 1 
symbol vector, Tk is an M × N subcarrier mapping matrix, and FH

N  and FH
M are the FFT 

and IFFT matrices, respectively, with dimensions N × N and M × M. Assume that  hk is 
the (Lch × 1) transfer function of the channel between the kth user and the base station, 
with maximum delay spread Lch smaller than the Lcp to completely eliminate the ISI. At 
the other end (receiving side), the process will be reversed. The CP is first eliminated, 
after which the SC-FDMA symbols are transformed into FD by M-point FFT    along 
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with subcarrier demapping to extract the FD received signal for the kth user. The FD 
received signal is then equalized using any conventional technique, such as in [49], to 
mitigate the effects of the ISI. After N-point IFFT TD transformation, demodulate and 
find the kth user original transmitted symbols.

Instead of using traditional channel equalization techniques, the proposed method 
uses a DNN model. This creates an end-to-end approach that can retrieve the original 
information directly from the information that was sent, without having to get into the 
intricacies of the channel equalization and symbol detection systems.

2.2  DL model

The LSTM NN structure is covered in this part as a DL model for combined channel 
equalization and symbol detection. The proposed DL LSTM-based channel equalizer is 
trained offline using the simulated data.

The LSTM network is a type of recurrent neural network that has the ability to learn 
long-term correlations among time step sequences [25]. Various LSTM-based systems 
have been designed to tackle issues such as speech recognition, handwriting recognition, 
and others [50–53]. In Fig. 2, we see the single-cell LSTM block, which is a collection of 
recurrently interconnected nodes.

At time t , the input vector xt is inserted in the network and the mathematical model 
for the LSTM-NN setup is given by the following six equations as in [54].

(1)it = σg (wixt + Riht−1 + bi)

(2)ot = σg (woxt + Roht−1 + bo)

(3)gt = σc wgxt + Rght−1 + bg

(4)ft = σg
(
wf xt + Rf ht−1 + bf

)

(5)ct = ft ⊙ ct−1 + it ⊙ gt

Fig. 1 The proposed SC-FDMA scheme
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where i, o, andf  represent the input, output, and forget gates, respectively. The forget and 
input gates enable the LSTM NN to effectively store long-term memory. The input gate 
finds the information that will be used with the previous LSTM cell state ct−1 to obtain a 
new cell state ct based on the current cell input xt and the previous cell output ht−1 . The 
output gate finds current cell output ht by using the previous cell output ht−1 at current 
cell state ct and input xt . The forget gate allows forgetting and discarding the informa-
tion by currently used input xt and cell output ht of the last process. Using the forget and 
input gates, LSTM can decide which information is abandoned and which is retained. gt 
defined in Eq. 3 is the block input/cell candidate at time t which is a tanh layer and with 
the input gate in Eq. 5, the two decides on the new information that should be stored in 
the cell state. ct is the cell state at time t which is updated from the old cell state Eq. 5. 
Finally, ht is the cell output/block output at time t.

The output of the block ht is recurrently connected back to the block input 
gt and all of the gates ( i, o, andf  ). σg, andσc represent the gate activation func-
tion (sigmoid function), and the state activation function (tanh function), 
respectively. ⊙ denote the Hadamard Product (Elementwise Multiplication). 
W = [wiwf wgwo]

T , b = [bibf bgbo]
TandR = [RiRf RgRo]

T are the input weights, the 
biases, and the recurrent weights, respectively.

2.3  Activation functions

The sigmoid and hyperbolic tangent functions are the most frequently used activation 
functions in neural networks. However, a number of separate studies have looked into 
other activation functions [44–46].

In this article, we will look at how well the DNN LSTM works when these activation 
functions are used instead of the state activation functions (hyperbolic tangent function 
(tanh) of the basic LSTM block to effectively combine channel state equalization and 
symbol detection in the SC-FDMA wireless communication systems. Table  1 lists the 

(6)ht = ot ⊙ σc(ct)

Fig. 2 LSTM neural network architecture
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most common activation functions that have been used: tanh, Gaussian, GELU, Clo-
glogm, Modified Elliott, Elliott, Bi-tanh1, Bi-tanh2, Rootsig, Softsign, Wave, and Aranda 
[44–47, 54–59].

3  Offline training of the suggested DL model
Due to the lengthy training period required for the proposed model and the large 
amount of variables that must be tuned at the time of training, e.g., weights and biases, 
training must be conducted offline. The trained model is utilized to extract the transmit-
ted data during online implementation.

