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Abstract 

The Internet of Things (IoT) is spreading rapidly around the world, and Message Queue 
Telemetry Transport (MQTT) is one of the main protocols used to explore device-to-
device (D2D) communication. The industry typically requires communication systems 
that can transmit data continuously while optimizing both bandwidth and transmis-
sion time. Due to the vast amount of data that can be lost, companies often find 
that even short periods of network downtime lead to significant costs. In this paper, 
we propose a retransmission mechanism to allow sensor nodes to relay missing data 
via MQTT to a local server when it reconnects after an unexpected disconnection. To 
assess its performance, several tests in a digital healthcare use case scenario have been 
designed. Since the procedure involves transferring a considerable amount of data, our 
main goal is to determine the maximum payload of each message to restore the miss-
ing information, while minimizing the retransmission time without information loss.

Keywords:  MQTT, Retransmission mechanism, Payload size, Practical IoT applications, 
Performance evaluation

1  Introduction
Rapid innovations in Information and Communications Technology are leading to the 
wide spread of the Internet of Things (IoT). Currently, the industry needs communica-
tion systems that can reliably transmit data from a multitude of sensors, while using as 
little bandwidth as possible.

In most organizations, a single hour of network downtime leads to significant conse-
quences. For instance, the loss of captured data can put people at risk or lead to financial 
losses; thus, one of the most important challenges in IoT is its reliability (dependability 
and availability).

Device-to-device communication is currently pursued through various protocols, 
such as the popular messaging protocol for IoT: MQTT. It was developed by [1] as a 
lightweight messaging transport, and it is especially suitable for connecting remote 
devices with minimal code and network resources. MQTT is used in many industries 
today, including remote monitoring [2], automotive [3], forestry [4], messaging appli-
cations [5], home automation [6] and more [7]. It is a highly developed protocol, and 
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among publish/subscribe communication, protocols are the one with most attempts 
at standardization [8].

MQTT is considered an efficient and suitable protocol designed for reliable com-
munication between devices, particularly in the context of IoT, addressing low-power 
and efficient data transfer with a fast messaging model. It operates on the publish-
subscribe model, where clients can either publish messages to specific “topics” or 
subscribe to topics to receive relevant messages. MQTT’s lightweight nature makes 
it well-suited for resource-constrained devices and low-bandwidth networks, as it 
minimizes overhead by using a binary encoding scheme. This results in faster mes-
sage transmission and reduced data usage, making MQTT a preferred choice for IoT 
devices that need to conserve power and bandwidth [9].

One of MQTT’s key strengths is its reliability and scalability [10]. MQTT brokers 
can handle a large number of connected clients simultaneously, providing a scalable 
solution for IoT ecosystems. MQTT is widely adopted due to its low latency, efficient 
communication, and flexibility, making it a powerful protocol for enabling efficient 
machine-to-machine communication [7].

To prevent data loss, MQTT supports persistent sessions for broker connection 
[11], which allows a client to maintain its session state with a broker even if the con-
nection is lost. This means that if a client disconnects and later reconnects, it will 
pick up right where it left off, with all of its subscriptions and message queues intact. 
This way, if the client disconnects and reconnects later, it can resume communication 
seamlessly. MQTT also supports retained messages [12]. When a client publishes a 
message with the “retained” flag set to true, the broker retains the message. Conse-
quently, any client subscribing to the corresponding topic will receive the most recent 
retained message, even if no recent publications have occurred.

However, these features do not guarantee the retransmission of data when a net-
work disconnection occurs. In such situations, all data transmitted by a publisher 
during the disconnection period are inevitably lost unless it retains the acquired data 
that could not be transmitted. Hence, it is necessary to implement additional mecha-
nisms, such as a message queuing system or a database for message persistence.

In this paper, a retransmission functionality is proposed that allows sensor nodes to 
relay missing data via MQTT to servers that reconnect after an unexpected discon-
nection. We describe the implementation of the retransmission procedure and design 
several tests using a case study on digital healthcare to assess its performance. Since 
this procedure involves transferring considerable amounts of data, we specifically aim 
to dimension the optimal maximum payload size of MQTT packets for restoring the 
missing information in order to minimize the period of retransmission in the wake of 
a network disconnection.

