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1 Introduction
Driven by the pervasiveness and inclusiveness of Internet of things (IoT) services, 
cellular communication networks have witnessed a drastic expansion of the number 
of wireless devices and the proliferation of new emerging applications. Particularly, 
machine-type communications (MTC), also known as machine-to-machine commu-
nications (M2M) have been a high-demanding scenario that can support the ubiquity 
of IoT systems and meet the massive access requirements. Generally, MTC refer to 
automated communications among machine-type devices (MTDs) that occur with-
out any specific human intervention. These connections are mainly characterized by 
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prominent properties of sparse and small packet transmissions with low data rates. 
Despite the sporadic nature of MTC, the traffic generated by  massive MTC (mMTC) 
network is rather challenging. On the other hand, due to the scarcity of available 
resources, scheduling an entire resource block (RB) to each connection is neither effi-
cient nor feasible. Consequently, designing sophisticated multiple access techniques 
is required to handle the above-mentioned challenges. Interestingly, non-orthogonal 
multiple access (NOMA) techniques have been spotlighted as eye-catching schemes 
that can serve as fuel for the evolution of wireless communication systems towards 
the future sixth-generation (6 G) networks. The advantage of the NOMA technique 
lies in its ability to allow multiple devices to access common resources where either 
power domain [1, 2] or code domain [3, 4] is exploited to perform multiplexing of 
different users’ signals. Then, the base station (BS) processes successive interference 
cancellation (SIC) to separate and decode the superimposed messages, which yields a 
substantial improvement in the spectral efficiency and the network capacity.

Attracted by the appealing features of NOMA, plenty of research has investigated 
the uplink as well as the downlink NOMA systems. In [5], the authors have studied 
the performance of the NOMA network in terms of overall system throughput in both 
downlink and uplink transmissions. The authors in [6] have investigated the resource 
allocation problem of power domain-NOMA (PD-NOMA) in the context of down-
link transmission where different transmit power levels are assigned to the different 
users. In [7], the authors have evaluated the system performance of an uplink NOMA 
system taking into account the imperfect SIC process in order to minimize the overall 
power consumption. Indeed, the performance of a PD-NOMA scheme is particularly 
based on the way the power is partitioned among the users. More precisely, the BS 
can successfully decode and recover the interfering signals from different transmitters 
by exploiting the disparity in power levels among them. Consequently, an improper 
power assignment yields an important interference impact, which impairs the effec-
tiveness of the SIC at the BS and results in high energy consumption at MTDs. As a 
result, it is of the utmost significance to thoroughly focus on studying the power con-
trol problem to suitably deal with the inter-user interference and thus further boost 
the NOMA network gain.

As well as the power control, the user grouping constitutes a fundamental pillar for 
the design of NOMA schemes. Indeed, despite its distinctive characteristics, we can 
not turn a blind eye to the limitations of NOMA. Ideally, multiple users are admitted 
to share a particular RB to reach a high spectral efficiency [8]. However, accommodat-
ing a huge number of users comes at the cost of emerging co-channel interference 
and thus an increased computational complexity of the SIC, which in turn may spoil 
the system performance. Thereafter, it is neither feasible nor efficient to jointly super-
impose all the users’ signals using one RB [9]. Hybrid NOMA network represents 
an alternative approach, in which users are divided into multiple NOMA groups. 
Orthogonal RBs are assigned to these groups so that the members of each group share 
a given RB to simultaneously transmit their signals. Obviously, establishing hybrid 
NOMA networks relies heavily on the user grouping strategy, which seeks to strike 
a meaningful trade-off between NOMA gains and interference effects. With this in 
mind, we consider PD-NOMA scheme in the context of a hybrid NOMA network and 
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we investigate the user grouping problem intertwined with the power allocation issue. 
Therefore, such combined problems need to be solved through joint optimization.

Game theory has emerged as an analytical framework to provide interesting solu-
tion concepts to efficiently deal with the selfish nature of wireless devices and pro-
vide flexible solutions to critical optimization problems such as power management, 
user grouping and wireless channel allocation. [10]. Typically, game theory studies the 
interaction between each player and every other player in the system. By doing so, 
to address densely deployed networks, a large number of equations must be solved, 
which leads to an inherent mathematical complexity. To deal with this burdensome 
task, mean field game (MFG) has received a significant attention as an advanced tool 
that can cope with the presence of a large population and alleviate the mathematical 
complexity of the game analysis [11]. Indeed, in such a game, each device is called 
upon to focus on how to cope with the collective behavior of its opponents, rather 
than being concerned with the specific individual strategy of each. Here, the collec-
tive effect faced by the devices represents the mean field and stands for the distri-
bution of the system state over the user set [12]. In this way, MFG can simplify the 
resolution of the power control problem by drastically reducing the mathematical 
complexity to a two-body complexity rooted in two tractable combined equations, the 
Hamilton-Jacobi-Bellman (HJB) and the Fokker-Planck-Kolmogorov (FPK) equations. 
In fact, the HJB characterizes the interactions between the players and the mean field, 
and then allows each player to make its own decision, whereas the FPK equation rules 
the evolution of the mean field based on the players’ decisions. Afterward, the mean 
field equilibrium (MFE) is obtained by iteratively solving these coupled equations.

Conventionally, the finite difference method is invoked to approach the MFE and 
solve the MFG [13]. Nevertheless, when the game is characterized by large state and 
action spaces, the finite difference method requires a higher computational burden. 
Meanwhile, as an alternative method, the  reinforcement learning (RL) techniques 
have been exploited to solve the MFG [14–17]. Particularly, the multi-armed bandit 
(MAB) framework [18], which represents a class of RL algorithms, has been specifi-
cally adopted to optimize the resource allocation problems in the context of wireless 
networks. In this paper, we propose a RL approach based on the mean field theory in 
order to jointly solve the resource allocation and power control problem in a hybrid 
NOMA scenario. We more specifically investigate the MAB algorithm to model the 
competitive behaviors of the players over the set of arms, i.e., set of available RBs, 
with an eye toward maximizing their rewards.

Reference [19] is a conference version of this paper. Indeed, the present work 
extends the previous work by providing two resource allocation algorithms based on 
the combination of MAB approaches and MFG framework. Different from the confer-
ence version, we delve into the calculation of total expected regret accumulated dur-
ing the learning process by adding more regret analysis to this work. In addition, we 
included extensive system-level simulation results to reveal the robustness of the pro-
posed approaches and demonstrate their performance in very dense networks. The 
significant contributions of this paper include the following:
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• We propose a NOMA system where the BS is not concerned by allocating power 
levels to MTDs, rather it only broadcasts limited feedback to users. Thereby, we are 
able to alleviate the performance drop observed with almost all existing grant-free 
approaches.

• We derive two developed MFG-based MAB approaches in which the MAB tech-
nique is invoked to enable the MTDs to self-organize into coalitions. Then, the 
MFG is applied such that MTDs can adjust their transmit power levels based on the 
received MFI.

• Our proposed algorithms are designed with the aid of the ǫ-decreasing greedy and 
the upper confidence bounds (UCB) methods in order to allow the devices to decide 
which coalition it is better to belong to.

