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Abstract 

The escalating demand for data in wireless communication systems has posed signifi-
cant challenges in recent years. This trend is predicted to continue, with explosive data 
usage and evolving quality of service demands from mobile users. The rapid increase 
in traffic demand, combined with the intricate nature of heterogeneous network 
(HetNet) scenarios, has significantly heightened the challenges confronting mobile 
network operators. These challenges encompass service quality, load distribution, 
coverage, and the overall user experience. Conventional approaches that prioritize 
maximum received power in the cell association mechanism tend to sustain network 
imbalances within the HetNets, making it difficult to cater for the diverse traffic require-
ments of mobile users. In this study, instead of focusing solely on enhancing individual 
user downlink rates, we maximize the number of users whose downlink needs are 
satisfied by integrating a cell range extension (CRE) technique with an ant colony 
optimization algorithm. Our proposed method considers both the workload of base 
stations and the signal to interference-plus-noise ratio of user devices to formulate 
an objective function aimed at calculating specific CRE bias values for individual small 
base stations. A comparative analysis of the proposed approach with existing tech-
niques demonstrates its effectiveness. Simulation results underscore the success of our 
proposed strategy in meeting users’ throughput needs while reducing network imbal-
ances and call drop rates.
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1  Introduction
The ever-evolving landscape of wireless communication technologies has led to the 
emergence of 5G and beyond heterogeneous networks (HetNets), which promise 
extraordinary connectivity and data exchange levels. These networks are envisioned to 
cater for a diverse range of services, from ultra-high-speed data transmission to real-
time applications and the Internet of Things (IoT) [1, 2]. However, realizing the full 
potential of these networks requires addressing complex challenges such as efficient user 
association and load balancing.
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The increased demand for substantial data transmission over mobile networks has 
primarily been fueled by the surge in applications such as ultra-high-definition video 
platforms, augmented and virtual reality, and other fast internet services [3, 4]. As a 
result, this trend is compelling mobile network operators (MNOs) to enhance the pro-
visioning and management of broadband services with stricter quality of service (QoS) 
prerequisites. While the current infrastructure of mobile broadband networks can 
effectively cater to several specific applications’ requirements, future high-demand ser-
vices will exert added demands on MNOs for the forthcoming generations of cellular 
networks. As such, the integration of small base stations (SBSs) with low transmission 
power and small coverage into macro base stations (MBS) has created ultra-dense net-
works (UDNs) to accommodate future network services. By strategically deploying SBSs, 
MNOs can expand their network coverage to the proximity of user devices, enhancing 
overall performance, spectral efficiency, and service deliverability [5, 6]. Figure 1 illus-
trates an example of a heterogeneous network consisting of a couple of SBSs overlaid 
inside an MBS.

The emerging need for high data traffic capacity has prompted the 3rd Generation 
Partnership Project (3GPP) to propose multi-tier HetNets, wherein overlaying SBSs are 
deployed inside conventional macro base stations (MBS) to satisfy both data rate and 
traffic volume requisites. This heterogeneous framework thus creates an ultra-dense net-
work (UDN). The deployment of SBSs could address indoor coverage gaps and gaps at 
cell edges, providing a cost-efficient expansion of coverage [7]. Nonetheless, intensifying 
network density with diverse types of base stations could potentially introduce signifi-
cant network imbalances, as MBSs generally operate with considerably higher trans-
mission power than SBSs [8]. Employing the established cell association mechanism of 

Fig. 1  Heterogeneous network indicating cell range extension
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reference signal received power (RSRP), user equipments (UEs) typically connect with 
the cell possessing the highest received downlink power. Downlink power refers to the 
power level of the signals transmitted from the MBSs or SBSs to the UEs, i.e., the mobile 
devices [9]. This distribution of UEs throughout the network becomes uneven, with UEs 
predominantly concentrated on the MBSs [10].

Load balancing in wireless networks refers to the even distribution of traffic, data, 
and computational tasks across network components, such as base stations or access 
points, to prevent congestion and ensure optimal resource utilization. Load imbalance 
can lead to several issues, including reduced network capacity, uneven resource utili-
zation, decreased user experience, and increased energy consumption. In the realm of 
mobile cellular networks, the term ‘load’ encompasses various interpretations, often 
linked to the count of UEs connected to a base station (BS). When the aggregate number 
of resource blocks (RBs) allocated to users remains constant, the traffic load encoun-
tered by the base station corresponds directly to the number of attached UEs [11, 12]. In 
5G and beyond HetNets, load balancing becomes more critical due to the diverse range 
of devices, services, and applications these networks support. Hence, load balancing 
assumes a pivotal role in the context of HetNets. The method governing the associa-
tion of BSs and users must be optimized to maximize the utilization of system resources 
to deliver an enhanced QoS to end users. To address these challenges, load balancing 
mechanisms aim to dynamically allocate users and traffic to different network compo-
nents based on factors such as signal strength, channel conditions, and network capacity 
so that traffic is evenly distributed across various network components. Simultaneously, 
interference mitigation is essential to ensure uninterrupted and reliable communication, 
particularly in scenarios where multiple devices and users coexist in the same environ-
ment [13]. Interference in wireless networks occurs when signals from different devices 
or base stations overlap, leading to performance degradation and reduced data rates. 
Interference is particularly more problematic in densely populated areas and scenarios 
where multiple devices transmit simultaneously. Traditional solutions to these chal-
lenges often involve intricate trade-offs and compromises to network performance [14].