For the bulk of machine learning tasks, obtaining a huge amount of labeled data for 
training is a challenge. Alternatively, training data for channel equalization issues can be 
easily gotten by simply conducting a simulation. Obtaining the training data is straight-
forward once the channel parameters and model are known.

Offline training of the neural networks is carried out using simulated data. When you 
run a simulation, you start with a random message s and send the SC-FDMA frames to 
the receiving end through a simulated channel model. Each frame has one SC-FDMA 
symbol in it. To retrieve the received SC-FDMA signal, SC-FDMA frames with varying 
channel defects are used. After undergoing the distortion of the channel and removing 
the CP, the incoming signals y are gathered as a training samples. As shown in Fig. 1, the 
network’s input data are the signals that are received y, and the actual information mes-
sages s. These signals act as the supervision labels.

The same dataset is used for training and testing all equalizers, whether they are CNN-
based, Bi-LSTM-based, or LSTM-based with modified loss and SAFs.

Table 1 Label, definition, and corresponding derivative, for each activation function

No Label Activation function Derivative function

1 tanh f (x) = ex−e−x

ex+e−x f
′(x) = 1− tanh(x)

2

2 Gaussian f (x) = e−x2 f
′(x) = −2xe−x2

3 GELU f (x) = 0.5x(1+ tanh
(√

2/π
(
x + 0.447x3

))
) f

′
(x) = 0.5tanh

(
0.0356x3 + 0.797x

)

+
(
0.0535x3 + 0.398x

)
sech2

(
0.0356x3 + 0.797x

)
+ 0.5

4 Cloglogm f (x) = 1− 2e
−0.7ex + 0.5 f ′(x) = 7ex−0.7ex /5

5 Modified Elliott f (x) = x√
1+x2

+ 0.5 f ′(x) = 1

(x2+1)
3/2

6 Elliott f (x) = 0.5x

1+|x|
+ 0.5 f ′(x) = 0.5

(1+|x|)2

7 Bi-tanh1
f (x) = 1

2

[
tanh

(
x

2

)
+ tanh

(
x+1

2

)]
+ 0.5

f
′
(x) =

sech
2
(

x+1

2

)
+sech

2( x

2 )

4

8 Bi-tanh2
f (x) = 1

2

[
tanh

(
x−1

2

)
+ tanh( x+1

2
)

]
+ 0.5

f
′
(x) =

sech
2
(

x+1

2

)
+sech

2
(

x−1

2

)

4

9 Rootsig f (x) = x

1+
√
1+x2

+ 0.5 f ′(x) = 1
√
x2+1+x

2
+1

10 Softsign f (x) = x

1+|x|
+ 0.5 f

′
(x) = 1

(1+|x|)2

11 Wave f (x) = (1− x2)e−x2 f
′
(x) = 2x(x2 − 2)e−x2

12 Aranda f (x) = 1− (1+ 2ex)
−1/2

f
′
(x) = ex(2ex + 1)

−3/2
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As the proposed modified DL loss and SAFs LSTM-based channel equalizer and sym-
bol detector is created as shown in Fig. 3, the weights and biases of the recommended 
equalizer will be adjusted (tuned) before the deployment using the appropriate optimi-
zation algorithm.

A number of different optimization algorithms are used to get the best possible DL 
channel equalization and symbol detection model for the SC-FDMA wireless communi-
cation system. Some of them are adaptive moment estimation (Adam), root mean square 
propagation (RMSProp), and stochastic gradient descent with momentum (SGdm).

To figure out the best parameters (weights and biases), a loss function is used to fig-
ure out how far the network output is from the desired output, and by minimizing the 
loss function and updating the weights and biases, the optimization algorithms train the 
model and reach the optimal network parameters.

The loss function, in its simplest form, is the difference between the network’s output 
and the original messages, which can be expressed in a variety of ways. The loss func-
tions we used in our experiments are the cross-entropy and the sum of squared errors 
(SSE), and they can be expressed as follows:

where c is the class number, N  is the sample number, sij is the ith transmitted data sam-
ple for the jth class and  ŝij is the modified DL SAF LSTM-based model response for 
sample i class j.

During the offline training period, we change the SAF (hyperbolic tangent function 
(tanh) from Table 1 to see how it affects the performance of our DL model during the 
online implementations.

Finally, after the offline training, the model is capable of recovering data automatically, 
without the need for explicit channel estimation and symbol detection processes. These 
processes are accomplished together. Figure 4 shows how to train offline to get a learned 
DL model based on LSTM-NN.