• Regret analysis is presented to evaluate the performance of the proposed MFG-based 
MAB techniques. We show that the regret incurred during the learning process 
evolves logarithmically.

• We provide numerical simulations that underline the features of the combined MFG 
and MAB frameworks under several scenarios made up of different numbers of 
devices and RBs.

In light of the above, we construct the rest of this paper as follows. The discussion of 
related work and contributions is presented in the next section. We introduce our sys-
tem model and the considered assumptions in Sect. 3. The MFG approach is investigated 
in Sect. 3.2 to model the power control problem. Section 4 is devoted to deriving two 
distributed MFG-aided MAB algorithms in order to address the joint problems of RB 
selection and power allocation. To assess the performance of the proposed approaches, 
numerical results are provided in Sect. 5. Finally, Sect. 6 concludes the paper.

2  Related work and contributions
Usually, wireless communication networks are characterized by an important level of 
interference encountered by each user. In an effort to alleviate the interference effects, 
numerous research contributions have been devoted to modeling the power control 
problem under game theory setting. For instance, the authors in [20] have formulated 
a hierarchical game approach to illustrate the performance of multi-carrier systems in 
terms of energy efficiency. In [21], a game-theoretic approach has been proposed for 
the Aloha-based NOMA (NM-ALOHA) scheme in order to enable the users to organ-
ize their transmissions by selecting appropriate transmission probabilities. A coopera-
tive coalitional game has been investigated in [22] to derive a user clustering algorithm 
with the aim of optimizing power allocation in hybrid NOMA-based cognitive radio 
networks. In contrast, while a non-cooperative game has been applied in [23] to address 
the joint user selection and power allocation issues for MTC underlying NOMA hetero-
geneous networks taking into account the energy efficiency requirements. In our prior 
work [24], we have established a hybrid NOMA network upon invoking a bi-level game 
theoretical framework made of a Hedonic game on top of a non-cooperative game. The 
proposed bi-level game enables the devices to first  organize themselves into NOMA 
coalitions, and then autonomously determine the transmit power levels to use in order 
to deliver their messages.
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Meanwhile,  Bayesian optimization has been widely invoked as a promising math-
ematical framework to effectively identify solutions to black-box optimization prob-
lems. It has been applied to handle hyperparameters resource allocation problems by 
improving decentralized performance and effectively balancing exploration and exploi-
tation [25]. For instance, in [26], the Bayesian optimization has been used to enhance 
uplink power allocation performance by modeling a black-box objective function with 
continuous variables as a Gaussian process. The authors in [27] have proposed Bayes-
ian optimization-based technique for online dynamic management in time-varying 
systems. They have focused on jointly optimizing the wireless devices’ decisions on 
the binary computation task offloading and analog-amplitude resource allocation poli-
cies while taking into account the constraint of energy-delay cost. In [28], the authors 
have applied the Bayesian optimization to improve the learning efficiency in Unmanned 
Aerial Vehicles(UAV)-assisted networks by guiding UAVs’ trajectory to more rewarding 
action allowing each of which to deviate from fruitless action explorations. Generally, 
Bayesian-based approaches use Gaussian processes (GP) to provide flexible solutions 
for desired objective functions while optimizing the GP’s hyperparameters. However, 
the major limitation of Bayesian optimization is its inability to scale to high-dimensional 
optimization problems, especially in dense networks. Indeed, although Bayesian opti-
mization is an advantageous method for the black-box optimization of low dimension, 
it requires sampling a large number of hyperparameters in order to model the poste-
rior prediction distribution, resulting in an increased computational complexity and an 
inefficient optimization problem at high network loads. Thus, Bayesian optimization-
based approaches struggle with high-dimensional functions and are therefore restricted 
to moderate-dimensional problems. [29, 30]. Consequently, invoking such a method for 
real-world problems of dense wireless networks is costly and prohibitive, as it is compu-
tationally unaffordable for low-power IoT devices and represents an overwhelming bur-
den for mMTC scenarios. [31].

Alternatively, MFG has sparked a considerable interest in suitably designing distrib-
uted power control for densely deployed wireless networks. Some contributions have 
mainly focused on the interplay between NOMA approach and the mean field theory. 
For example, in [32], MFG has been exploited in order to meet the trade-off between 
quality of service requirements and the energy consumption for a code domain NOMA 
scheme in an mMTC scenario, while in [33], the authors have adopted MFG to derive 
a distributed power control policy for NOMA-assisted UAV networks. In our previ-
ous contribution [34], we have leveraged the features of MFG in the context of MTDs 
underlying uplink NOMA network by conducting the analysis of the proposed approach 
through only two combined equations HJB and FPK. Interestingly, the formulated game 
has modeled the mass behavior of the devices as a mean field interference (MFI) that 
each user has to interact with in order to make its decision. Particularly, we have derived 
a distributed power control policy to iteratively achieve the MFE using the finite dif-
ference method. However, we have been interested only in the case where each user is 
unable to choose the most appropriate RB to use or the best coalition to join, it can only 
adjust its power level to the network load. Now, we aim to make each user able to choose 
its RB at each time slot so that it can deviate from its current coalition. Such a deci-
sion requires usually more information about the other coalitions. In other words, in this 
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paper, we seek to make the devices autonomous in their choice of groups while modeling 
their behavior in each group as the mean field, so that each device can adapt its trans-
mission strategy to the system load. In this case, we are dealing with the joint optimiza-
tion problems of the user grouping and the power control. In contrast to [34] in which 
we have applied the finite difference method to solve the power control problem, invok-
ing such a method to jointly deal with the user grouping and the power control problems 
is not practically affordable, especially for high-dimensional state and action spaces. To 
overcome this issue, we turn our attention to MAB-based approaches in this paper.

Recently, RL algorithms have been adopted as an advanced tool to solve the MFG. 
Indeed, the amalgam of MFG and RL algorithms has garnered a  substantial attention, 
as it provides useful insights into how to effectively deal with the resource allocation 
problems. The authors in [14] have designed RL-based MFG algorithm with the inten-
tion of maximizing the sum rate among users in the context of UAV-enabled mmWave 
systems. Shi et  al. have considered in [15] a cooperative multi-access edge computing 
framework and resorted to the deep RL to learn the optimal policy in order to achieve 
the Nash equilibrium of MFG. [17] and [16] have first applied the MFG framework to 
model the collective behavior of multi-user NOMA scenarios in mobile edge comput-
ing systems. Then, deep RL algorithms have been proposed to solve the game and opti-
mize the resource allocation between users in NOMA clusters. Concomitantly, within 
the MAB framework, there are some contributions that have examined the NOMA 
approach, such as [35–37]. In fact, authors of [35] have been interested in organizing the 
user transmissions  as well as their power allocation coefficients by invoking the MAB 
framework. In [36], a distributed MAB algorithm has been proposed in order to handle 
the channel access and power control issues, whereas in [37] a MAB learning approach 
has been conceived to address the scheduling problem for fast-grant MTDs.

At the time of writing, although the literature provides some contributions that have 
combined the MFG and the RL techniques and others that have applied the MAB algo-
rithm in NOMA-based networks, there is no published literature that has investigated 
the combination of the MFG framework and the MAB approach underlying NOMA 
networks. To the best of our knowledge, our proposed approach is the first work that 
focuses on jointly solving the user grouping and power control problems using MFG-
based MAB approaches for NOMA systems.