In the next section, we provide an overview of related works that address reliabil-
ity in networks with minimal data loss, and ancillary aspects. Section  3 describes 
the retransmission functionality proposed. Section 4 presents the case study and the 
experimental setup, i.e., the system used, its parameters, performance metrics and the 
test scenarios considered. In the following section, the experimental results obtained 
are analyzed, and finally, Sect. 6 presents the main conclusions drawn from this work.
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2 � Related work
Significant research has been conducted on achieving reliable network communica-
tions for sensor networks and IoT with retransmission abilities. In [2], an online mon-
itoring system of multiple environmental factors for henhouses in modern chicken 
farms is described. The authors adopt the wireless transport Modbus protocol with 
a loss recovery strategy to address data packet dropout during wireless transmission. 
This strategy consists of making the acquisition nodes responsible for loss detection 
and periodically detecting the transmission flag of the device with a timeout. In case 
a data frame is lost during transmission, it is retransmitted back by the acquisition 
nodes.

Similarly, in [13], a Compressed Sensing with Dynamic Retransmission (CSDR) algo-
rithm is proposed to guarantee the retransmission of lost data, high network lifetime 
and high energy utilization. The CSDR algorithm dynamically determines the maximum 
packet loss retransmission times of different nodes according to their residual energies. 
The authors verify the approach using simulated MATLAB experiments with a Wireless 
Sensor Network (WSN) environment and several randomly deployed nodes.

A lightweight and energy-efficient protocol called AJIA (Adaptive Joint protocol based 
on Implicit ACK) for packet loss recovery and route quality evaluation are described 
in [14]. It allows resource-constrained nodes to achieve reliable data transmission by 
using an overhearing feature as an implicit ACK mechanism. AJIA also provides adap-
tive selection of the routing path based on the connection quality. When a packet loss is 
detected, retransmission is carried out on the most reliable link between the node that 
sent the (lost) packet and its one-hop neighbors.

Two IP-based communication prototypes for reliable Industrial Internet of Things 
(IIoT) time-critical applications are presented in [15]. Time-sensitive networking (TSN) 
and edge computing are employed to increase the determinism of IIoT networks and 
reduce latency with zero-loss redundancy protocols that ensure sustainability of IIoT 
networks with smooth recovery in case of unplanned outages. The first alternative is 
based on the parallel zero-loss redundancy protocol (PRP) and the second one using the 
high-availability seamless zero-loss redundancy protocol (HSR). The PRP communica-
tion prototype goes a step further by providing an effective redundancy scheme against 
multiple connection failures.

Critical needs for reliable communication in wireless industrial networks are studied 
in [16]. A multipath routing algorithm designed to provide deterministic communica-
tion is introduced, which duplicates data flows onto alternate paths to combat poten-
tial link failures and exploit path diversity, reducing the need for retransmissions. This 
approach significantly outperforms traditional single-path retransmission-based meth-
ods and a state-of-the-art solution. The method achieves network reliability above 
99% with ultralow jitter performance, making it a promising solution for IIoT applica-
tions that demand reliability and determinism. In connection with this, a secure data 
transmission technique for IIoT is presented in [17]. It introduces a blockchain-based 
dynamic secret sharing mechanism to enhance security and reliability. The technique 
ensures the reliable transmission of power data and features a consensus mechanism, 
dynamic linked storage, and decentralized data management. Experimental results 
show a significant improvement in transmission and packet receiving rates, by 12% and 
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13%, respectively. The proposed method not only enhances data security but also offers 
advantages in sharing management and decentralization.

Concerning Healthcare IoT applications, a delay-sensitive secure non-orthogo-
nal multiple access (NOMA) transmission scheme is presented in [18]. It optimizes 
resource allocation to minimize information delay while securely transmitting medical 
data. The contributions of the paper include the introduction of a cooperative frame-
work for healthcare services, an iterative algorithm for optimal resource allocation, and 
a theoretical analysis demonstrating performance superiority over orthogonal multiple 
access (OMA) schemes. Numerical results confirm the scheme’s effectiveness in reduc-
ing secure information delay. Additionally, in [19], an energy-efficient dynamic packet 
downloading algorithm is introduced for improving reliability in in-hospital network 
architectures. The algorithm addresses the problem of network disconnections that can 
occur when access points are not operating efficiently, potentially leading to the loss of 
critical medical information. By dynamically allocating transmit power in access points 
based on buffer backlog size, channel states, and buffer stability, the proposed algo-
rithm ensures a robust and reliable connection between a cloud service and healthcare 
IoT devices. This adaptive approach leads to improved energy efficiency and network 
lifetime. The study’s results demonstrate that the algorithm successfully achieves the 
desired performance, emphasizing the importance of energy-efficient and reliable con-
nectivity in healthcare networks.