The most important limitations and challenges of the proposed system are that each 
user in the system is allocated four subcarriers, with the possibility for each subcarrier 
to be one of four QPSK constellation points. In the training, the quantity of labels is 
denoted as Ms

N, where Ms represents the constellation (modulation) order and N signi-
fies the subcarriers that are exclusively allocated to a single user. Consequently, there 
are 256 classes since there are  44 = 256 labels in the training set. For the LSTM-NN, this 

(7)Losscrossentropyex = −

N∑

i=1

c∑

j=1

sij(k) log
(
ŝij(k)

)
,

(8)LossSSE = −

N∑

i=1

c∑

j=1

(
sij(k)− ŝij(k)

)2
,

Fig. 3 DL LSTM-NN framework for the proposed joint channel equalizer and symbol detector
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means that the fully connected layer size needs to be 256 in order to match the number 
of classes. The number of labels will increase if higher-order modulations are used or if 
more subcarriers are allocated to each user. The increase in the number of labels leads 
to an increase in the number of classes and an increase in the size of the LSTM-NN fully 
Connected Layer. Such an approach requires a very large amount of data necessary for 
good or effective training and will lead to an increase in training time and decreased 
usability, ultimately rendering the system impractical. We therefore advise the utilization 
of QPSK.

4  Results and discussions
Several experiments were carried out to demonstrate the efficiency of the proposed 
modified loss and state activation functions (SAFs) (Table  1) LSTM-based configura-
tions for the channel equalization and symbol detention techniques in the SC-FDMA 
wireless communication system. The proposed DLNN-based equalizer was trained 
offline based on several learning optimizers, namely: The SGdm, RMSProp, and Adam 
[60], and compared with the conventional Zero-Forcing (ZF) and Minimum Mean 
Square Error (MMSE) linear equalizers and DL CNN-based and Bi-LSTM-based equali-
zation algorithms [24, 48], in terms of bit error rates (BERs) at different signal-to-noise 
ratios (SNRs) using the collected data sets. The training dataset is gathered for four 

Fig. 4 Offline training of the DLLSTM-NN
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subcarriers. The transmitter sends the SC-FDMA packets to the receiver, each contain-
ing one SC-FDMA data symbol. The SC-FDMA system and channel specifications are 
listed in Table 2. The employed DL LSTM NN architecture parameters and training set-
tings are summarized in Table 3.

In these simulations, we also looked at how well the proposed equalizer worked with 
two different loss functions: default (cross-entropy) and sum square of error (SSE).

Instead of using curves, which produce a muddled picture because of their overlap, we 
used heatmap visualizations, as shown in Fig. 5, A heatmap (or heat map) is a graphical 
representation of data that uses colors to represent values. Using a heatmap, even a large 
amount of data can be visualized and understood quickly. Heatmaps make it easier to 
combine quantitative and qualitative data for data analysis and provide a quick overview 
of a model’s performance. As a visual tool, heat maps help make informed, data-based 
decisions. As an example of using the heatmap charts, the authors in [42] use them in 
their published work.

First, we will discuss the default (cross-entropy) loss function. In the case of deep-fad-
ing channels, it is well known that the linear equalization may amplify the noise at the 
spectral null, which has a negative impact on the performance of the SC-FDMA sys-
tem. So, it is clear from Fig.  5, that all the proposed modified DL SAFs LSTM-based 

Table 2 SC-FDMA system architecture and channel specifications

Parameter Value

No. of subcarriers = M-IFFT 64

Subcarriers allocated to each user = N-IFFT 4

Subcarrier spacing 15 kHz

Cyclic prefix length 20

Modulation Format QPSK

Channel model Vehicular A

Channel estimation Perfect

Equalization ZF, MMSE, and 
Proposed DL 
Model

Table 3 DL model architecture

Parameter Value

Sequence input size 128

LSTM layer size (No. of Hidden Units) 128

Fully connected layer size (No. of Classes) 256

Loss function Default (cross-entropy) and 
Sum Squared Errors (SSE)

Mini batch size 1000

Numbers of Epochs 6

Optimization approaches Adam, RMSProp, and SGdm

Gate Activation Function (GAF) Sigmoid

State Activation Function (SAF) From Table 1

Training Options

Initial Learning Rate 0.05

Learning Rate Drop Factor 0.8
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equalizers using the Adam learning algorithm and cross-entropy loss function outper-
form both the ZF and the MMSE equalizers at SNRs ranging from 10 to 20 dB, while 
at 8 dB all the proposed SAFs LSTM-based equalizers outperform both the ZF and the 
MMSE equalizers except the proposed GLEU SAF, which outperforms the ZF only.