3  Methods
3.1  Network model

Consider an uplink NOMA network, as depicted in Fig. 1, where a single BS is located 
at the center of the network, whereas a set of N MTDs are independently scattered 
throughout the coverage area. The positions of the devices are modeled using homo-
geneous Poisson point processes (PPP) �N  with density �N  [38]. It is noteworthy that 
PPP model can conveniently abstract the network in which the MTDs are randomly 
distributed and each device generates its own traffic according to its position with-
out any need for particular human intervention. Throughout this paper, we consider 
a hybrid NOMA scenario consisting of K groups, each of which is called a coalition. 
The available bandwidth is split up into K RBs, N >> K  , which are orthogonally 
assigned to the groups so that each group of MTDs uses one RB for non-orthogonal 



Page 7 of 32Benamor et al. J Wireless Com Network         (2024) 2024:42  

communication with the BS. More precisely, when a device i is a part of a given coali-
tion, to which the k-th RB is allocated, the channel coefficient between this device and 
the BS is represented by hk ,i = gk ,i

li
 , where gk ,i and li denote the Rayleigh fading and 

the path loss, respectively. We adopt the free-space path loss model [39] to define the 
path loss.

In this way, the devices belonging to each coalition transmit their messages through 
the associated RB. Hence, the received overlapped signals at the BS from the k-th group 
can be given as:

where sk ,i and pk ,i represent the transmit symbol and the power coefficient of the device 
i through the k-th RB, respectively. The transmit power of user i is constrained by the 
maximum transmit power Pmax . In addition, bk denotes the additive noise of variance σ 2 
over the RB k. Once the BS receives the superimposed signals, it applies the SIC proce-
dure to detect and recover each user’s signal.

Consider a particular coalition consisting of a number of MTDs that are allowed to 
access one RB in order to transmit their signals non-orthogonally. In order to enable 
the BS to effectively decode the signals from the devices, the signal-to-interference-plus-
noise ratio (SINR) of each MTD should be greater than the SINR threshold γth . Since we 
investigate a hybrid NOMA scenario, the BS applies the SIC concept to the combined 
signals received from each coalition on the allocated RB. Thus, each MTD faces an inter-
ference level only from the devices in the same coalition and there is no co-interference 
between the users belonging to different groups.

In order to differentiate the users sharing the same coalition, we have defined in [24], 
target signal-to-noise ratio (SNR) coefficients Ŵ = {γ1, · · · , γα} where α is the maximum 
number of MTDs that can be allocated and allowed to simultaneously transmit using 
one RB at each time slot. Therefore, with the aim of handling the access of the MTDs to 
the same RB and managing their activities, we use an access probability denoted by pt . 
In [34], we have proven that the probability of successfully decoding a user’s signal, given 
as Ps = pt(1− pt

α
)N−1 , is maximized when the access probability is pt = α

N .
Now, we consider a dense deployment scenario in which a large number of users are 

involved. Thus, it becomes increasingly challenging to ensure the successful transmis-
sion of different devices, especially at high network loads. Therefore, in an effort to han-
dle the massive connectivity of the devices, we model the resource allocation problem as 
a MFG framework in the next section. Note that in what follows, the RB index k is omit-
ted to simplify the notation.

3.2  Mean field game for power control

With the aim of deriving a distributed algorithm based on the MFG framework, we first 
pose the power allocation problem in the context of the differential game theory.

Definition 1 Let G be the differential game for the power control problem of the pro-
posed approach, where G = (N , {Pi}i∈N , {Si}i∈N , {Qi}i∈N , { Ui}i∈N ) and

(1)yk =
N

i=1

hk ,i
√
pk ,isk ,i + bk ,
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• Set of players  N = {1 . . .N } : the set of devices, considered as the players of our 
proposed game.

• Set of transmit power {Pi}i∈N  : denotes set of power levels of device i.
• State space {Si}i∈N  : for each device, si(t) = {hi(t), ki} is its state at each time t, 

which is the combination of its channel gain hi and the RB ki on which this device 
transmits its signals.

• Control policy {Qi}i∈N  : represents the control strategy to be determined by the 
device to make its decision with the aim of maximizing its own utility over a period 
of time T.

• Utility function {Ui}i∈N  : each user seeks to deliver its packets successfully while 
consuming less energy. For this reason, our utility function can be given as the Eq. 
(2), which has units of bits/joule, to measure the energy efficiency.

3.2.1  Utility function

In game theory, the design of the utility function is crucial, as it catches how satisfied a 
user is when playing the game. Indeed, a packet is successfully decoded when the device 
achieves an SINR higher than γth . On the other hand, in the context of MTDs having 
limited energy budgets, if a given device reaches a high SINR, it obviously consumes a 
lot of energy uselessly. In this regard, in our work, the objectives of the players are to 
meet their SINR requirements and to reduce their power consumption as much as pos-
sible. With this in mind, we adopt the following utility function to adequately address 
the above trade-off:

where p−i denotes the transmit power of all the MTDs excluding the i-th device and γi 
represents the SNR value for the device i. The efficiency function, which is represented 
by f (·) , reflects the packet success rate. It is an increasing and continuous function that 
has a sigmoidal shape. We assume that f (0) = 0 and f (γth) = f (∞) = 1 . In addition, we 
have an efficiency of 1 if the SINR is greater than γth which means that the packet is suc-
cessfully received by the BS. More details on the efficiency function can be found in [24].

Indeed, each user seeks to find the optimal power control strategy Q∗
i (t) that enables it 

to reach its maximum utility value at time t ∈ [0,T ] . To this end, the user has to deter-
mine the value function that maximizes its utility as follows:

Once each user has calculated its value function and determined its optimal power 
control, the differential game is solved. However, this leads to an inherent mathemati-
cal complexity, especially for a large population. On the other hand, when a densely 
deployed network is investigated, a single user’s strategy has a negligible impact on the 
entire network. In contrast, the effect of the mass on each device is significant. Hence-
forth, each player is no longer interested in the specific individual strategy of each of its 

(2)Ui(pi,p−i) =
f (γi)

pi
,

(3)vi(t) = max
pi(t)

E

[

∫ T

t
Ui(pi(τ )) dτ

]

, t ∈ [0, T].
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opponents but it is more concerned with the effect of their collective behavior in making 
its decision. For example, in the case of a densely deployed Wireless Sensor Network 
(WSN), it is more important for a device to know how many devices sharing the same 
RB it is going to use rather than having complete knowledge about all the users. In this 
regard, when a large number of devices are involved in the game, the differential game 
can be shifted towards the MFG.

3.2.2  Mean field

Mean field definition is one of the essential ingredients of the MFG framework. It rep-
resents the state dynamics over the set of devices and reflects their collective behavior. 
Thus, the mean field for every state s and at any time t is defined as follows:

where the 1 is an indicator function which returns 1 when {si(t) = s} holds and zero, 
otherwise. Generally, the MFG game is characterized by the fulfillment of some assump-
tions. Firstly, the rationality of the players is required, i.e., each of them seeks to optimize 
its own utility. Secondly, the interactions between the devices are no longer one-to-one 
interactions. Instead, each player is asked to interact with the mean field. Then, when 
a dense network is envisaged, a large population can be modeled as a continuum of 
players. Finally, the last assumption relies on the interchangeability of the states, which 
means that the MFG gameâ€™s outcome is not impacted by any permutation of states 
between players and that the state evolution of the players does not depend on a particu-
lar device [40].