The standardized technique established by the 3GPP, known as cell range extension 
(CRE), emerges as a promising avenue to attain improved equilibrium among users 
within a mobile network. CRE involves assigning a bias factor to each SBS, effectively 
modifying the coverage area’s extent (as depicted in Fig. 1), thereby rendering users more 
inclined to connect with a given SBS. This strategy enables optimizing radio resource 
utilization through a more widespread distribution of users across the mobile network. 
Addressing the challenges inherent to CRE implementation involves precise bias value 
computation for each layer within the HetNet [15] or even determining a tailored bias 
value for individual SBSs. These methodologies predominantly rely on resolving com-
binatorial optimization problems [16] by maximizing the cumulative data link rates for 
users. However, these approaches often overlook the individual needs of users when 
considering CRE integration. While the pursuit of better system serviceability stands as 
a valid strategy, a more effective solution could be developed through the adoption of 
application-aware strategies to meet users’ specific traffic requirements.

Furthermore, the increasing demand for mobile data is making it harder to man-
age mobile networks effectively. While many methods have been proposed to improve 
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network performance, the real challenge is dealing with the complexity of mobile net-
works using methods inspired by nature and artificial intelligence. This is a growing 
field of research that combines ideas from machine learning, bio-inspired algorithms, 
and fuzzy neural networks [17]. These methods are used to optimize computer sys-
tems in various situations. Bio-inspired algorithms, which learn from the behavior of 
species in nature, offer a way to handle complex systems efficiently. These methods 
can potentially improve the design, maintenance, and optimization of self-organized 
networks (SONs) [18]. Notably, these techniques maintain a relatively modest level 
of complexity, facilitated by local interactions and iterative feedback-based learning. 
Hence, combining bio-inspired mechanisms with network operation strategies pre-
sents a promising avenue for enhancing user association and load balancing processes 
within a heterogeneous cellular network.

Moreover, significant emphasis has been placed on leveraging UE data traffic 
demands to establish customized bias values for individual BSs. While striving to dis-
tribute the load uniformly across network layers, there’s a risk of certain BSs becom-
ing either excessively overloaded or underutilized. Consequently, the imperative lies 
in achieving load equilibrium for each BS, along with synchronized real-time network 
resource optimization. This approach is aligned with the seamless operation of mobile 
networks, without necessitating supplementary signaling mechanisms. The ultimate 
goal is to enhance the network’s capacity to cater to UE devices’ QoS and traffic 
prerequisites.

In this context, the application of multi-objective optimization techniques offers a 
promising avenue to overcome the complexities of load balancing and user associa-
tion simultaneously. Ant colony optimization (ACO) [19, 20], inspired by the behavior 
of ants in nature, has proven its efficacy in solving intricate combinatorial problems. 
By leveraging ACO, we aim to develop a comprehensive approach that optimizes both 
load distribution and cell association in 5G and beyond HetNets.

This paper delves into the novel fusion of multi-objective optimization and ACO 
for tackling the intricate challenges of load balancing and user association in 5G and 
beyond HetNets. The proposed approach strives to strike a delicate balance between 
efficient resource utilization, seamless user experience, and the evolving demands 
of modern communication scenarios. By exploring this innovative approach, we 
endeavor to contribute to the advancement of network optimization strategies that 
pave the way for enhanced connectivity in the era of 5G and beyond. Hence, the sig-
nificant contributions of this paper are briefed below: 

1.	 We formulate a strategy involving CRE, integrating it with the ACO algorithm to 
account for the distinct traffic demands of mobile users and achieve enhanced con-
trol over network load distribution. The utilization of the ACO algorithm as an opti-
mization mechanism aims to calculate the bias values for all SBSs collectively, striv-
ing for a unified approach.

2.	 We construct a user association problem to maximize the count of UEs that satisfy 
their downlink prerequisites. This approach differs from existing studies by primarily 
focusing on maximizing the throughput rate as well as minimizing the call drop rate 
for mobile users.
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3.	 We extensively examine the performance of the objective function across various 
bias values and explore the impact of parameter combinations on both the user asso-
ciation problem and the equilibrium of network load distribution.

4.	 By conducting thorough simulation experiments within a two-tier HetNet using 
MATLAB simulator, we measure the effectiveness of our approach and conduct a 
comparative analysis against recent relevant research. The outcomes reveal that our 
proposed method holds significant potential for 5G and beyond ultra-dense Het-
Nets, as it demonstrates superior performance in terms of throughput, load balanc-
ing, and call drop rate within HetNets.

The primary contribution of this paper lies in its significance for the telecommunica-
tions sector and the end users of smart devices, facilitating the utilization of advanced 
networks like 5G and beyond. The telecommunications industry is currently advancing 
toward the development of 6G networks, expected to be launched by 2030. However, 
several critical challenges must be addressed to achieve this ambitious goal, including 
issues such as user association, load balancing, interference reduction, and resource 
management. Consequently, the principal objective of this research paper is to address 
and resolve the challenges associated with user association and load balancing.

The subsequent sections of this paper are structured as follows. Section 2 delves into 
related research on user association and load balancing strategies. Section 3 discusses 
the system model, scenario implementation, and incorporation of decision variables. 
Section  4 outlines the problem formulation. In Sect.  5, the proposed methodology is 
explained. In Sect. 6, we provide details of the experiments conducted and present the 
simulation results. Finally, Sect.  7 ends with concluding remarks and a discussion on 
potential future directions.

2 � Related works
This section delivers a comprehensive survey of literature pertaining to user association 
along with load balancing strategies and the integration of bio-inspired strategies within 
heterogeneous mobile networks.