Also, it is clear from Fig. 5, that most of the proposed modified DL SAFs LSTM-based 
equalizers have promising results compared to this using the default (Tanh) SAF. Fur-
thermore, it should be noted that most of the proposed modified DL SAFs LSTM-based 
models demonstrated exceptional signal detection capabilities when the SNR exceeded 
12 dB. In this case, the BER is zero, which serves as an indication of the model’s 
capabilities.

In contrast to alternative DL-based channel equalization systems, such as those based 
on CNN and Bi-LSTM [24, 48], the modified DL SAFs LSTM-based equalizers that have 
been proposed exhibit encouraging performance across the majority of SNR levels, as 
shown in Fig. 5.

Fig. 5 BERs of the proposed modified DL loss and SAFs LSTM-based equalizers, the traditional linear 
equalizers, Bi-LSTM-based equalizer, and the CNN-based equalizer using the Adam learning algorithm, and 
the default (cross-entropy) loss function

Fig. 6 BERs of the proposed modified DL loss and SAFs LSTM-based equalizers, the traditional linear 
equalizers, Bi-LSTM-based equalizer, and the CNN-based equalizer using the RMSProp learning algorithm, and 
the default(cross-entropy) loss function
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Figure  6 also shows that the proposed modified DL Aranda, Gaussian, and Wave 
SAFs LSTM-based equalizers using the RMSProp learning algorithm and the default 
(cross-entropy) loss function have superior performance than both linear equalizers 
(ZF and MMSE) and the DL CNN-based equalizer at SNRs between 8 and 20 dB, and 
the DL LSTM-based model with the default SAF (Tanh) at SNRs ranging from 4 to 
20 dB, and outperform the DL Bi-LSTM-based equalizer at low SNRs ranging from 
0 and 10 dB. Furthermore, Fig. 5 demonstrates that the proposed modified Aranda, 
Gaussian, Wave, Elliott, Modified Elliott, and Softsign SAFs LSTM-based equalizers 
outperform the state-of-the-art CNN approach [48] over the entire range of SNR.

Besides, it is obvious from Fig. 7 that the proposed modified DL SAFs LSTM-based 
equalizers (Bitanh1, Cloglogm, Bitanh2, Rootsig, Softsign, Gaussian, Wave, and Elli-
ott SAFs using the SGdm learning algorithm and default (cross-entropy) loss function 
outperform the linear equalizers (ZF and MMSE equalizers) and the DL model with 
the default SAF (Tanh) at SNRs ranging from 10 to 20 dB, and the DL CNN-based 
equalizer over all the SNR ranges. On the other hand, the DL Bi-LSTM-based equal-
izer produces approximately comparable performance to the proposed DL Bitanh2 
SAFs LSTM-based equalizer. The proposed Aranda SAF has the worst BER at all 
SNRs ranging from 10 to 20 dB.

Secondly, in the case of the Sum of Squared Errors loss function, from Fig.  8, we 
can observe that all of the proposed modified DL Cloglogm, Bitanh2, Modified Elliott, 
Wave, Softsign, Rootsig, Bitanh1, Elliott, and Aranda SAFs LSTM-based equalizers 
using the Adam learning algorithm outperform both the ZF and the MMSE equalizers 
at SNRs ranging from 10 to 20 dB. While at the SNR of 8 dB, the proposed Cloglogm, 
Modified Elliott, Bitanh2, Softsign, Bitanh1, Rootsig, and Elliott SAFs provide better 
performance than the other proposed SAFs and the linear equalizers. On the other 
hand, the proposed Modified Elliott, Bitanh2, Softsign, and Rootsig SAFs LSTM-
based equalizers have superior performance to the DL LSTM-based model that uses 
the default SAF (Tanh) over all the SNR ranges.

Fig. 7 BERs of the proposed modified DL loss and SAFs LSTM-based equalizers, the traditional linear 
equalizers, Bi-LSTM-based equalizer, and the CNN-based equalizer using the SGdm learning algorithm, and 
the default (cross-entropy) loss function
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In contrast to the other DL-based channel equalization systems, the CNN-based 
and the Bi-LSTM-based approaches [24, 48] in this case have the worst BER over the 
entire range of SNR, as shown in Fig. 8.