3.2.3  Mean field interference

In the context of the MFG framework, each player is called upon to interact with the 
mass behavior of its opponents in order to make its own decision. In our case, this mass 
behavior is captured by the MFI. Thus, the latter can be defined as the weighted sum 
of active players sharing the RBs. Since the activity of each device is controlled by the 
access probability pt = α

N  , the aggregated interference perceived by any device can be 
expressed as:

Furthermore, we have proven in [34] that mean interference term can be given as 
follows:

Indeed, the BS collects the information from different devices when they upload their 
local information, namely their states and their transmit power levels. Then, it deter-
mines the mean field (4) and the MFI (6). This MFI can also be estimated by the BS 
using the received superimposed signals if it does not have perfect knowledge of users’ 

(4)m(t, s) = lim
N→+∞

1

N

N
∑

i=1

1{si(t)=s},

(5)Ii(t) =
α

N

∑

j �=i

|hj(t)|2pj(t).

(6)Imean(t) = lim
N→+∞

Ii(t) = α

∫

|h(t)|2p(t)m(t, s)ds.
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Channel State Information (CSI) for example. Then, the BS broadcasts the MFI to the 
devices participating in the game. Once each of them receives interference information, 
it estimates the interference level that it perceives. In fact, by performing the SIC pro-
cedure, the BS cancels part of the interference perceived by each device depending on 
the distance to this device before decoding its signal. Hence, each user can estimate the 
interference level from its perspective as:

where ri represents the distance between the ith-MTD and the BS, whereas R is the cell 
radius. Consequently, in response to this estimated interference, each user calculates its 
SINR value as well as its utility as follows:

3.2.4  Mean field game equations

The formulated MFG is expressed as a combination of two fundamental equations, 
namely the HJB and the FPK. We have derived these equations in our previous work [34] 
as (10) and (11), respectively.

Indeed the HJB equation allows each player to deal with the mean field, while the FPK 
equation governs the evolution of the mean field in response to the players’ decisions. 
The interaction between these coupled equations leads to the convergence point, namely 
the MFE. In [34], we have adopted the finite difference method to numerically solve the 
MFG. Upon invoking this method, we end up with an optimal power strategy given by:

where γ ∗ is the solution to

The aforementioned approach relies on the fact that each user, at each time t, joins the 
cluster that corresponds to its best channel. Now, if a device aims to deviate from its 

(7)Ĩi(t) =
(

1− ri

R

)

Imean(t),

(8)γmean(t) =p(t)|h(t)|2

σ 2 + Ĩi(t)
,

(9)Umean(t) = f (γmean(t))

p(t)
.

(10)− ∂v(t)

∂t
= max

p(t)
[U(t, p(t))+ ∇sv(t, s(t)).

∂s(t)

∂t
],

(11)
∂m(t, s)

∂t
+ ∇s(m(t, s).

∂s

∂t
) = 0.

(12)p(t) = γ ∗ Ĩ(t)+ σ 2

|h(t)|2

(13)γ f ′(γ )− f (γ ) = 0.
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current coalition, it needs to choose which coalition is preferable to be part of. Such a 
decision requires usually more information about the other coalitions. In other words, 
in this paper, we seek to make the devices autonomous in their choice of groups while 
modeling their behavior in each group as the mean field, so that each device can regu-
late its transmit power in response to the mean field. In this case, we are dealing with 
the joint optimization problems of the user grouping and the power control. Therefore, 
applying the finite difference method to solve these combined problems is not practically 
affordable, especially for high-dimensional state and action spaces. With this in mind, 
we spotlight MAB-based approaches in the following.

4  Multi‑armed bandit framework
In this section, we model the user grouping problem intertwined with the power control 
issue as MFG-based technique underlying a multi-user MAB approach. Firstly, the play-
ers adopt the MAB tool to arrange themselves into several NOMA groups. Then, within 
each group, the devices apply the MFG with the aim of autonomously regulating their 
power levels based on feedback information received from the BS.

We propose two MFG-based MAB algorithms using the ǫ-decreasing greedy and UCB 
techniques in order to enable each user to make a move upon selecting an arm with the 
aim of maximizing its own utility. In this direction, we define the set of devices as the 
set of learners and the set of available RBs as the arms to be chosen by the learners. Let 
Ai = {a1 . . . aK } denotes the set of possible arms for each device i. Indeed, at time slot t, 
the device i first pulls an arm ai , then it joins the coalition corresponding to this chosen 
RB. After transmission, the BS informs each device whether its packet was received and 
decoded successfully or not by sending back a reward value ri(t, ai) , allowing it in turn to 
determine its utility value Ui(t, ai) . In fact, we assume that upon picking its arm ai , the 
device determines the appropriate transmit power pi(t, ai) to be used by being part of 
the chosen coalition based on the MFI received from the BS. Then, the device transmits 
its message to the BS. The latter applies the SIC procedure to separate the superimposed 
signals. Thus, if the packet of the device i is successfully decoded, it receives ri(t, ai) = 1 
and its utility is calculated as in the Eq. (9). Otherwise, it receives ri(t, ai) = 0 which 
implies that the user has no utility by choosing the arm ai at time t.

4.1  ǫ ‑ decreasing greedy

The ǫ-greedy method is widely used as one of the most prominent solution concepts 
for the arm selection problem in the MAB framework [18]. It allows users to explicitly 
manage an exploration-exploitation trade-off with an exploration rate ǫ . Indeed, at each 
time slot, each device decides either to explore or exploit. In other words, it arbitrarily 
picks an arm with a probability of ǫ or it selects with a probability of 1− ǫ , the optimal 
arm which gives it the highest average reward Qt(i, :) considering the past observations. 
Nevertheless, if the exploration parameter ǫ is constant for the entire process, we end 
up with a sub-optimal allocation and a linear regret which in turn affects the overall sys-
tem performance. In order to overcome this issue, the exploration coefficient ǫ has to 
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be adjusted over time. Thus, in our paper, we apply the ǫ-decreasing proposed by [41] 
whose key idea is outlined in the Algorithm (1). By doing so, we define the adaptation of 
time-dependent exploration parameter as follows:

where ǫ0 > 0 is the initial exploration parameter. In this way, at the beginning of the 
learning process, more exploration is performed, allowing each user to discover the arm 
space as much as possible. Then, ǫt is dynamically regulated as a function of the learn-
ing time. Thus, the user can now properly select its best arm according to its acquired 
experience.