Given the evolving landscape of large-scale, heterogeneous, dynamic, and intricate 
scenarios in HetNets, numerous studies have been undertaken to assess the efficacy of 
computational intelligence techniques in enhancing the operational performance of Het-
Nets [21]. References [21, 22] reviewed various AI-driven methodologies to foster the 
evolution of more intelligent HetNet infrastructure and systems. This review particularly 
addressed the research related to self-configuration and self-optimization, while provid-
ing a balanced analysis of the advantages and drawbacks inherent in each of these asso-
ciated schemes. Furthermore, the study referenced specific instances of particle swarm 
optimization (PSO) strategies for enhanced user association within cellular networks. 
The authors in [21] suggest that as technology in HetNet advances, we need new ways to 
meet the growing needs of the Internet of Things (IoT) and machine-to-machine (M2M) 
services. They propose using smart optimization and management methods inspired 
by how nature’s ecosystems work. Specifically, they recommend combining techniques 
like genetic algorithms (GAs) and ACO from swarm intelligence to handle these needs 
effectively.
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The comprehensive examination of the application of swarm intelligence in commu-
nication networks is thoroughly elaborated in [23]. The paper looks at different bio-
inspired techniques and algorithms to make artificial systems work better. It emphasizes 
the critical attributes of swarm intelligence observable in social species, thus delving into 
intelligent traits like adaptability, resilience, decentralized control, and self-evolution. 
These traits are subsequently explored for their potential applicability within commu-
nication networks. Furthermore, the paper also outlines how these techniques can help 
with designing wireless communication systems, making them work better, and optimiz-
ing how they function.

Reference [24] focused on the application of bio-inspired techniques, wherein sev-
eral algorithms relevant to artificial SONs were explored. The authors highlighted sev-
eral unresolved research questions, encompassing issues like SON design trade-offs, the 
incorporation of optimization capabilities within LTE-A systems, cross-layer design, 
cognitive self-optimization for M2M scenarios, resource allocation, and power regula-
tion. Moreover, the paper provided insights into several critical issues of SONs involv-
ing media access control (MAC)-layer and physical-layer operations. The paper asserted 
that swarm intelligence holds promise as an effective technique for SON management. 
However, apart from SONs, the bio-inspired techniques that can be universally adapted 
across diverse network environments remain a formidable challenge.

The authors in [25] proposed an algorithm named P5G, based on particle swarm opti-
mization (PSO), aimed at optimizing various key performance indicators (KPIs) through 
the allocation of virtual components termed as reusable functional blocks (RFBs) within 
the domain of software-defined networks (SDNs). P5G seeks to efficiently manage 
RFBs for seamless delivery of HD videos to users, within a standard scenario involving 
SBSs, MBSs, and evolved packet core (EPC) nodes. Despite omitting user-specific traf-
fic requirements, the outcomes demonstrate that P5G closely approximates the optimal 
solution, with consistently low computation times.

In [26], PSO is harnessed to dynamically determine biasing values for BSs with the 
objective of optimizing the attainable throughput. The system framework revolves 
around a three-tier downlink HetNet configuration, wherein distinct path loss mod-
els are applied for each category of base station. The proposed strategy demonstrated 
the capability to ensure equitable treatment of users by regulating the load distribution 
among BSs. However, it is important to note that the movement of particles within the 
search space is unaffected by user-specific traffic requisites.

The study undertaken in [27] examines the application of an algorithm embodying 
a Bayesian base station selection game to address the user association problem. This 
methodology considers the distinctive attributes of SBSs and the nature of user traf-
fic requirements, aiming to improve the likelihood of suitable associations that mini-
mizes the end-to-end latency experienced by UEs. The proposed strategy is validated 
through metrics such as the probability of accurate association, latency improvement 
compared to conventional CRE, and the effectiveness of user association algorithms 
in terms of SINR inherent in LTE-Advanced. Notably, as this investigation focused on 
a scenario involving a sparse distribution of base stations, the technique’s feasibility 
could be inconclusive due to the utilization of combinatorial optimization schemes. 
The investigation outlined in [28] employs stochastic geometry methodologies to 
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dissect the user association challenge, with the objective of identifying optimal bias 
values that drive the augmentation of throughput achieved by UEs. Furthermore, this 
paper introduces bias factors in a mathematically determined expression to com-
prehensively assess distinct network configurations on the virtual coverage regions. 
Nevertheless, it is important to note that the analysis within this research does not 
account for the precise attributes of user traffic, which could potentially enhance the 
precision of the user association mechanism.

Reference [29] proposed a method to concurrently address cell selection and 
resource allocation with the objective to alleviate the burden on MBSs by freeing 
up a substantial number of resource blocks (RBs) and directing users toward SBSs. 
Simulation outcomes indicate that the proposed framework potentially outperforms 
the state-of-the-art CRE schemes. However, the method has a significant drawback 
in that it relies on a collection of non-standardized signals, potentially leading to an 
increased overhead level. This particular characteristic renders the proposal less suit-
able for scenarios involving UDNs. The study in [30] introduces a method for load 
balancing and user association, underpinned by the knapsack optimization (KO) 
algorithm. The primary objective is to achieve a balanced distribution of users across 
various layers of SBSs. The approach is subject to constraints linked to the service 
capacity of BSs and the volume of resource blocks required by users to fulfill their 
data rate stipulations. It is noteworthy that as the count of BSs and UEs escalates, 
such as in UDN, the solution might encounter limitations in terms of scalability and 
the time taken to converge. This is due to the fact that KO problems are NP-hard, 
thereby affecting the feasibility within multi-tier HetNets.