Two alternative architectures for dealing with disconnections using the MQTT pro-
tocol are discussed in [20]. Contrarily to the work proposed in this paper, the authors 
tackle the problem using a redundancy approach, where additional layers are imple-
mented consisting of dedicated MQTT brokers and critical message handlers so that the 
system can still operate if connectivity fails. The first of the two proposed architectures 
has a lightweight copy of the entire system in each sensor network, which allows the 
logic of the sensor nodes to be kept clean and network losses to be handled separately. In 
the second architecture, sensor nodes need to verify and resolve the losses of connectiv-
ity themselves, which means that they should be connected to both a local broker and an 
external broker.

In [21], a novel addition to TCP-based network stacks is introduced, with a focus on 
enhancing message transmission reliability in MQTT-based IoT applications. The pro-
posed layer ensures reliable and in-order packet delivery, even in the presence of net-
work or application failures, such as disconnects due to power loss. The design goals 
include achieving the same reliability level as Quality of Service (QoS) level  2 while 
reducing the number of exchanged messages, enabling multiple in-flight messages for 
improved bandwidth efficiency, and offering resiliency against failures. Performance 
tests demonstrate that the layer not only fulfills these goals but also leads to increased 
throughput and lower delivery latencies compared to existing protocols. The implemen-
tation was shown to handle challenging network conditions and application failures 
while preserving data integrity.

An edge-based MQTT broker cluster that stores queues of all messages failed to be 
forwarded to a remote broker is developed in [22]. The main goal is to deliver a low-cost, 
scalable and lightweight messaging solution to support communication between IoT 
devices in remote areas, where computational resources and network connectivity are 
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limited. The client IDs and their subscribed topics are used for message retransmission. 
These are advertised to other nodes in the cluster, so that they can update their local list 
of members. For each incoming subscription, the client ID and topics are additionally 
checked in a message recovery module. This module stores message queues of all publi-
cations failed to be forwarded to a remote broker.

A communication framework for IIoT that is based on MQTT broker bridging is pre-
sented in [23]. It facilitates dynamic interoperability and security across various pro-
duction lines and industrial sites, addressing challenges related to reliability, scalability, 
and dependability. The solution ensures reliable and secure communications and offers 
advanced identity and access management for machines and users. Moreover, it dis-
cusses mechanisms to enhance the reliability of the broker chain by allowing MQTT 
implementations to be clustered on different virtual machines, thus offering fault tol-
erance to address overloads or failures. Results show a linear time complexity for the 
implementations and bridging modes of the extended brokers, with minimal overhead 
compared to standard MQTT brokers.

Liu and Al-Masri [24] focus on evaluating the performance and reliability of the 
MQTT protocol for IoT applications. A comparative study of MQTT’s performance 
considering different payload sizes and security levels is presented. Results show that, 
for smaller payload sizes, higher security levels do not significantly impact latency. As 
message payload size increases, end-to-end communication delay also increases, and 
this delay is more pronounced when using QoS levels 0 and 2. However, QoS level 1 
outperforms other levels in terms of performance and reliability across all security con-
figurations and increasing message reliability with QoS level 2 does not introduce signif-
icant delays, making it comparable to QoS levels 0 and 1. This analysis provides valuable 
insights into optimizing MQTT for IoT applications. On the other hand, challenges in 
providing QoS in Electric IoT (EIoT) applications using the MQTT communication 
protocol are studied in [25]. The authors introduce an approach called Delay-Reliabil-
ity-Aware MQTT QoS Level Selection (DR-MQLS) based on reinforcement learning. 
DR-MQLS optimizes QoS level selection to minimize the weighted sum of packet loss 
ratio and delay, considering the specific requirements of EIoT services. The proposed 
algorithm also enables intelligent QoS guarantee under incomplete information and 
enhances delay and reliability awareness, setting the stage for further optimizations, 
including bandwidth allocation.

A triple modular redundancy (TMR) scheme that guarantees message transmis-
sion is proposed in [26]. The system addresses reliable and fault-free sensor data to the 
cloud through MQTT for accurate predictions of sensor values in underground mines. 
The methodology focuses on identifying sensor network node failures through the use 
of redundant nodes. The TMR scheme consists of two backup nodes for each primary 
node to ensure error-free and accurate transmission of sensor data to the cloud. When a 
new value is received in the cloud, a deviation value is calculated. If the deviation is not 
within a specified allowable range, a payload mismatch occurs and the local server node 
determines whether the field node or the backup node is faulty.