Algorithm 1 ǫ‑decreasing greedy

4.2  Upper confidence bounds algorithm

UCB algorithm was first proposed by [41] and broadly adopted to deal with the arm 
selection problem in MAB setting. Unlike the ǫ-decreasing greedy method, UCB 
implicitly distinguishes between exploration and exploitation phases by selecting the 
arm associated with the highest average reward given the past observations. This 
arm is known as the UCB index and is given by the following equation for each user 
i ∈ N :

with ui(t, a) is UCB of a given arm a, given as:

where ni(t, ai) is the number of times the arm ai and has been played during the previous 
time slots. In fact, the UCB at time slot t gathers two components, the upper confidence 

(14)ǫt = min(1,
ǫ0

t
),

(15)ai(t) = argmax
a∈A

[ui(t, a)]

(16)ui(t, a) = Q̂i(t, a)+
√

2 log(t)

ni(t, a)
,
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bias ψt(ai) =
√

2 log(t)
ni(t,ai)

 and empirical average of the observed rewards Q̂i(t, :) of playing 

the arm ai up to time t. Particularly, ψt(ai) which depends on ni(t, ai) , is used to encour-
age the exploration and serves as an interval around the average reward. Thus, the more 
the arm is played, the more this interval is shrunken, which in turn reduces the probabil-
ity of discarding this arm in future observations. Consequently, UCB concept tends to 
effectively meet the trade-off between the exploration and exploitation phases.

4.3  Distributed learning algorithms with multi‑armed bandit

In this section, we derive two distributed MFG-based MAB algorithms to solve the joint 
problems of user grouping and power control in a hybrid NOMA network. The first 
algorithm, illustrated in Algorithm (3), adopts the ǫ-decreasing greedy method, whereas 
the second algorithm, depicted in Algorithm (4), resorts to the UCB method with the 
aim of efficiently performing the decision-making process. For the two proposed meth-
ods, we assume that a device can only belong to one coalition at a time. At each time slot 
t, each learner i pulls an arm ai that represents the RB to use in order to deliver its pack-
ets. Then, it joins the coalition associated with this chosen RB.

Algorithm 2 Parameters update

Algorithm 3 ǫ‑decreasing MFG‑based MAB method for joint user grouping and power control: ǫ‑decreasing 
MFG
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Algorithm 4 UCB MFG‑based MAB method for joint user grouping and power control: UCB‑based MFG

In fact, when the user i attempts to access the channel, it implicitly uploads to the BS 
information about its state si and its selected arm ai . Subsequently, the BS broadcasts 
feedback information about the MFI Imean(t) . Then, by being part of the chosen coali-
tion, each device estimates its interference level Ĩ(t, ai) , according to its distance from 
the BS and calculates its power level pi(t, ai) in response to the estimated interference. 
After the transmission, the BS processes the SIC procedure and sends back a reward 
ri(t, ai) to the device i to inform it whether its packet was successfully decoded or not, 
enabling it to update its parameters as indicated in the Algorithm (2). At the end of time 
slot t, the BS updates the mean field m as well as the MFI Imean for time slot t + 1 . This 
interaction between each user and the BS is illustrated in Fig. 2.

4.4  Regret analysis

The performance measure of the MAB-based techniques is commonly related to the cal-
culation of total expected regret accumulated during the learning process. Generally, it 
is defined as the difference between the actually obtained reward and the one that would 
have been obtained if the optimal arm had been selected. Hence, for the single device’s 
case, the expected regret over a period of T time slots can be expressed as follows

where ri(ai(t)) is the received reward by the i-th device at time t by pulling the arm ai(t) 
and Q∗

i  is its average reward by selecting the optimal armi.
Since the scenario under consideration is composed of N users, the total expected 

regret is given by:

(17)Ri = TQ∗
i −

T
∑

t=1

E[ri(ai(t))],

(18)

RMAB =
N
∑

i=1

Ri

= T

N
∑

i=1

Q∗
i −

∑

i

T
∑

t=1

E[ri(ai(t))].
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4.4.1  Regret of the ǫ ‑ decreasing MFG algorithm

Now, we analyze the regret incurred when the ǫ-decreasing MFG Algorithm (3) is invoked. 
In doing so, we start by showing that learning the best arm can be performed in finite time 
as Lemma 1:

Lemma 1 The proposed ǫ-decreasing MFG algorithm identifies an ǫ-best arm with at 
least probability 1− δ when an arm sampling is carried out l times, where:

where δ ∈ [0, 1] denotes the probability of failure.

1  Proof
Denote by ǫ-best arm a′ an arm whose reward r′ is different from the best reward r∗ by less 
than ǫ , that is: |r∗ − r′| ≤ ǫ . Indeed, the user needs to sample each arm l times in order to 
obtain an ǫ-best arm with a probability of 1− δ

K  . Thus, we have

On the other hand, according to Hoeffding inequality, we obtain:

Consequently, we end up with:

Henceforth, when a device samples an arm l times, ǫ-best reward is obtained with a 
probability of 1− δ

K  .   �

Lemma 2 All the devices can learn their best arms with a high probability, at least 
1− δ , by adopting the ǫ-decreasing MFG algorithm T ∗ rounds, where

1  Proof
We have shown in Sect. 3 that the probability of successfully decoding the user’s packet 
can be defined as Ps = α

N (1− 1
N )(N−1) . Therefore, the collision probability Pc of the set of 

N players over K RBs can be given as:

(19)l = 1

2ǫ2
log(

2K

δ
).

(20)P(|r∗ − r′| > ǫ) ≤ δ

K
.

(21)P(|r∗ − r′| > ǫ) ≤ 2e−2lǫ2 .

(22)l = 1

2ǫ2
log(

2K

δ
).

(23)T ∗ = l

α(1− 1
N )(N−1)

.
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Hence, the number of successful samples for a given arm over a period of time t is 
expressed as follows:

For a period of T ∗ time slots, we have Ns = l , where l given in (19), which in turn results 
in:

  �

Lemma 3 The expected regret incurred over a horizon T by N devices employing the ǫ
-decreasing MFG algorithm over K arms is upper bounded as follows:

1  Proof
The regret accumulated during a period of duration t can be analyzed as the sum of the 
regret incurred during the two phases, i.e., exploitation phase R1(t) and exploration 
phase R2(t) . According to Algorithm (1), when a given user pulls a random variable x that 
allows it to explore, i.e., x >= ǫt , and choose its best-learned arm over a period of t time 
slots, it will not regret. Hence R2(t) = 0 . On the other hand, the exploration probability 
for our proposed approach at time t is given as ǫt = min(1, ǫ0t ) . Subsequently, for each 
device, the expected regret accumulated during the exploration phase over a period of 
time t can be given as

The discrete sum can be approximated using an integral:

Then the total expected regret incurred by all devices is bounded by:

(24)

Pc = 1−
N
∑

n=1

K
∑

k=1

α

N
(1− 1

N
)(N−1)

= 1− N .K .
α

N
(1− 1

N
)(N−1)

= 1− αK (1− 1

N
)(N−1).

(25)
Ns = (1− Pc)

t

K

= αt(1− 1

N
)(N−1),

(26)T ∗ = l

α(1− 1
N )(N−1)

.

(27)Rǫ−decreasingMFG = O(log T ).

(28)R2,i(t) ≤
t

∑

t ′=1

ǫt ′ = ǫ0 +
t

∑

t ′=ǫ0+1

ǫt ′ .