Velmurugan et  al. [31] aimed at reducing the frequency of hand-off calls and 
power consumption of mobile nodes by using the multi-objective whale optimiza-
tion (M-WO) algorithm for vertical hand-off (VHO) decision making. Simulation 
results showed that under certain conditions, the multi-objective whale optimiza-
tion (M-WO) algorithm outperformed some existing algorithms such as optimization 
based on SSF (strongest signal first) and OPTG, in terms of call drop rate, load, and 
battery lifetime of the mobile terminal. In [32], the authors formulated a joint optimi-
zation problem of user association, channel allocation, and reuse pattern selection. 
The primary strategy is to ensure that UEs align with the closest SBSs. This is based 
on the condition that the SINR received surpasses a pre-established threshold. If this 
criterion is not met, UEs are inclined to associate with MBSs. By adjusting the thresh-
old, the paper demonstrates that this rule yields notably enhanced performance when 
compared to the SINR association technique (in the absence of cell range expansion).

Umar et  al. [33] presented innovative hybrid multiple access methods like phone 
user (PU) clustering-based downlink in HetNets to optimize throughput and QoS by 
enhancing the cell association. Using an outer approximation algorithm, it addresses 
the mixed integer nonlinear programming optimization problem derived from the 
concave fractional programming problem. Results indicate its superiority over macro-
cell-only networks and HetNets in terms of cell association, throughput, and QoS. 
Maryam et  al. [34] addressed user association challenges in backhaul-constrained 
HetNets, emphasizing the importance of load balancing for optimal small cell 
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utilization. It underscores the need for a combined approach of cell association and 
interference management to safeguard offloaded users from detrimental interference.

Moreover, a majority of the previously discussed studies are confined to employing 
Shannon’s theorem, in contrast to the conventional 3GPP-LTE discrete modulation-
and-coding scheme (MCS) function. This distinction can potentially lead to an overly 
optimistic estimation of network capacity. Utilizing a discrete MCS function, however, 
introduces notable complexity when determining the optimal association for cell-edge 
users. This complexity arises due to the absence of the convexity and strictly ascending 
attributes inherent in Shannon’s theorem [35].

3 � System model
In this section, we illustrate the system model and develop a formulation for an optimi-
zation problem tailored to compute distinct CRE bias values to be allocated to each SBS, 
considering the specific requirements of users’ traffic patterns. The parameters used for 
simulation are summarized in Table  1. We assume a downlink HetNet configuration, 
encompassing K autonomous network tiers of base stations where K ranges from 1 to 
k. Within this setup, a typical UE is positioned at location R3 . The arrangement involves 
the sampling of user and BS positions through separate distributions derived from 
homogeneous Poisson point processes (HPPP). This means, the positions of the BSs and 
users are chosen randomly according to HPPP but one fixed case of that scenario has 
been used as  illustrated in the simulated  system model  in Fig. 2. In this context, each 
kth layer exhibits a density of �k , with its BSs being randomly generated via HPPP φ(�k) , 
while user positioning is accomplished through HPPP φ(�u).

Table 1  Parameters used in the simulation

Simulation trial number 1000

X Refers to user positions

O Refers to BS positions

MBS number 1

Area covered by MBS 1 km2

MBS radius 500 m

PBS number 3

PBS radius 50 m

Total No. of sub-channels, K 100

Each sub-channel bandwidth 180 KHz

MBS power transmission 43 dBm

SBS power transmission 23 dBm

Carrier frequency 2 GHZ

Channel Rayleigh fading

Environment Urban

Noise power spectral density − 174 dBm/Hz

User noise figure 9 dB

Antenna gain 5 dB

Pico cell path loss model 140.7 + 36.7 * log10(d) dB (d [Km])

Macro cell path loss model 128.1 + 36.7 * log10(d) dB (d [Km])

Shadowing standard deviation 10 dB
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The collection of all base stations is stated as φ , where φ = (δ ∪ γ ) . The group of 
MBSs is denoted by δ = M1,M2,M3, . . . ,Mm , while the SBSs are represented by 
γ = S1, S2, S3, . . . , Ss . Here, φ is indexed with 1 ≤ j ≤ b (where b = m+ s ). The set 
of UEs is symbolized as π = U1,U2,U3, . . . ,Uu , where 1 ≤ i ≤ u . Additionally, 
ψ = θ1, θ2, θ3, . . . , θs represents the set of bias values associated with SBSs. Further-
more, the ith user requests a specific service class represented by the tuple ρi = (ηi, τi) , 
wherein ηi and τi , respectively, indicate the average throughput and the compression fac-
tor. Consequently, the required data rate for the ith UE can be computed as the product 
of (ηi · τi) . CRE for Max-SINR is formulated in the following paragraphs.

User association techniques rely on various metrics, including reference  signal 
received quality (RSRQ), RSRP, and SINR. Among these, RSRP and RSRQ stand out 
due to their minimal extra communication complexity, as these parameters are already 
defined in LTE standards. A study conducted by [36] assesses the user association mech-
anism using these metrics and demonstrates that selecting based on SINR can result 
in improved downlink rates. Therefore, in this model, we posit that the received SINR 
serves as a pivotal indicator of the UE rate and outage performance, given its direct cor-
relation with Shannon’s theorem. Adhering to the Max-SINR association criteria, the ith 
UE inclines toward associating with the jth BS, where j = arg max(SINRij) for all j ∈ φ . 
In the context of a two-tier HetNet ( K = 2 ) and the prevailing situation that MBSs pos-
sess considerably greater transmission power ( P1 ≫ P2 ), UEs exhibit a propensity to 
primarily associate with MBSs. By introducing a CRE bias to the SINR of each SBS, UEs 
experience enhanced distribution among BSs, potentially leading to an improved long-
term rate for each UE. For instances where the ith UE gravitates toward the MBS tier 
(tier-1) and selects an MBS k ∈ δ , the received SINR ( ζ ) adheres to conditions (1) and 
(2):

(1)ζik > ζij , ∀j ∈ δ, k �= j.