In [27], the authors describe how devices can rely on a multi-protocol arrangement 
to guarantee communication success in IoT and propose a redundant architecture 
that targets Industry 4.0. MQTT and BLE are used as communication protocols in 
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their experimental environment. Results show that, independently of the protocol, the 
messages are sent to the framework seamlessly and users are not affected by how the 
messages are sent, greatly simplifying the management of redundancy applications. Fur-
thermore, in [28], the importance of MQTT for reliable D2D communication is high-
lighted. The study presents a three-stage network architecture, utilizing MQTT as the 
transmission protocol to connect clients to a server (message broker), which securely 
receives, segregates, and transmits data. MQTT’s reliability features, such as QoS and 
Last Will and Testament, are used to ensure data delivery. The proposed system com-
bines MQTT and the MEAN stack for secure and efficient communication, offering a 
promising solution for IIoT scenarios.

Besides works focused on reliability, robustness, redundancy and data retransmission, 
there is also an important body of research that addresses lightweight communication 
protocols for IoT. The performance of three communication protocols (MQTT, CoAP: 
Constrained Application Protocol, and WebSockets) is analyzed in [29]. Comparative 
tests are performed, considering metrics such as protocol efficiency and Round Trip 
Time. Advantages and limitations of MQTT regarding energy consumption, security 
and reliability are discussed. Also, WebSockets and CoAP are shown to be less resilient 
to network volatility than MQTT, which makes it an appropriate choice in a scenario 
where a redundant system is important, as in the case of our work.

Davis et al. [30] analyze packet loss and reliability mechanisms in WSNs and propose 
an adaptive Retransmission Timeout (RTO) method to improve reaction time when 
packet losses occur. Two application protocols are analyzed: CoAP and MQTT-S [31], 
which would later become known as MQTT-SN [32], being an extension of MQTT to 
WSNs. The protocol is designed to be run on low-end and battery-operated sensor/actu-
ator devices and operate over bandwidth-constraint WSNs such as ZigBee-based net-
works. Simulated results with OMNeT++ show that the mechanism proposed is able to 
significantly improve packet delivery ratio (PDR), while keeping it lightweight enough in 
terms of energy, memory and computation for sensor nodes where these resources are 
critical.

A similar study by [33] highlights the importance of setting an appropriate RTO to 
compensate for the lack of data reliability in WSNs. The authors propose a Gateway-
assisted retransmission mechanism to dynamically compute the RTO for WSN devices. 
Once again, simulated experiments in OMNeT++ show that the mechanism leads to 
reduced retransmission times and larger message delivery ratios when compared to 
MQTT-SN, CoAP, dynamic RTO in TCP and CoCoA under two different message loss 
rates of 0% and 10%.

Focusing on resource consumption of MQTT brokers when subjected to stress test-
ing using fuzzing techniques, Rodriguez and Batista [34] emphasize the importance of 
robust brokers, particularly in large-scale applications like smart cities. The results show 
that existing fuzzing frameworks have limitations in their ability to exhaustively test 
both CPU and memory resources. Only one framework, FUME, demonstrates prom-
ise in memory-intensive testing, peaking at 43.5% memory usage, highlighting the need 
for more robust fuzzing tools to evaluate brokers effectively, and addressing a critical 
aspect of MQTT’s reliability. Finally, [4] explores the relevance of MQTT in address-
ing the challenges posed by the growing number of intelligent nodes in IoT and process 
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industries, including ensuring reliable data transmission while conserving network 
bandwidth. The study identifies MQTT as a valuable solution for managing the increas-
ing network load and highlights best practices for implementing MQTT-based systems 
in industrial applications.

In spite of the existing literature on how to achieve a reliable and robust system with 
redundancy and retransmission features, we could not find any work which explicitly 
addresses optimizing the retransmission process in the wake of network disconnections 
for fast recovery of data accumulated (e.g., by sensor nodes) during the disconnection 
period using the MQTT protocol. In fact, most existing works focus on retransmission 
of data in unreliable networks assuming that there still is a connection link between 
server and client. Additionally, the majority of works in this area of research provide 
results based purely on simulated scenarios, which may not consider or overlook physi-
cal aspects of real-world network communications. As such, the three key contributions 
of this work are:

•	 Proposal of a novel MQTT-based Retransmission Mechanism for restoring sensor 
data accumulated in IoT applications during network disconnections.

•	 Demonstrate that there is an optimal payload size for MQTT packets that lead to 
faster transmission of recovered data on reconnection.

•	 Perform real-world experimental validation of the mechanism with commonly used 
hardware in a digital healthcare case study.