(29)R2,i(t) ≤ ǫ0 + ǫ0

∫ t−1

ǫ0

1

x
dx = ǫ0 + ǫ0 log(

t − 1

ǫ0
).
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  �

4.4.2  Regret of UCB‑based MFG algorithm

Lemma 4 the expected regret accumulated when the UCB-based Algorithm  (4) is 
invoked by N devices over a time period of T is upper bounded by:

therefore

where �k = Q(k∗)− Q(k) is the deviation function that measures the instantaneous loss 
of playing an arm ak.

1  Proof
Let ckt (t) =

√

2 log(t)
sk

 be the confidence interval of a given arm kt at time slot t when it is 

played sk times. Note that throughout this proof the user index i is omitted to simplify the 
notation. According to [41], the cumulative regret of a single user after T rounds can be 
defined as

where �k = Q(k∗)− Q(k) and n(t,  k) is the number of times the k-th arm has been 
played. Therefore, in order to bound the regret incurred by the UCB-based algorithm 
during T rounds, we can upper bound the number of pulls of every arm k up to T given 
as:

where the 1 is an indicator function that is equal 1 when {kt = k} holds and zero, other-
wise. Generally, during the first K time slots, each arm is played once in order to com-
pute a non-zero UCB index for each arm. Then, the algorithm pulls the arm with the 
highest UCB index at every t ≥ K + 1 . Consider a positive integer l, the above equation 
can be rewritten:

(30)
R2(t) ≤ Nǫ0 + Nǫ0 log(

t − 1

ǫ0
)

≤ Nǫ0 + Nǫ0 log(t)

= O(log t).

(31)RUCB−basedMFG ≤ 8N log(T )

K
∑

k=1

1

�k
+ 4N

K
∑

k=1

�k ,

(32)RUCB−basedMFG = O(log T ),

(33)RUCB(T ) =
K
∑

k=1

�kn(t, k).

n(T , k) = 1+
T
∑

t=K+1

1{kt = k},
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 if kt = k then u(t, k∗) < u(t, k) which means:

 Thus, the inequality (34) can be written as:

Then Q̂s∗(k
∗)+ cs∗(t) < Q̂sk (k)+ csk (t) implies that at least one of the following events 

must hold

Using Hoeffding’s inequality, the probability of the events in (36) and (37) can be 
bounded as:

Consider �k = Q(k∗)− Q(k) , since csk (t) =
√

2 log(t)
sk

 then the equation (38) can be 

rewritten as:

if sk ≥ 8 log(t)

�2
k

 then

Thus l can be chosen as l = 8log(T )

�2
k

 . Consequently, in this case, we end up with:

(34)n(T , k) ≤ l +
T
∑

t=l

1{kt = k , n(t − 1, k) ≥ l},

Q̂nt−1,k∗ (t − 1, k∗)+ cnt−1,k∗ (t − 1) < Q̂nt−1,k
(t − 1, k)+ cnt−1,k

(t − 1).

(35)

n(T , k) ≤ l +
T
∑

t=l

1{Q̂nt−1,k∗ (k
∗)+ cnt−1,k∗ (t − 1) < Q̂nt−1,k

(k)+ cnt−1,k
(t − 1), n(t − 1, k) ≥ l}

≤ l +
T
∑

t=l

1{ min
0<s∗<t

Q̂s∗(k
∗)+ cs∗(t − 1) < max

l<sk<t
Q̂sk (k)+ csk (t − 1)}

≤ l +
T
∑

t=l

t−1
∑

s∗=1

t−1
∑

sk=l

1{Q̂s∗(k
∗)+ cs∗(t) < Q̂sk (k)+ csk (t)}.

(36)Q̂s∗(k
∗) ≤ Q(k∗)− cs∗(t)

(37)Q̂sk (k) ≥ Q(k)− csk (t)

(38)Q(k∗) < Q(k)+ 2csk (t).

(39)P(Q̂s∗(k
∗) ≤ Q(k∗)− cs∗(t)) ≤ e−4 log(t) ≤ t−4.

(40)P(Q̂sk (k) ≥ Q(k)− csk (t)) ≤ e−4 log(t) ≤ t−4.

(41)Q(k∗)− Q(k)− 2csk (t) = �k − 2

√

2 log(t)

sk
< 0,

(42)P(�k − 2

√

2 log(t)

sk
< 0) = 0.
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By substituting the last inequality into Eq. (33), we upper bound the expected regret of a 
single user as follows:

The total expected regret incurred by all users is given as:

Then

and

which concludes the proof.   �

In the next section, we present numerical results to analyze the equilibrium behaviors 
of the proposed MFG-based MAB approaches, i.e., the ǫ-decreasing MFG Algorithm (3) 
and the UCB-based MFG Algorithm (4), and to demonstrate their effectiveness against 
the interference impact.

5  Results and discussion
In this section, we use extensive Matlab-based simulations to validate the proposed algo-
rithms. Particularly, we consider a hybrid NOMA system made up of N devices occupy-
ing K RBs. At each time t, each user belongs to only one coalition and communicates 
with the BS via the RB assigned to that coalition. Simulation parameters are introduced 
in Table 1.

Firstly, we assess the performance of the proposed UCB-based MFG Algorithm (4) 
by illustrating its convergence properties. Then, we provide comparisons between the 

(43)

n(T , k) ≤ 8log(T )

�2
k

+
T
∑

t= 8log(T )

�2
k

t−1
∑

s∗=1

t−1
∑

sk= 8log(T )

�2
k

1{Q̂s∗(k
∗)+ cs∗(t) < Q̂sk (k)+ csk (t)}

≤ 8log(T )

�2
k

+
T
∑

t= 8log(T )

�2
k

t
∑

s∗=1

t
∑

sk= 8log(T )

�2
k

2t−4

≤ 8log(T )

�2
k

+
∞
∑

t= 8log(T )

�2
k

t
∑

s∗=1

t
∑

sk= 8log(T )

�2
k

2t−4

≤ 8log(T )

�2
k

+ 1+ π2

3
≈ 8log(T )

�2
k

+ 4.

(44)RUCB(T ) ≤ 8 log(T )

K
∑

k=1

1

�k
+ 4

K
∑

k=1

�k .

(45)RUCB−basedMFG =
N
∑

i=1

RUCB,i(T ).

(46)RUCB−basedMFG ≤ NRUCB,i(T ),

(47)RUCB−basedMFG = O(log T ),
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two proposed approaches, i.e., the ǫ-decreasing MFG Algorithm (3) and the UCB-based 
MFG Algorithm (4), and other existing techniques in the literature.

5.1  Performance metrics

In order to spotlight the features of our MFG-based MAB techniques, we adopt the fol-
lowing metrics:

• Number of active devices per coalition: is the average number of devices that can 
transmit simultaneously in each group at each time slot.

• Packet success rate: is the ratio between the number of MTDs whose packets have 
been successfully decoded and the number of active MTDs that decided to transmit.

• Average transmission rate: is calculated as the ratio of the number of users whose 
packets have been successfully decoded to the total number of MTDs in the system.

• Average utility: we assume that the utility function is calculated only when the user 
satisfies the SINR requirement which means when its SINR is higher than SINR 
threshold γth . In other words, the user has a utility value if the BS succeeds in decod-
ing its signal upon executing the SIC, otherwise, it has no utility. Thereby, the average 
utility is the ratio between the utility values of users whose signals have been success-
fully retrieved by the BS and the total number of devices.