Fig. 2  Simulated system model
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In this context, θj denotes the CRE bias assigned to the SBS indexed as j. Furthermore, 
with the implementation of CRE, the ith UE opts for the ℓ th SBS when the received 
SINR fulfills the conditions specified by Eqs. (3) and (4):

By adjusting the appropriate bias or cell specific offset (CSO) values for the small BSs as 
explained earlier, these base stations modify their coverage area for downlink, leading to 
an increase or decrease in the number of users associated with them. When the ith user 
is linked to the jth base station, the downlink SINR ( ζij ) can be formulated as:

In Eq. (5), Pi is stated as the power transmitted by BS s, Gij is the gain of the downlink 
channel for the link of BS s and UE u, and PAWGN is the additive white Gaussian noise 
power. The power transmitted by the interfering cells is denoted as Pi and Gij is their 
gain. Since cell selection is considered to be run on a larger time scale, Gij is deemed to 
have been averaged within the period of association and overall physical resource blocks 
in the whole channel spectrum, which means, frequency-selective fading and fast fading 
are averaged out. Hence, Gij remains constant despite the dynamic channel variations 
within the cell selection period, and the SINR between base station j and user i for each 
sub-channel is similar. Therefore, the attainable per-channel downlink rate for the ith 
user connected to the jth base station can be formulated as:

Here, eℓ signifies the efficiency per sub-carrier with respect to bits for each orthogonal 
frequency-division multiplexing (OFDM) symbol at a designated threshold SINR. This 
threshold SINR is typically chosen based on various factors such as the desired quality 
of service (QoS), system requirements, and environmental conditions. One limitation of 
our simulation study is that it assumes a constant SINR threshold, whereas, in practical 
scenarios, this threshold varies. However, the SINR threshold has been the same for all 
the compared algorithms. This efficiency, denoted as eℓ , is derived through the utilization 
of an MCS function, represented as µ(ζij) . The MCS function maps the SINR values to 
specific modulation and coding schemes, which determine the achievable data rate and 
reliability of communication over the sub-channel. The variables nsc , nsym , and Tsubframe 
correspond to the count of subcarriers per channel, the quantity of OFDM symbols 
within each subframe, and the time length of each subframe, respectively. Through the 
adoption of an equitable resource allocation strategy, wherein the total resource blocks 
(RBs) are evenly distributed among the linked users; the complete number of resource 
blocks attained by the ith user from the jth BS can be mathematically formulated as:

(2)ζik > ζij + θj , ∀j ∈ γ .

(3)(ζiℓ + θℓ) > ζij , ∀j ∈ δ.

(4)(ζiℓ + θℓ) > (ζij + θj),∀j ∈ γ , j �= ℓ.

(5)ζij = PiGij/

kǫφ

PkGik + PAWGN

(6)Ri = eℓ ·
nsc · nsym

Tsubframe
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where nRBj refers to the total number of available RBs in base station j; meanwhile, Lj 
denotes the total load of users associated with base station j. A similar type of model has 
been implemented in [37], which has been adopted in this paper as the equations are 
common to best suit our proposed ACO algorithm.

4 � Problem formulation
Let us assume that the matrix denoted as X is a binary matrix that indicates the connec-
tion between the ith user and the jth base station. Consequently, the value of the factor 
xij is determined by:

Moreover, assume that Y signifies an array composed of binary values that symbolize the 
satisfaction of the user’s demand regarding the downlink rate. Specifically, the element 
yi = 1 if the ith user’s download needs are fulfilled, as depicted by:

Furthermore, assume that Z denotes an array that contains binary values. The factor zj 
represents whether the jth base station is associated with at least one user, as demon-
strated below:

In this section, taking into account the performance criteria and decision variables 
employed in this study, we establish an optimization problem characterized by the 
objective function presented below:

The aim of Eq.  (11) is to enhance the satisfaction of users by maximizing the count of 
UEs whose downlink needs are fulfilled and the count of base stations that are linked to 
UEs. When the element zj is maximized, it is anticipated that both the number of base 
stations connected to UEs and the number of resource blocks utilized by those users will 
increase. The elements α and β harmonize the involvements of the different elements in 
the objective function. Moreover, the maximization goal is tied to the selection of prede-
fined values ψ = {θ1, θ2, θ3, . . . , θs} , which directly impact the values derived from yi and 
zj . Furthermore, the objective function is bound by the following constraints:

(7)nRBi =
nRBj

Lj

(8)xij =

{

1 if the ith user is linked up to the jth BS;
0 otherwise.

(9)yi =

{

1 if the ith user’s downlink demand is satisfied;
0 otherwise.

(10)zj =

{

1 if the BS j is associated with at least one user;
0 otherwise.

(11)Maximize α ·

∑

i∈π

yi + β ·

∑

j∈φ

zj

(12)
∑

j∈φ

xij = 1, ∀i ∈ π ,
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Constraint (12) ensures that each user is linked with just one base station, implying that 
a Coordinated Multipoint Transmission (CoMP) is not taken into account. The follow-
ing constraint (13) safeguards that the RBs utilized by the ith UE do not exceed the total 
RBs accessible at the jth base station. Lastly, constraint (14) assures solution feasibility by 
requiring that the resource blocks received by a user must exceed a specified minimum 
threshold TB.