Based on these contributions, it is important to highlight that our approach is structured 
to align with the MQTT protocol and has been designed with a healthcare case study in 
mind. Therefore, it is not applicable to connection-less protocols such as CoAP. Never-
theless, we believe that its underlying principles can be adapted for other IoT scenarios 
with similar connectivity and data integrity requirements, such as industrial automation, 
smart home systems, and other sectors where a connection-oriented approach is favored. 
As such, it serves as a basis that can be adapted and extended to cater to the specific 
needs of IoT applications with common challenges, providing a robust foundation for 
researchers and developers in these domains.

3 � MQTT‑based retransmission mechanism for network disconnections
To establish a connection using the MQTT protocol, three entities are required: the pub-
lisher, which is responsible for sending the collected data; the subscriber, which receives 
the data; and the broker, which manages the data exchange [1].

It is important to note that natively, MQTT provides several countermeasures for 
failure scenarios, such as keep alive and message queue features, as well as Quality of 
Service (QoS) levels, which are agreements between the sender and the receiver of a 
message that defines delivery guarantees. Specifically, MQTT runs over the TCP proto-
col, offering a range of options for message delivery. These QoS levels, namely 0, 1, and 
2, provide varying degrees of reliability and assurance for message transmission. There 
are inbuilt retransmission procedures for QoS 1 and QoS 2 for unacknowledged PUB-
LISH messages. In QoS level 1, a message is guaranteed to be delivered to the recipient 
at least once, but it may result in duplicate messages. In contrast, QoS level 2 provides 
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exactly once delivery semantics, ensuring that each message is delivered once and only 
once. However, achieving this high level of reliability in message delivery comes at a cost 
in terms of increased overhead and complexity. Therefore, it is essential for IoT systems 
to weigh the trade-offs and select the appropriate QoS level based on their specific use 
case and the potential impact of message duplication. Deduplication mechanisms at the 
client or server side may help to eliminate duplicate messages and minimize unneces-
sary processing. Additionally, message queues and acknowledgments play a pivotal role 
in ensuring that messages are processed in the intended order and that their delivery can 
be tracked. Implementing message expirations and time-to-live constraints can further 
enhance the efficiency of message handling. Carefully fine-tuning the QoS level, adopt-
ing appropriate mechanisms and considering the specific needs of the IoT application 
can optimize the communication strategy, maintaining a robust yet resource-efficient 
message delivery framework.

Nevertheless, some scenarios need explicit application handling, such as automatic 
reconnection, online buffering or throttling. This is the case of restoring data accumu-
lated in client sensor nodes during network disconnections, as we address in this work, 
which cannot be solved using QoS delivery levels or other native MQTT features.

As such, we make use of the open source Eclipse Mosquito MQTT broker [35] for the 
retransmission mechanism proposed, due to its proven track record. Our clients use the 
Eclipse Paho MQTT Client [36]. Clients continuously collect sensor data and store it 
into a local database for redundancy, even when a disconnection to the broker occurs. 
The sensor acquisition database is based on MongoDB, providing high performance, 
high availability, and easy scalability to store raw data locally. In order to restore data 
accumulated while the link is suspended, when the client initiates the connection with 
the broker, it must define a Keep Alive period and a Will Message. The keep alive feature 
allows the client to periodically send a “ping” message to the broker to maintain the con-
nection and detect if it becomes unresponsive, ensuring the connection remains active 
and reliable. The Will Message is used to notify subscribers, such as other clients or the 
broker in the event of an abnormal and unexpected client disconnection.

on receive(retransmission req) do:
buffer ← {}
t disc ← disconnection timestamp()

data to retransmit ← query data from db(t disc)
for item in data to retransmit do

buffer ← buffer + item
if len(buffer) ≥ maximum payload size then
publish to broker(buffer)
buffer ← {}

end if
end for
publish to broker(end of transmission msg)

Algorithm 1  Algorithm used in the clients to retransmit the missing information to the broker.

The retransmission mechanism proposed is detailed in Algorithm 1 and Fig. 1, which 
is designed to restore data that was missed during a network disconnection. It collects 
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the data, divides it into chunks of manageable size, and sends it to the MQTT broker for 
processing, all while ensuring that the MQTT message size limits are not exceeded.