• Average energy: Similar to the calculation of the average utility, the average energy is 
calculated by considering the energy consumed when a device achieves a successful 
transmission.

5.2  Behavior of the UCB‑based MFG approach at the equilibrium

Throughout this section, we evaluate our proposed UCB-based MFG technique for 
multiple hybrid NOMA scenarios in which we have N users, i.e., N = 2000 , N = 4000 , 
N = 6000 , N = 8000 and N = 10000 , transmitting over K = 20 RBs.

First, we start by showing the packet success rate over time slots in Fig.  3. It is sig-
nificantly interesting to observe that the rate settles at t = 10 ms to about 0.78 (78% of 
success rate). Furthermore, we can clearly see that this rate stagnates at the same value 
for the different cases. Thus, each MTD has the same chance of successfully sending its 

Table 1 Numerical parameters

Parameter Value

System effective bandwidth BW 5.4MHz

Number of available RBs K 20

Number of coalitions 20

Bandwidth of a RB 180KHz

Density of homogeneous PPP, �N 0.1

Maximal frequency reuse, α 5

Initial exploration parameter, ǫ0 20

Time interval, T 0.3 s (i.e., 30 LTE frames)

SINR value satisfying (13), γ ∗ 6.4 (or 8.1 dB)

Cell range, R 200m
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message regardless of the network size. Interestingly, the proposed UCB-based MFG 
approach provides significant interference management by allowing devices to adapt 
their transmission strategies to the system load. By doing so, the proposed algorithm can 
reduce the performance drop witnessed by almost all existing grant-free schemes, espe-
cially in dense scenarios.

In Fig. 4, we depict the average transmission rate with respect to the time slots. In con-
trast to Fig. 3, this rate stagnates at different values for the different network sizes, since 
it reflects the successful transmissions of the the total number of users in the system. 
Thus, the highest value is reached when the network is the most sparse, i.e., N = 2000 . 
Then, the average transmission rate decreases as the network becomes denser. This 
is mainly due to the fact that the interference effects become more challenging in the 
denser network.

Now, we measure the average utility as well as the average energy in Figs.  5 and 6, 
respectively. It is interesting to note that these figures have a similar equilibrium behavior 
to what we have shown in Fig. 4, which emphasizes the convergence of the UCB-based 

Table 2 Parameters for energy consumption

Symbol Description Value

r0 Threshold distance (m) 87

Eelec Electronic energy (nJ/bit) 50

ǫfs Power amplification for the free space (pJ/bit/m2) 10

ǫamp Multi‑path fading power amplification (pJ/bit/m2) 0.0013

Fig. 1 The System model
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MFG approach. Hence, the proposed technique settles down at the point where the play-
ers that  achieve successful transmissions, meet their desired goal of maximizing their 
utilities with less energy consumption. Interestingly, the highest utility value is achieved 
when N = 2000 , but this also results in higher energy consumption than what can be 
observed in the other cases. These behaviors are achieved since the average utility and 

Fig. 2 The interaction process between the BS and each user at each time t 
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Fig. 3 Packet success rate as a function of time T when the number of RBs K = 20 . The blue dash‑dotted 
line represents the case when the system is composed of 2000 devices; The solid orange line represents the 
case when the system is composed of 4000 devices; The yellow dash‑dotted line represents the case when 
the system is composed of 6000 devices; The purple dash‑dotted line represents the case when the system 
is composed of 8000 devices; The green dashed line represents the case when the system is composed of 
10000 devices
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Fig. 4 Average transmission rate as a function of time T when the number of RBs K = 20 . The blue 
dash‑dotted line represents the case when the system is composed of 2000 devices; The solid orange line 
represents the case when the system is composed of 4000 devices; The yellow dash‑dotted line represents 
the case when the system is composed of 6000 devices; The purple dash‑dotted line represents the case 
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the average energy consumption are, respectively, obtained by averaging the utility val-
ues and the consumed energy of the devices that have successfully transmitted over the 
total number of devices in the system.

In other words, the results shown in Figs.  5 and 6 are obtained when we  consider 
respectively the utility and the energy consumption of the successful transmission cases 
reflected by Fig. 4. It is worth noting that we use the model of [42] to evaluate the energy 
consumption of the different approaches. According to this model, a user i consumes the 
following energy to transmit an L-bit message :

Table 2 lists the energy consumption parameters proposed by [42].

5.3  Comparison

Now, we provide a comparison between the ǫ-decreasing MFG algorithm, the second 
proposed learning approach, i.e., UCB-based MFG algorithm, and the basic determin-
istic algorithm of MFG approach developed in [34]. The simulation results obtained for 
this comparison are devoted to the case where N = 2000 devices sharing K = 20 RBs 
over a training period  of T = 500 time slots.

In Fig. 7, we illustrate the average number of active devices that can transmit simul-
taneously per group with respect to the time slots. Upon comparing the ǫ-decreasing 
MFG and UCB-based MFG algorithms, we observe that the former yields a higher 

{

L× Eelec + L× ǫfsr
2
i if ri < r0,

L× Eelec + L× ǫampr
4
i if ri ≥ r0.
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Fig. 6 Average energy as a function of time T when the number of RBs K = 20 . The blue dash‑dotted line 
represents the case when the system is composed of 2000 devices; The solid orange line represents the 
case when the system is composed of 4000 devices; The yellow dash‑dotted line represents the case when 
the system is composed of 6000 devices; The purple dash‑dotted line represents the case when the system 
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value than the latter. However, this number reaches its highest value when the MFG 
is adopted. This is mainly due to the fact that the MFG is a deterministic approach, 
which means that each device has no choice but to join the cluster corresponding to 
its best channel. In contrast, the proposed MFG-based MAB approaches allow each 
device to choose its coalition using either the ǫ-decreasing greedy or UCB algorithms.

Indeed, after making its choice, each user first estimates its interference level Ĩ 
according to the Eq. (7) based on the MFI received from the BS. Then, the user cal-
culates its power level as in the Eq. (12), in response to the estimated interference. 
Since the MFG technique requires each user to join the coalition that corresponds 
to its highest channel gain, its transmit power is likely to be less than the maximum 
transmit power, meaning that the user is able to cope with the estimated interfer-
ence level Ĩ  by having an acceptable power level. On the other hand, by invoking the 
MFG-based MAB algorithms, the user may deviate from the coalition associated with 
its best channel gain and join another coalition that corresponds to a lower chan-
nel gain. Hence, facing an interference level while having a lower channel gain may 
require much more power than the device can handle, i.e., a power level higher than 
the maximum transmit power. Therefore, this device withdraws to play this arm. Con-
sequently, the proposed algorithms result in a lower number of active devices per 
coalition than the MFG approach.