5 � Proposed methodology
This section describes the simulation parameters for the experiment. The ACO algo-
rithm used for optimizing fairness and throughput is also discussed here.

5.1 � Mobile network configuration and parameters

The proposed methodology uses the simulation parameters as provided in Table 1, refer-
enced from 3GPP, and the path loss model followed is distance-based. It is ensured that 
similar efforts are given to all the parameters of each optimization methods. The simula-
tion involves the evaluation of a two-tier HetNet, with K = 2, where 1 MBS and 3 SBSs 
are used to represent a UDN scenario.

Furthermore, the transmission power levels are set at 46 dBm and 23 dBm for MBS 
and SBSs, respectively. We conduct a total of 1000 trials for each scenario. The loca-
tions of users and base stations are generated based on their respective HPPP densities, 
covering an area of 1 km2 . Subsequently, the SINR for potential links is determined and 
connections between UEs and their corresponding base stations are established via the 
Max-SINR association scheme. The SINR computations facilitate the determination 
of the downlink rates for UEs. The downlink SINR is derived using Eq. (8), with Max-
SINR representing the maximum value of this SINR. Under the Max-SINR association 
scheme, a user is associated with a specific  BS if its downlink SINR surpasses that of 
the second strongest signal; otherwise, it is associated with the next best Max-SINR BS. 
Additionally, the downlink rate is computed using Eq. (6).

5.2 � The ACO algorithm

In this experiment, we introduce the ACO algorithm for the computation of individual-
ized CRE bias or also known as CSO for each SBS. The objective is to determine unique 
CSO values, which correspond to the elements within the set ψ = {θ1, θ2, θ3, . . . , θs} . In a 
natural setting, ants use information about pheromone concentration to find the short-
est path between their nest and food source [38]. This ant behavior serves as the inspira-
tion for the bio-inspired ACO algorithm. The fundamental concept behind employing 
this CRE algorithm based on ACO is to parallelize the search process across multiple 
concurrent computational threads. This approach utilizes a dynamic memory struc-
ture that incorporates information regarding the previous actions’ success by compu-
tational agents. This information provides guidance for the construction process of ants 

(13)
∑

i∈π

nRBi ≤ nRBj , ∀j ∈ φ,

(14)nRBi ≥ TB, ∀i ∈ π ,
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in subsequent cycles or iterations. The central component of this algorithm is the arti-
ficial ant, which serves as a relatively straightforward computational agent responsible 
for probabilistically and iteratively constructing the solution to the current problem. The 
intermediary partial solutions created during this process are referred to as states. Each 
ant transitions from one state to another, gradually constructing a complete solution. At 
each step, every ant calculates a set of feasible extensions to the current state and proba-
bilistically selects one of them to create a new state. The probability of an ant moving 
from state s to state s + 1 is influenced by two key factors: 

1.	 The initial preference for transitioning from state s to state s +  1, which is deter-
mined by a problem-specific heuristic.

2.	 A measure of the effectiveness of a specific move in the past for constructing an opti-
mal solution.

These move-related indicators, referred to as trails, undergo updates at the conclusion 
of each iteration. This involves increasing the importance of moves that contribute to 
optimal or near-optimal solutions while decreasing the significance of other moves. As 
discussed in the introduction section, the primary goal of this research is to achieve effi-
cient load balancing by effectively redistributing UEs between macro and Pico e node 
base stations (eNBS). To accomplish this, we have followed the below methodology:

Let N  represent the number of UEs randomly distributed in the network, which 
includes 1 Macro eNBS and p Pico eNBs, where in this case p = 3. We introduce n as 
the attribute based on which UEs need to be grouped into clusters, in our case which is 
SINR. Consider K  as the number of clusters. We use R to denote the agent responsible 
for constructing the solution, and S represents the solution string to be generated by the 
algorithm. The pheromone matrix has a size of N × K  , where it denotes the concentra-
tion of pheromone at the location of UEi=1:N associated with cluster j = 1, . . . ,K  . To 
produce a solution S, the agent determines the cluster number for each element of the 
string S via one of the following methods:

•	 Exploitation process The cluster with the highest pheromone concentration is chosen 
based on a probability 0 < α < 1.

•	 Biased exploration process One of the K clusters is selected by utilizing the stochastic 
distribution with a probability 1− α , denoted as Pij , which represents the normalized 
pheromone probability for parameter i which is inside the cluster j can be expressed 
as below, 

Here, Tij is the pheromone matrix that determines the amount of pheromone present in 
between the food and nest. The parameters α and β represent the relative importance of 
the pheromone, and nij is the inverse of the distance between i and j, i.e., food and nest.

The objective function evaluates the solution’s quality by summing the squared 
Euclidean distances between the center of the cluster and each object inside the clus-
ter. When dealing with N UEs {x1, x2, . . . , xn} that need to be grouped into K clusters, 

(15)Pij =
[Tij]

α
[nij]

β

∑

[T ]
α
[nij]β
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the mathematical representation of this problem regarding the clustering of data can 
be defined as the minimization of the objective function F(w, m):

Here, wij represents the weight associated with UE i inside the cluster j. wij is a binary 
weight variable that equals 1 if object i is inside the cluster j , and it equals 0 otherwise. 
xiv denotes the v-th attribute of UE i, and mjv signifies the v-th attribute of the center of 
cluster j. The aim of this is to minimize this function.