To elaborate further on this, retransmission is triggered by the broker, which sends 
an initialization message through a dedicated SYNC_REQ topic as soon as the client 
reconnects (at timestamp t_rec). Upon receiving the retransmission request, the cli-
ent initializes an empty buffer to store the data to be retransmitted, and it uses the dis-
connection timestamp t_disc to query data from the local database that needs to be 
retransmitted. This data corresponds to events or messages that were not transmitted 
due to the network disconnection. The algorithm on the client iterates through the data 
to be retransmitted one item at a time, accumulating multiple data items into a buffer, 
before transmitting them to the broker. While adding each item to the buffer, the algo-
rithm checks whether the size of the buffer has reached the defined maximum payload 
size to be sent in a single MQTT message. When the buffer size meets the maximum 
payload size, the mechanism publishes the contents of the buffer to the MQTT broker 
as a message through the SYNC_REP topic. This ensures that the data are transmitted in 
manageable chunks to prevent exceeding the MQTT message size limits. After publish-
ing the data, the buffer is reset to an empty state, allowing it to accumulate more data 
for the next transmission. Once all the data items have been processed and transmitted, 
the algorithm sends an “end of transmission” message to the broker through the SYNC_
REP_END topic. This serves as an indicator that all missing data have been successfully 
retransmitted.

When data are received by the server, it saves the information in a central database, 
which stores data from different connected clients. We adopt PostgreSQL, which is a 
popular Relational Database Management System (RDBMS) database, due to the need 

Fig. 1  Retransmission mechanism. t_disc corresponds to the instant when a disconnection occurs and 
t_rec to the instant when the reconnection occurs
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for a structured data relation model, especially since it is also used for the client’s 
authentication process. PostgreSQL is an advanced, enterprise-class RDBMS, it has over 
30 years of active development by the open source community, earning a strong reputa-
tion for its reliability, feature set and robustness, standing out due to its overall perfor-
mance and scalability [37].

4 � Experimental design
Our main aim is to determine the maximum payload size of the messages sent to restore 
missing data, while minimizing the retransmission time. This is done through a detailed 
experimental analysis.

As referred previously, we make use of a digital healthcare case study inspired in 
the WoW R &D project.1 WoW proposes the development of non-intrusive wearable 
devices, designated as Biostickers, which are electronic patches equipped with sensors 
that acquire and wirelessly transmit patient’s vital signs in real time, including body 
temperature, heart rate, ECG, respiration rate, as well as accelerometer and gyroscope 
data from an embedded Inertial Measurement Unit (IMU). Biostickers are low-powered 
and memory constrained devices that can not provide data storage capabilities, there-
fore they transmit sensor data to an associated “acquisition and relay” device—the Smart 
box—through Bluetooth Low Energy (BLE).

The smart box is embedded in each patient’s bed. It encompasses a single board com-
puter that locally acquires and stores data from the patient biosticker. Then, it relays the 
data through Wi-Fi to a central Gateway. The Gateway connects the smart boxes to the 
Hospital Information System, managing users and captured data, and it also maintains a 
list of smart boxes and sensors available. Data acquired from each patient’s biosticker are 
transmitted by the corresponding smart box to the gateway via MQTT through Wi-Fi. 
Considering this scenario, MQTT clients run on different smart boxes and the MQTT 
broker is deployed in the central gateway. For more details on this architecture, the 
reader is referred to [38].

The retransmission mechanism proposed fits the healthcare use case chosen and simi-
lar scenarios, where sensing nodes are inherently limited in memory and cannot provide 
local data storage. Therefore, we include intermediary acquisition nodes, which ensure 
that data can be retained locally during server outages. Even though these nodes lead 
to the requirement of additional hardware, they provide clear advantages to overcome 
the constraints of sensing nodes. Namely, they support different wireless communication 
technologies for acquiring (BLE) and relaying (Wi-Fi) information, improving system 
robustness, and the local storage capabilities ensure that the data are not lost when the 
server becomes unreachable. Clearly, this design choice is especially suited for IoT sce-
narios where data integrity is high priority.

In addition to the retransmission mechanism described in Sect. 3, our system incor-
porates further improvements to the standard MQTT communication. Several fea-
tures have been implemented [39], including: i) enhanced security by coupling TLS v1.2 
encryption, X.509 V3 authentication certificates, unique UUID for each client and a 

1  WoW: Wireless biOmonitoring stickers and smart bed architecture: toWard Untethered Patients, https://​inovg​lintt.​
com/​finan​ciame​nto/​wow/.

https://inovglintt.com/financiamento/wow/
https://inovglintt.com/financiamento/wow/
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role-based access authorization control policy; ii) a pairing feature, i.e., when a smart 
box is paired with a new biosticker, it sends this information to the Gateway so that it 
can manage all pairings; iii) message format full specification based on JavaScript Object 
Notation (JSON) data standard to improve interoperability; iv) message validation and 
filtering at the server in compliance with the specified format before data storage and; v) 
synchronization of timestamps between smart boxes and the gateway using Chrony, an 
implementation of the Network Time Protocol (NTP).