Figures 8 and 9 display, respectively the packet success rate and the average transmis-
sion rate for the different techniques. Interestingly, as shown in Fig. 8, UCB-based MFG 
achieves the highest value of the packet success rate, about 78% of success compared to 
the other techniques. Nevertheless, the MFG outperforms the MFG-based MAB algo-
rithms in terms of the average transmission rate, as depicted in Fig. 9.
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These results are somehow intuitive since the packet success rate is calculated as the 
ratio of the number of devices that successfully transmitted to the number of users 
that transmitted. By contrast, the average transmission rate is measured as the ratio 
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The solid orange line represents the case when the ǫ‑decreasing MFG algorithm is applied; The purple 
dash‑dotted line represents the case when the UCB‑based MFG algorithm is used

0 100 200 300 400 500

Time

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

A
ve

ra
ge

 tr
an

sm
is

si
on

 r
at

e

UCB-based MFG
-decreasing MFG

MFG

10 20 30 40 50

0.01

0.02

0.03

Fig. 9 Average transmission rate as a function of time T when the number of RBs K = 20 and the system is 
composed of 2000 devices. The blue dotted line represents the case when the MFG algorithm is invoked; 
The solid orange line represents the case when the ǫ‑decreasing MFG algorithm is applied; The purple 
dash‑dotted line represents the case when the UCB‑based MFG algorithm is used



Page 27 of 32Benamor et al. J Wireless Com Network         (2024) 2024:42  

between the number of devices that have succeeded in transmitting and the total 
number of devices in the system. Indeed, as shown in Fig.  7, the number of active 
users per cluster reaches its highest value when MFG is invoked, which means that we 
have more devices playing the MFG than the other techniques, allowing it to achieve 
the highest value in terms of average transmission rate as in Fig. 9. On the other hand, 
the ǫ-decreasing MFG results in a higher number of active users per cluster than the 
UCB-based MFG algorithm, as represented in Fig.  7, which enables it to achieve a 
greater average transmission rate than UCB-based MFG algorithm as in Fig. 9. But, 
in terms of the packet success rate, the UCB-based MFG approach guarantees higher 
values than the ǫ-decreasing MFG algorithm and the MFG approach, as shown in 
Fig. 8. Therefore we can conclude that, when a device transmits its packet, it has more 
chance to achieve a successful transmission by adopting the UCB-based MFG algo-
rithm than invoking the other approaches. However, the MFG algorithm allows more 
users to successfully transmit their packets than the MFG-based MAB approaches.

Now, we are interested in comparing the different approaches in terms of the aver-
age utility and the average energy consumption depicted in Figs. 10 and 11, respec-
tively. It can be concluded from these figures that although the MFG approach 
outperforms the two proposed MFG-based MAB algorithms in terms of the average 
utility, it requires much more energy consumption to reach this higher utility. Fur-
thermore, it can be clearly observed that the behaviors of these figures follow that of 
the average transmission rate illustrated in Fig.  9. Unsurprisingly, upon comparing 
the two MFG-based MAB algorithms, we clearly observe that the UCB-based MFG 
achieves a higher average utility and a lower average energy consumption than the ǫ
-decreasing MFG algorithm.

0 100 200 300 400 500

Time

0

1

2

3

4

5

6

7

8

9

A
ve

ra
ge

 U
til

ity

UCB-based MFG
-decreasing MFG

MFG

10 20 30 40 50

1

2

3

4

5

Fig. 10 Average utility as a function of time T when the number of RBs K = 20 and the system is composed 
of 2000 devices. The blue dotted line represents the case when the MFG algorithm is invoked; The solid 
orange line represents the case when the ǫ‑decreasing MFG algorithm is applied; The purple dash‑dotted line 
represents the case when the UCB‑based MFG algorithm is used



Page 28 of 32Benamor et al. J Wireless Com Network         (2024) 2024:42 

The latest simulation results reveal the performance comparison of the proposed 
UCB-based MFG approach with the MFG technique [34] as well as the Bi-level theo-
retical framework developed in [24] and the NM-ALOHA game investigated in [21]. In 
Fig.  12, we display the packet success rate as a function of the number of RBs K and 
the number of users N. Clearly, this rate decreases as the network becomes denser for 
both the Bi-level game and the NM-ALOHA game, while it remains stable for the UCB-
based MFG algorithm and the MFG framework. As explained above, by invoking the 
MFG algorithm, the devices are able to cope with the system load by adapting their 
transmission strategies in response to the mean field information. Hence, we achieve 
effective interference management that in turn results in mitigating the performance 
drop faced by almost all the proposed grant-free techniques, especially in very dense 
networks. Besides, this performance comparison in terms of the packet success rate is 
highly spotlighted in Fig. 13 which represents the case where the N devices share K = 20 
RBs. As we can clearly observe, the proposed UCB-based MFG algorithm results in a 
considerable improvement in terms of the packet success rate over the MFG approach 
and the other schemes. Consequently, it is interesting to highlight that facing the inter-
ference effects, the UCB-based MFG technique provides much more robustness than 
the MFG approach, which accentuates the benefit of adopting the proposed MAB-based 
approach.

Finally, Fig. 14 is devoted to illustrating the variation of the average utility for the sce-
nario of N = 2000 devices as the number of RBs K increases. As we can clearly see, the 
proposed UCB-based MFG algorithm yields a performance enhancement on the aver-
age utility over the Bi-level game and the NM-ALOHA game. Nevertheless, the MFG 
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approach outperforms all other techniques. The reason behind this is mainly related to 
the choice of the coalition. Indeed, it has been investigated in [20] that the utility func-
tion for a given user is maximized when it transmits on its best channel. Since the MFG 

Fig. 12 Packet success rate for different number of users N and number of RBs K. The orange curve 
represents the case when the UCB‑based MFG algorithm is applied; The blue curve represents the case when 
the MFG algorithm is invoked; The red curve represents the case when the Bi‑Level game NOMA is used; The 
purple curve represents the case when the NM‑ALOHA game is invoked
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Fig. 13 Packet success rate versus the number of users N sharing K = 20 RBs. The orange line represents 
the case when the UCB‑based MFG algorithm is applied; The blue line represents the case when the MFG 
algorithm is invoked; The red line represents the case when the Bi‑Level game NOMA is used; The purple line 
represents the case when the NM‑ALOHA game is invoked



Page 30 of 32Benamor et al. J Wireless Com Network         (2024) 2024:42 

algorithm requires each user to join the coalition corresponding to its best channel 
and then transmit over the associated RB, it is unsurprisingly that the MFG approach 
achieves a higher average utility than the UCB-based MFG algorithm, wherein each 
device can choose another RB rather than its best RB.

6  Conclusion
In this paper, a hybrid NOMA network has been investigated in a dense deployment 
context in which a large population of MTDs is split up into independent coalitions. 
We derived a bi-level learning to jointly address the user grouping and power control 
problems. Firstly, we modeled dense scenarios using the MFG framework while taking 
into consideration the effect of the collective behavior of devices. Then, we exploited the 
MAB-based approach with the aim of paving the way for an autonomous decision-mak-
ing process for the players involved in the formulated MFG. Thereafter, we derived two 
MFG underlying MAB algorithms that allow the MTDs to arrange themselves into coali-
tions and regulate their power levels based on brief feedback received from the BS. Our 
simulation results have emphasized the equilibrium behaviors of proposed MFG-based 
MAB approaches. More precisely, we have shown that the proposed UCB-based MFG 
algorithm can not only handle the high access load more efficiently, but also result in 
more robustness against the interference impacts with lower energy consumption than 
the other techniques.
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