In addition, as shown in Fig. 9, the proposed modified DL Rootsig, Elliott, Cloglogm, 
Bitanh2, Softsign, Bitanh1, Gaussian, and Modified Elliott SAFs LSTM-based equalizers 
trained with the RMSProp learning algorithm and the Sum of Squared Errors loss func-
tion outperform the linear equalizers (ZF and MMSE equalizers) and the DL LSTM-
based model that uses the default SAF (Tanh) at SNRs ranging from 8 to 20 dB, and the 
CNN-based or the Bi-LSTM-based DL equalizers [24, 48] over all the SNR ranges.

Figure  10 shows that all the proposed modified DL SAFs LSTM-based equalizers 
trained with the SGdm learning algorithm and the Sum of Squared Errors loss func-
tion perform better than the traditional ZF and MMSE linear equalizers at SNRs 
ranging from 10 to 20 dB, and the CNN-based equalizer over all the SNR ranges. 

Fig. 8 BERs of the proposed modified DL loss and SAFs LSTM-based equalizers, the traditional linear 
equalizers, Bi-LSTM-based equalizer, and the CNN-based equalizer using the Adam learning algorithm, and 
the sum of squared errors loss function

Fig. 9 BERs of the proposed modified DL loss and SAFs LSTM-based equalizers, the traditional linear 
equalizers, Bi-LSTM-based equalizer, and the CNN-based equalizer using the RMSProp learning algorithm, and 
the sum squared errors loss function
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Also, the proposed Rootsig, Bitanh2, Softsign, Gaussian, Wave, and Cloglogm SAFs 
LSTM-based equalizers have superior performance to the DL LSTM-based model 
that uses the default SAF (Tanh) over the SNRs ranging from 6 to 20 dB. Also, the 
proposed Gaussian, and Cloglogm SAFs LSTM-based equalizers outperform the Bi-
LSTM-based equalizer at SNRs ranging from 8 and 20 dB.

As we know the default choice for the LSTM-NN SAF is the hyperbolic tangent 
function (Tanh) because it has the advantage of being a smooth and symmetric AF, 
which helps keep the output values centered around zero. This aids the backpropa-
gation process and decreases the likelihood of vanishing gradients, which can be 
challenging for deep learning networks [61]. Besides this, the Tanh function has the 
property of squashing its output values between −  1 and 1, which is beneficial in 
applications such as normalizing the output of a linear layer [62].

The Tanh function has numerous drawbacks, such as its inability to completely 
eliminate the vanishing gradient problem, its computational complexity, and can 
only attain a gradient of 1 when the input value is 0 (x is zero); as a result, the func-
tion can produce some dead neurons during the computation process [62, 63]. These 
limitations of the Tanh function necessitated additional research into alternative AFs 
capable of addressing these issues. Also, the loss function, which computes the error 
between the actual and desired outputs, controls convergence and the optimum per-
formance of the model [64].

In the scientific community, there is a significant interest in identifying and defining 
AFs and loss functions that can enhance the performance of neural networks [47, 54, 
56, 64, 65].

We showed in Figs. 5, 6, 7, 8, 9, and 10 that the LSTM-based equalizer worked bet-
ter when different SAFs were used instead of the default Tanh SAF, and SSE was used 
instead of the default (cross-entropy) loss function. Our research showed that using 
SSE instead of the default (cross-entropy) loss function, and some less-known AFs 
instead of the default Tanh has a positive effect on the performance of the LSTM net-
work. This is reflected in the better performance of the DL-LSTM-based equalizers.

Fig. 10 BERs of the proposed modified DL loss and SAFs LSTM-based equalizers, the traditional linear 
equalizers, Bi-LSTM-based equalizer, and the CNN-based equalizer using the SGdm learning algorithm, and 
the sum squared Errors loss function
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We may conclude from Figs. 5, 6, 7, 8, 9, and 10 that, the best-proposed state activa-
tion functions, which give the best performance in the modified loss and SAFs LSTM-
based equalizers and symbol detector under the previous system settings, are listed in 
the following table.

Optimization techniques are critical for the improvement of DL systems. DNN train-
ing can be viewed as an optimization issue, with the objective of achieving a global opti-
mum via a trustworthy training trajectory and rapid convergence via gradient descent 
techniques [60]. The goal of the DL method is to develop a model that produces more 
accurate and faster outcomes by modifying the biases and weights to minimize the loss 
function. Selecting the best optimizer for a certain scientific issue is a difficult task. By 
selecting an inadequate optimizer, the network may remain in the local minima (stay in 
the same place) during training, resulting in little progress in the learning process. As a 
result, the inquiry is required to look at how different optimizers perform based on the 
model and dataset used to make the best DL model.