The retransmission mechanism in this case study involves a smart box client (Rasp-
berry Pi 4B) and the gateway server (Intel NUC8i7BEH) to restore the sensor data 
collected from a biosticker (nRF Dongle), when there is a Wi-Fi disconnection. Our 
experimental setup is illustrated in Fig. 2. Both the Raspberry Pi and the Intel NUC run 
Ubuntu Linux 20.04 LTS. In the experiments, a 2.4 GHz home Wi-Fi network has been 
used. Note that in all tests, the same data collected by the sensors used in the WoW 
project, i.e., IMU, ECG, Heart Rate and Body Temperature data, have been continu-
ously provided, and the client always acquires the same 24 h of data, corresponding to 
1.23 GB, as seen in Table 1.

The following configurations have been considered in the experiments:

•	 Disconnection periods of 30 min, 1 h, 2 h, 6 h, 12 h and 24 h. See Table 1 for an 
approximate conversion from time to the corresponding MQTT data. Disconnection 
periods affect the amount of data to be retransmitted. This relationship is nearly pro-
portional, as data acquired by the client per unit of time is virtually constant.

•	 Maximum payload sizes of 14.84 KB, 159.29 KB, 445.08 KB, 890.16 KB, 6.52 MB, 
13.04 MB, 26.08 MB, 39.12 MB and 52.16 MB. These have been chosen, as they cor-
respond to specific time intervals, as shown in Table 2. Without loss of generality, the 

Raspberry Pi 4 B
nRF Dongle Intel NUC8i3BEH

Fig. 2  Experimental setup diagram

Table 1  Amount of data to be recovered per disconnection time

Disconnection period 30 min 1 h 2 h 6 h 12 h 24 h

Amount of data to be recovered 26.08 MB 52.50 MB 105.32 MB 316.47 MB 633.22 MB 1.23 GB

Table 2  MQTT payload sizes considered in the tests

MQTT 
payload 
size

14.84 KB 159.29 KB 445.08 KB 890.16 KB 6.52 MB 13.04 MB 26.08 MB 39.12 MB 52.16 MB

Corre-
sponding 
message 
time

1 s 10 s 30 s 1 min 7.5 min 15 min 30 min 45 min 1 h
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maximum payload size is limited to 52 MB, as values above this number would lead 
to memory shortage errors. The maximum payload size affects how many messages 
the process needs for transmitting all missing data.

The proposed mechanism is tested exhaustively without considering the transmission 
of data being currently acquired in real time. Therefore, we subsequently look into the 
simultaneous transmission of real-time data together with recovered data to understand 
its impact on performance. Moreover, the following performance metrics have been 
defined:

•	 Retransmission Time (s): Time elapsed between the retransmission request 
sent by the server and its receipt of the final end of transmission message 
from the client.

•	 Throughput (Mbps): Amount of data successfully transmitted between client and 
server per second.

Experiments are performed by having the server requesting information to the client 
that correspond to the configurations defined (disconnection period vs maximum pay-
load size). For each configuration, the procedure has been automated and repeated 100 
times for statistical significance. Thus, for performance analysis, we evaluate average 
retransmission time and throughput.

The MQTT implementation in use adopts Nagle’s algorithm [40] for TCP conges-
tion control. This aims at improving network efficiency, minimizing the number of 
small packets sent over the network by delaying the transmission of these small packets 
through buffering and aggregation until a sufficient amount of data is available to fill the 
TCP window. The TCP window size, on the other hand, determines the amount of data 
that can be sent before requiring an acknowledgment. It is iteratively adjusted during 
transmissions, depending on the speed of data reception and processing at the server, 
whether any packets are lost in transmission, and the specifics of the underlying win-
dowing algorithm. Both mechanisms work together to optimize the efficiency and con-
gestion control of TCP connections to reduce overhead and congestion and naturally, 
they will have an impact on the results (e.g., see [41]). Hence, to ensure the exact same 
experimental conditions, Nagle’s congestion control is enabled as the default option in 
Eclipse Mosquito in all tests performed, and the TCP maximum window size limit is left 
unmodified in the Operating System at 208 KB.

5 � Results and discussion
Following the design criteria described in the previous section, a total of 4300 tests have 
been performed. Nearly, all configurations were deployed. However, some lower val-
ues of payload sizes have been added during the course of experiments to obtain fine-
grained results.