In every loop, individual ants generate solutions. To enhance these solutions, a 
straightforward local search method is applied to the best solutions with the lowest 
values of the objective function (referring to the highest fitness values). The cluster 
assignments of every UE sample in the solution string are modified with a definitive 
threshold probability. These newly generated solutions are accepted only if they result 
in improved fitness. Subsequently, the pheromone matrix is updated using the follow-
ing rule:

Here, ρ represents the trail persistence, with a range between 0 and 1, and (1− ρ) 
denotes the evaporation rate. An optimal solution is the one that minimizes the objective 
function value. The algorithm stores the solution associated with the minimum objective 
function value in memory and continues iterating. Upon reaching the stopping criterion, 
the best solution, characterized by the lowest objective function value, becomes the final 
solution. Thus, the best possible bias for CRE is sorted out via the ACO technique. A 
flowchart is presented in Fig. 3 to show how the ACO algorithm works.

The steps of sorting out the best bias value can be understood from the flowchart 
in Fig. 3. Initially, the ant colony optimization algorithm is initialized, setting param-
eters like the number of ants, iterations, pheromone evaporation rate, and initial bias 
values. Subsequently, ants are dispatched to explore the solution space, representing 
potential solutions to the problem of bias value selection. Their movement encom-
passes the space of potential bias values for extending cell range. During exploration, 
the encountered bias values are assessed for quality based on predefined objectives, 
such as minimizing interference and maximizing load balance. Pheromones are 
deposited by ants on their paths, facilitating communication and information shar-
ing among them. The amount of pheromone deposited corresponds to the quality 
of the encountered bias value, which is continually updated according to the fitness 
function’s findings. Following the ants’ exploration, a global update is performed to 
adjust pheromone levels based on the solutions found collectively by the ant colony. 
This process strengthens paths leading to favorable bias values while weakening those 
leading to sub-optimal solutions. Iterations continue through ant movement, bias 
evaluation, and pheromone update, gradually converging the ant colony toward the 
optimal bias values for cell range extension. The process concludes upon finding the 
optimal value that satisfies the desired objectives, signaling the cessation of iterations.

(16)F(w,m) =

K
∑

j=1

N
∑

i=1

n
∑

v=1

wij

∥

∥xiv −mjv

∥

∥

2

(17)τij(t + 1) = (1− ρ) · τij(t)+�τij , for i = 1, . . . ,N , and j = 1, . . . ,K
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Table 2 represents the parameters selected for the ACO algorithm. ACO incorpo-
rates specific parameters like pheromone persistence rate and its initial value, as well 
as the number of parallel executions, which enhance its effectiveness in determining 
optimal bias values in scenarios akin to this study. On the other hand, PSO involves 

Fig. 3  Flowchart of how proper bias is sorted out by ACO

Table 2  ACO parameter values

Description of parameters Value

Number of total UEs 500

Number of cycles 100

Number of ants 100

Initial pheromone level 0.05

Pheromone persistence rate 0.5

Probability of choosing next node 0.75

Number of parallel execution 4

Feedback window size 10
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unique parameters such as inertia weight, cognitive weight, and inertia weight decay. 
Similarly, the remaining compared algorithms, M-OPTG and M-WO, possess their 
distinct parameters. In this investigation, ACO has been implemented and compared 
with the results obtained from similar studies utilizing these alternative techniques 
(PSO, M-OPTG, and M-WO). While it is plausible that another algorithm might 
outperform if optimized with superior parameters, the parameters employed are 
assumed to remain consistent throughout this study.

6 � Results and discussion
In the following section, the simulation results are thoroughly discussed and analyzed 
to understand how the proposed ACO-based CRE methodology outperforms the state-
of-the-art techniques such as CRE based on M-OPTG, M-WO, and PSO. In the sim-
ulations, the parameters under comparison include Jain’s fairness index (JFI), which 
assesses load balance, as well as throughput and average throughput, determined using 
the conventional formula derived from Eq. (6), and call drop rate. Throughout the simu-
lation process, all parameters are kept consistent across the algorithms being evaluated 
to ensure uniform calculation standards.

Figure 4a, b illustrates the proposed ACO-based CRE method’s performance in load 
balancing and throughput for varying numbers of users in two different sub-plots 

Fig. 4  a Comparison of load balancing and b throughput for ACO (proposed) and other state-of-the-art 
techniques over variable users
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simultaneously. Load balancing is assessed using Jain’s JFI, a parameter commonly used 
by researchers in the same domain. As illustrated in Fig. 4a, b, even with the increase 
in user numbers, the proposed ACO-based CRE method consistently exhibits superior 
performance in terms of both JFI and throughput compared to M-OPTG, M-WO, and 
PSO. It has been observed that there has been a downward trend for throughput while 
it is an upward trend for JFI, specifically while the number of users is 300–500. This sug-
gests that improving the load balancing of the network appears to occur at the expense 
of the network’s throughput, particularly when there is a higher density of users.

Figure 5 depicts the network performance of the proposed ACO-based CRE method 
in terms of average throughput for varying numbers of hand-offs in comparison to 
M-OPTG, M-WO, and PSO. In general, all the techniques exhibit an upward trend as 
the number of hand-offs rises. However, the proposed ACO-based CRE method demon-
strates superior performance. This suggests that the proposed ACO-based CRE method 
would demonstrate similar superior performance with an even greater number of small 
cells, as hand-offs typically occur when users transition from one cell area to another. 
During a hand-off, a user’s device transitions from one network access point to another. 
This process involves briefly disconnecting from the current network and reconnect-
ing to the new one. While the disconnection is usually short, it can temporary inter-
rupt data transmission, impacting the user’s experience. The extent to which throughput 
decreases during a hand-off depends on various factors, including the efficiency of the 
hand-off mechanism, the quality of the new network connection, and the speed at which 
the user’s device can establish the new link. In the simulations, we have assumed ideal 
conditions where the hand-off process is seamless and the new network connection is 
of higher quality, so the impact on throughput may be minimal. However, in real-world 
scenarios, factors such as network congestion, signal interference, and device capabili-
ties can contribute to a noticeable decrease in throughput during hand-offs. However, an 