This section compares the performance of the three optimization algorithms: Adam, 
RMSProp, and SGdm, using an experimental approach. We can use Table 4 to select the 
best SAFs that give the best performance, each with its own optimization algorithm.

In the case of the cross-entropy loss function, Fig. 11, clearly shows that the proposed 
modified DL SAF Softsign LSTM-based equalizer using the Adam learning algorithm 
outperforms all of the other proposed modified SAFs LSTM-based equalizers at all 
SNRs.

On the other hand, in the case of the sum of squared errors loss function, as shown 
in Fig.  12, the proposed modified DL SAF Elliott LSTM-based equalizer using the 
RMSProp learning algorithm gives the best performance over all the SNR ranges.

Also from Fig. 13, we can say that the best proposed modified DL SAF LSTM-based 
equalizer is the modified DL SAF Elliott using the RMSProp learning algorithm and the 
sum of squared errors loss function.

It is beneficial to monitor the training processes of the DL equalizers by investigat-
ing the loss and accuracy curves. These curves deliver details regarding how the training 
process goes, and the user could indeed decide whether to let the training process keep 
going or quit.

The Adam, RMSProp, and SGdm optimization loss and accuracy curves for our 
proposed best modified loss and SAFs LSTM-based equalizers in Figs.  14, 15, 17, 
and 18 highlight the outcomes shown in Figs.  11, and 12. Furthermore, the Adam, 
RMSProp, and SGdm optimization loss and accuracy curves for the CNN-based and 

Table 4 The best-proposed state activation functions (SAFs)

No. AF Last dB BER Optimization 
algorithm

Loss function

1 Softsign 12 0.00009766 Adam Cross-entropy

2 Gaussian 12 0.000415 RMSProp Cross-entropy

3 Bitanh2 12 0.0002848 SGdm Cross-entropy

4 Cloglogm 12 0.0000732 Adam Sum squared errors

5 Elliott 12 0.00005697 RMSProp Sum squared errors

6 Gaussian 12 0.0001221 SGdm Sum squared errors
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Fig. 11 Performance comparison of the best-proposed modified DL SAFs LSTM-based equalizers using 
different optimization algorithms and cross-entropy loss function

Fig. 12 Performance comparison of the best-proposed modified DL SAFs LSTM-based equalizers using 
different optimization algorithms and sum squared errors loss function
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Bi-LSTM-based approaches in Figs.  14, 15, 16, 17, and 18 emphasize the findings 
seen in Figs. 5, 6, 7, 8, 9, and 10, where the CNN and Bi-LSTM can provide improve-
ments over the linear equalizers in the cross-entropy loss function with any one of 
the learning algorithms (Adam, RMSProp, and SGdm), while less or no improve-
ment can be achieved in the case of the sum square of errors.

Fig. 13 Performance comparison of the best-proposed DL SAFs LSTM-based equalizers using different, 
optimization algorithms and loss functions

Fig. 14 Loss function comparison of the DL equalizers using different optimization algorithms and 
cross-entropy 
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4.1  Computational complexity of the proposed modified DL loss and SAFs LSTM‑based 

equalizers

The computational complexity of the proposed modified loss and SAFs LSTM-based 
channel equalization and symbol detection DL models in the SC-FDMA is provided 
empirically in terms of the training time which is performed offline. Training time 
can be defined as the amount of time expended to get the best NN parameters (e.g., 
weights and biases) that will minimize the error using a training dataset. Because it 
involves continually evaluating the loss function with multiple parameter values, the 
training procedure is computationally complex.

Fig. 15 Loss function comparison of the best proposed modified DL SAFs LSTM-based equalizers and 
Bi-LSTM-based equalizers using different optimization algorithms and the sum squared errors

Fig. 16 Loss function comparison of DL CNN-based equalizers using different optimization algorithms and 
the sum of squared errors
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Table 5 lists the consumed training time for the modified SAFs LSTM-based chan-
nel equalization and symbol detection DL models. The used computer is equipped 
with Windows 10 operating system and an Intel(R) Core(TM) i5-2450M CPU @ 
2.50GHz, and 8 GB of RAM.