In Figs. 3 and 4, we provide an overview of the average time required to recover the 
missing data in all configurations and illustrate the impact of the maximum payload size 
with different disconnection periods.
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As expected, the longer the disconnection period is, the longer it takes until all infor-
mation is retransmitted. We can also see that the time taken to restore the missing 
data tends to increase with the maximum payload size. However, the longest average 
time required is usually achieved with the smallest payload size. For instance, if we use 
14.84 KB as the maximum payload size with a 30-minute disconnection period, we send 

Fig. 3  Average time in seconds required to restore all missing data in disconnection periods of 30 min, 1 h 
and 2 h. 
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about 300 messages per second, which overloads the server that runs the MQTT broker, 
as it is not able to receive all messages in due course and builds up a large queue, which 
delays the retransmission process.

Moreover, we can observe that the least time needed in all scenarios to resend the 
information is obtained when using 13.04 MB as maximum payload size per message, 
independently of the disconnection period tested. This is also confirmed by Fig. 5, which 

Fig. 4  Average time in seconds required to restore all missing data in disconnection periods of 6, 12 and 
24 h. 
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shows that the highest data throughput is always achieved with the same maximum pay-
load size. This important result shows that there is an optimal payload size that leads 
to faster retransmission of data that are neither the minimum nor maximum limits for 
payload sizes of MQTT packets. This fulfills our key objective to demonstrate the exist-
ence of an optimal payload size for MQTT packets to restore the missing information in 
order to minimize the period of retransmission in the wake of a network disconnection.

It is worth emphasizing that the most favorable payload size of 13.04 MB found in our 
tests is equivalent to 15 minutes of lost data during disconnections (see Table 2). Mani-
festly, we can generally conclude that these results show that the optimal payload size 
for retransmission packets is independent of the disconnection period/volume of data 
to restore. Moreover, it leads to minimum retransmission time (Figs. 3 and 4) and maxi-
mum data throughput (Fig. 5) in all tests, regardless of transmission rate and amount of 
data to be sent by the client recovery mechanism (see Table 1). Additionally, it is also 
independent of the number of samples transmitted, as the performance peaks at payload 
sizes of 13.04 MB for 2, 4, 8, 24, 48 and 96 transmission chunks for the 30 min, 1 h, 2 h, 
6 h, 12 h, 24 h disconnection periods, respectively. Still, the optimal payload for a given 
application is expected to depend on network configuration, link quality, transmission 
chain processing, software and hardware deployed. Therefore, the “sweet spot” that we 
identified in our case study generally may not suit all applications.

From Fig. 5, we can also see that the throughput increases with disconnection period, 
since contrary to what one might expect, retransmission time does not increase linearly 
with disconnection period. For instance, 24  h of disconnection period corresponds to 
approximately twice the amount of data lost when considering 12  h of disconnection. 
However, the retransmission time with a payload size of 52.16 MB is 675.56 seconds for 
the 24 h disconnection period, and 400.30 seconds for the 12 h disconnection period. As 
such, the rate of increase to restore the data in this situation is only of about 1.68 times.

As mentioned earlier, it is important to evaluate the impact of the simultaneous 
transmission of current sensor data acquired while the retransmission mechanism is 
in action. This is particularly important when operation of the system cannot wait for 

Fig. 5  Data throughput in retransmission tests (Mbps)
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the data recovery process to finalize, such as in our case study, where critical patient 
data must be sent to the server for immediate access by the health professionals. From 
the example illustrated in Fig. 6, we can see that the simultaneous transmission of the 
data acquired in real time has almost no impact in the retransmission procedure for our 
case study. This happens because the throughput for the transmission of real-time data 
(175.07 kbps) is much lower compared to that of the throughput of the retransmission 
process (8.32 Mbps with 6 hours of disconnection period using 13.04 MB as maximum 
payload size per message sent) and is therefore almost negligible.

6 � Conclusion
In this work, we have designed and developed an MQTT-based retransmission mecha-
nism that allows MQTT clients to relay missing data to an associated broker, when they 
reconnect after an unexpected disconnection. To properly optimize the procedure, 
several tests that define maximum MQTT payload sizes for restoring the missing data 
were designed in order to study their impact on total retransmission time. The experi-
mental assessment, in our case scenario, allowed us to dimension the payload size of the 
retransmission messages with a mean optimal value of 13.04  MB, which is independ-
ent of disconnection period, volume of data to restore, transmission rate and number of 
transmitted chunks. Furthermore, we can observe that the time required to retransmit 
the missing information does not increase linearly with the increase in information, and 
a higher throughput is typically achieved with longer disconnection periods. Addition-
ally, we also conclude that the simultaneous transmission of the data acquired in real 
time has negligible impact in the retransmission feature.

In the future, it would be useful to test this functionality with additional MQTT cli-
ents. This would allow to scale up the system and study the impact of the number of 
clients with simultaneous retransmission processes.
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