Fig. 5  Comparison of average throughput of all BSs over variable hand-off number
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efficient hand-off mechanism allows for an increase in the average throughput. Likewise, 
the load balancing performance is notably better for the proposed ACO-based CRE 
method in comparison to its closest competitor, PSO, as depicted in Fig. 6. Conversely, 
the M-OPTG and M-WO based CRE methods consistently under-perform, as shown in 
Fig. 6. This proves that ACO is inherently better at exploring the solution space globally 
compared to PSO, M-OPTG, and M-WO. This is because ACO employs multiple ants 
exploring different regions simultaneously, leading to a more comprehensive search for 
optimal bias values. This global search capability helps ensure that the solution found is 
not trapped in local optima, enhancing the chances of discovering superior solutions for 
load balancing.

Figure 7a presents an analysis of the call drop rate with varying numbers of hand-offs 
as well as Fig. 7b presents the comparison against varying numbers of users. The analy-
sis of call drop rate aims to ensure that nearly uninterrupted service is provided to the 
users while simultaneously improving user throughput and load balance of the BSs. It 
is observed from Fig.  7a, b that the proposed ACO-based CRE method demonstrates 
better overall performance with the increase in the number of hand-offs as well as the 
number of users. Both the variables (number of hand-offs and number of users) are 
checked to justify that the proposed method is feasible in a large-scale deployment sce-
nario, making the proposed method more robust in practical scenarios. The fluctuations 
in performance seem common across all of the schemes.

Table 3 summarizes and compares the results of all the parameters, by taking an aver-
age for all the problem sizes (such as when user number is 100–500). It can be concluded 
from the findings discerned from the simulation results that the proposed ACO-based 
CRE method, along with its closest competitor, the PSO technique, exhibits the lowest 
call drop rate, the most balanced network when compared to state-of-the-art methods, 
namely, M-OPTG and M-WO. However, it has been observed that the throughput has 
dropped for higher number of users in the earlier figures but the average performance 

Fig. 6  Jain’s Fairness Index (JFI) over variable hand-off number
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with respect to throughput is higher. It can be asserted that, on average, the proposed 
ACO outperforms all other schemes across all other scenarios considered.

A time complexity comparison is illustrated in Fig.  8. Here, the execution time of 
the optimization algorithm is verified with respect to the number of users. It can be 
observed that there is a general trend of increase in execution time with respect to num-
ber of users, which is obvious. The rise is initially linear but exponential toward the end 
for all the algorithms. The algorithms are executed for 100 times and took an average for 
each instance (such as when the number of users is 100, 200, or 500). The simulations are 

Fig. 7  Call drop rate evaluation versus a hand-off number, b number of users for the proposed scheme 
compared to other recent schemes

Table 3  Summary of the performance comparison

Techniques Throughput (Mbps) JFI Call Drop Rate

M-OPTG 66.2 0.614 0.47

M-WO 65.6 0.698 0.45

PSO 69 0.664 0.29

ACO (Proposed) 70.6 0.774 0.26



Page 20 of 23Alam et al. J Wireless Com Network         (2024) 2024:44 

conducted under consistent conditions across all compared algorithms to prevent any 
ambiguity.

Additionally, a convergence graph for the proposed algorithm is presented in Fig. 9. 
After the first 10 iterations, the bias values start to fluctuate around the optimal value. 
This fluctuation is represented by the variations in the blue line around the optimal bias 
value. The fluctuation occurs due to the inherent randomness of the optimization pro-
cess as well as the network conditions including user positions. Despite the fluctuations, 
the bias values eventually stabilize around the optimal value as the number of iterations 
increases. This stabilization indicates that the optimization algorithm has converged to a 
solution, and further iterations do not significantly change the bias value. The minimum 

Fig. 8  Time complexity comparison

Fig. 9  Convergence graph for the proposed algorithm



Page 21 of 23Alam et al. J Wireless Com Network         (2024) 2024:44 	

value of bias for the proposed algorithm found from 100 executions was 10.2, the aver-
age value of the bias was 15.3, and the standard deviation was 1.65.

7 � Conclusion and future work
To conclude, this research has explored the context of the HetNet environment and 
introduced a novel strategy for load balancing and cell association. Our approach has 
incorporated a bio-inspired perspective, leveraging the ACO algorithm. In two-tier het-
erogeneous network scenarios, conventional user association mechanisms are biased 
toward the highest received signal power, which tends to favor MBSs over SBSs, causing 
network imbalance. By introducing a user association mechanism that takes into account 
the number of users satisfying the downlink demands, our proposed ACO-based CRE 
method effectively redistributes users toward SBSs. This strategy has the potential to 
rectify network imbalance without resorting to intricate combinatorial optimization 
problems. Our proposed ACO-based CRE method has exhibited promising outcomes 
by mitigating network imbalance, while achieving satisfactory throughput levels for indi-
vidual UEs as well as superior average throughput for the whole network. The call drop 
rate is also found to be relatively low compared to the state-of-the-art techniques.

Future research could use dynamic clustering methods to simplify complex searches 
and improve accuracy. Additionally, there can be plans to explore CoMP scenarios 
involving multiple base stations to user connections to evaluate efficiency with high-
speed moving users. As more base stations and users are deployed, future studies 
might also examine how this approach works in device-to-device and IoT communica-
tions. These extensions could optimize user association and help the end users get the 
enhanced mobile service.
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