From Table 5, the best proposed DL SAF Softsign LSTM-based CE-SD trained with 
the Adam optimizer and cross-entropy loss function consumes a large amount of time 
compared to the best proposed DL SAF Cloglogm LSTM-based CE-SD that is trained 
with the Adam optimizer and sum of squared errors loss function. Also, the best DL 
SAF Gaussian LSTM-based CE-SD trained with the RMSProp optimizer and cross-
entropy loss function consumes a large amount of time compared to the best DL SAF 
Elliott LSTM-based CE-SD that is trained with the RMSProp optimizer and sum of 

Fig. 17 Accuracy curves comparison of the DL equalizers using different optimization algorithms and 
cross-entropy loss function

Fig. 18 Accuracy curves comparison of the DL equalizers using different optimization algorithms and the 
sum of squared errors loss Function
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squared errors loss function. On the other hand, the best proposed DL SAF Bitanh2 
LSTM-based CE-SD trained with the SGdm optimizer and cross-entropy loss function 
consumes a small amount of time compared to the best proposed DL SAF Gauss-
ian LSTM-based CE-SD that is trained with the SGdm optimizer and sum of squared 
errors loss function. Also, from Table 5 and Fig. 13, we can say that the best proposed 
SAF that allows to give the best performance and consumes the least amount of time 
is the DL SAF Elliott LSTM-based CE-SD that was trained with the RMSProp opti-
mizer and sum of squared errors loss function. The least SAF training time indicates 
its lowest computational complexity in comparison to its peers.

Also from Table 6, we can observe that the Bi-LSTM-based approach requires a large 
amount of training time for all of the training scenarios (Adam, SGdm, and RMSProp) 
compared to the proposed modified DL loss and SAFs LSTM-based equalizers, which is 
an indication of its increased computational complexity due to the fact that the Bi-LSTM 

Table 5 Training time comparison between the investigated SAFs LSTM-based channel equalizers

AF LSTM‑based CE‑SD Adam LSTM‑based CE‑SD RMSProp LSTM‑based CE‑SD 
SGdm

Cross entropy 
(M:S)

Sum 
squared errors 
(M:S)

Cross entropy 
(M:S)

Sum 
squared errors 
(M:S)

Cross 
entropy 
(M:S)

Sum 
squared errors 
(M:S)

Tanh 37:46 35:55 22:19 20:13 21:18 20:21

Cloglogm 56:39 44:20 26:28 19:49 30:41 19:39

Elliott 52:22 45:18 17:21 19:40 26:30 19:57

Modified Elliott 54:16 47:22 26:05 20:10 25:41 20:45

Gaussian 57:51 45:33 35:41 24:24 25:33 26:15

Bitanh1 54:18 48:52 25:42 24:39 24:54 24:42

Bitanh2 53:02 53:31 21:57 26:06 21:27 28:42

Rootsig 47:41 47:54 22:11 17:34 20:46 23:11

Softsign 48:19 49:20 24:40 18:53 25:28 20:15

Wave 48:06 46:31 25:19 23:38 24:29 20:52

Aranda 61:36 59:54 32:36 32:01 34:17 32:22

GELU 48:44 : 21:15 : 20:50 :

Table 6 Training time comparison between the Bi-LSTM-based channel equalizers

Bi‑LSTM‑based CE‑SD Adam Bi‑LSTM ‑based CE‑SD RMSProp Bi‑LSTM ‑based CE‑SD SGdm

Cross entropy 
(M:S)

Sum 
squared  errors 
(M:S)

Cross entropy 
(M:S)

Sum 
squared errors 
(M:S)

Cross entropy 
(M:S)

Sum 
squared errors 
(M:S)

64:28 51:15 35:45 32:14 35:56 30:36

Table 7 Training time comparison between the CNN-based channel equalizers

CNN‑based CE‑SD Adam CNN‑based CE‑SD RMSProp CNN‑based CE‑SD SGdm

Cross entropy 
(M:S)

Sum 
squared errors 
(M:S)

Cross entropy 
(M:S)

Sum 
squared errors 
(M:S)

Cross entropy 
(M:S)

Sum 
squared  errors 
(M:S)

290:49 496:32 123:57 124:34 128:10 132:23
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network uses two distinct hidden layers to analyze data in both directions (first, from the 
past to the future, and second, from the future to the past) before feeding the results into 
a single output layer [24].

In contrast, from Table 7, we can say that the CNN-based approach requires the larg-
est training time for all of the training scenarios (Adam, SGdm, and RMSProp), which 
is an indication of its increased computational complexity compared to our proposed 
modified DL SAFs LSTM-based equalizers.

Fig. 19 BERs of the proposed modified DL loss and SAFs LSTM-based equalizers, the traditional linear 
equalizers, Bi-LSTM-based equalizer, and the CNN-based equalizer using the Adam learning algorithm, and 
the cross-entropy loss function under the ITU Indoor channel model

Fig. 20 BERs of the proposed modified DL loss and SAFs LSTM-based equalizers, the traditional linear 
equalizers, Bi-LSTM-based equalizer, and the CNN-based equalizer using the RMSProp learning algorithm, and 
the cross-entropy loss function under the ITU Indoor channel model
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4.2  Generalization ability and robustness of the proposed models

Several practical channel models have been adopted. By using other practical channel 
models, we can provide additional analysis for comparing the efficacy of the proposed 
models and AFs. These channel models have been established based on lots of meas-
urements (such as the indoor and vehicular models) released by ITU [66, 67].

Figures  5, 6, 7, 19, 20, and 21 depict the BERs of the proposed modified DL loss 
and SAFs LSTM-based equalizers, the conventional linear equalizers, Bi-LSTM-based 
equalizer, and the CNN-based equalizer under two distinct ITU channel models. In 
all investigated channel models, the proposed modified DL SAFs LSTM-based model 
outperforms the other equalizers in terms of stability and performance. We trained 
the model by the ITU Vehicular channel model and then tested it under two dis-
tinct ITU channel models (Vehicular and Indoor ITU channel models). The obtained 
results highlight the generalization ability and the robustness of the proposed equal-
izer, as it was evaluated using datasets (corrupted by two distinct ITU channel mod-
els) that were not utilized in the training process.

5  Conclusion
In conclusion, a modified DL LSTM-based channel equalization and symbol detec-
tion method based on changing the default state activation function [the hyperbolic 
tangent function (tanh)] and the default loss function (cross-entropy) was investigated 
in this study. The effectiveness of the modified DL model that has been suggested has 
been examined, and its results have been contrasted with those of other common linear 
equalizers like ZF and MMSE and other DL models like CNN-based or Bi-LSTM equal-
izers. The internal weights and biases of the proposed modified DL model were adjusted 
during the training process with different loss functions (default(cross-entropy) and 
sum of squared errors(SSE)) and different optimization algorithms (Adam, RMSProp, 
and SGdm). In our results, we have found that the presented modified loss and SAFs 

Fig. 21 BERs of the proposed modified DL loss and SAFs LSTM-based equalizers, the traditional linear 
equalizers, Bi-LSTM-based equalizer, and the CNN-based equalizer using the SGdm learning algorithm, and 
the cross-entropy loss function under the ITU Indoor channel model
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LSTM-based channel equalizer and symbol detector achieved higher performance 
in terms of BER than the conventionally used non-DL algorithms like linear (ZF and 
MMSE) equalizers and the other DL algorithms like CNN-based or Bi-LSTM equaliz-
ers in the SC-FDMA wireless communication systems. Additionally, the outcomes dem-
onstrated that under various DL model settings (i.e., training algorithm, initial learning 
rate, learning rate drop factor, etc.), some lesser-known activation functions, including 
GELU, Wave, Bitanh1, Bitanh2, Modified Elliott, Elliott, Gaussian, Cloglogm, Aranda, 
Softsign, and Rootsig, can in terms of channel equalization accuracy outperform the 
frequently employed "tanh" state activation functions. Consequently, our comparison 
revealed that, among the proposed activation functions, the functions summarized in 
Table  4 (Softsign, Gaussian, Bitanh2, Cloglogm, and Elliott) outperformed the others. 
Furthermore, the findings showed that using the SSE loss function instead of the default 
loss function (cross-entropy) was an option that greatly improved the accuracy of the 
modified DL LSTM-based channel equalizer and symbol detector. Finally, the compu-
tational complexity of the proposed modified DL loss and SAFs LSTM-based equalizers 
was investigated, and we found that the proposed model provides a moderate compu-
tational complexity compared to the existing Bi-LSTM or CNN-based approaches. In 
light of the rapid technological advancements in the design and production of high-
speed GPUs, the proposed model is emphasized. As a result of the proposed DL model’s 
extraordinary learning and generalization properties, the suggested equalizer appears 
promising for channel equalization, particularly under poor channel conditions.

The following ideas are suggested for future research:

• Mining for new activation functions and studying the other parts of an LSTM, such 
as changing the gate activation function (GAFs).

• Studying the performance of the proposed modified SAFs LSTM-based channel 
equalizer and symbol detector systems with other loss functions.
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