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Abstract 

In this paper, a multiple-input multiple-output detection structure called soft infor-
mation acceleration (SIA) is proposed, which is suitable for simplifying the two-stage 
subspace marginalization with interference suppression (SUMIS) into one stage. 
The proposed one-stage method outperforms the conventional two-stage SUMIS 
when the subspace size is large enough. The performance advantage of the pro-
posed SUMIS-SIA mainly results from the average number of soft information updates 
being equal to the ’subspace size,’ instead of only once during the two-stage SUMIS 
detection. Thus, the SUMIS-SIA achieves a better trade-off between performance 
and complexity. To further reduce the complexity, a channel-shortening method based 
on subspace suppression is proposed. Simulation results show that the proposed chan-
nel-shortening one-stage method also outperforms SUMIS, which benefits from SIA.

Keywords:  Soft information acceleration, Subspace suppression, Ungerboeck 
observation model, SUMIS, Channel shortening

1  Introduction
The fifth generation of mobile communication scenarios demands higher data trans-
mission rates. Multiple-input multiple-output (MIMO) [1–5] technology is a powerful 
means to adapt to this trend. MIMO systems enhance spectral efficiency through spatial 
multiplexing and use MIMO detection techniques at the receiver to recover the super-
imposed symbols in the spatial domain. However, the scaling up of MIMO presents a 
challenge to the base station receivers in the uplink scenario. The linear detection algo-
rithms [6]—including zero-forcing (ZF) and minimum mean square error (MMSE)—can 
better cope with complexity rather than performance. In contrast, nonlinear detection 
can achieve better performance, but the number of symbol combinations traversed by 
nonlinear detection increases exponentially. As a result, receivers tend to adopt nonlin-
ear detection for better performance. To reduce the complexity, many nonlinear detec-
tion schemes approximating the maximum likelihood (ML) are proposed, such as K-best 
decoding [7] and likelihood ascent search based on K symbols (K-LAS) [8]. These are 
both successful detection algorithms that offer a good trade-off between performance 
and complexity, coming close to the performance of ML [9] with adjustable complexity.
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Subspace suppression is another technique in trade-off schemes, such as the two-stage 
detection algorithm ‘subspace marginalization for interference suppression’ (SUMIS) 
[10]. SUMIS constructs an ns-dimensional subspace for each symbol and each subspace 
outputs soft information for that symbol only. Subspace partitioning and the precision 
of soft cancellation determine the quality of each symbol. Furthermore, both stages of 
SUMIS are well suited for parallel processing [11]. However, considering the coupling 
between different symbols, the two stages of SUMIS can be compressed into one stage 
by serial processing of symbols, subspace sorting, and result updating. Another method 
to build a trade-off is the Ungerboeck observation model (UOM) with finite memory 
length. The UOM used to be a tree-based approach. Since Rusek proposed parameter 
optimization and channel shortening method, the UOM can shorten the memory length 
based on the information theory [12] and run on the trellis.

The proposed soft information acceleration (SIA) structure improves SUMIS by intro-
ducing serial processing. It directly obtains soft information for all ns symbols within 
the subspace through classification operations. Therefore, on average each symbol will 
get ns versions of soft information. SIA corrects the cumulative soft information of sym-
bols by utilizing multiple soft information versions per symbol, enhancing the accu-
racy of soft cancellation. Under the SIA structure, SUMIS detection is compressed into 
one stage with serial detection. Before detecting the subspace, the covariance matrix of 
interference and noise is updated based on previous detection results, achieving accel-
erated convergence of detection performance. Although the algorithm has only one 
stage, SUMIS-SIA outperforms SUMIS as ns increases. This improvement is mainly due 
to the average number of soft information updates being ns , instead of only once as in 
SUMIS. We then proposed a channel-shortening method based on subspace detection. 
Using this method, we combined SUMIS-SIA and UOM to propose another algorithm, 
USUMIS-SIA, to further reduce complexity. The results show that USUMIS-SIA can 
also achieve a good trade-off and adjust the complexity by both ns and memory length v, 
which is more flexible.

The notations in this paper are described below. Lowercase bold letters represent vec-
tors, and uppercase bold letters represent matrices. {·}T and {·}−1 stand for matrix trans-
pose and inverse, respectively. Mi,j is the entry at the i-th row and j-th column of matrix 
M . E{·} represents mathematical expectation. � · � is the norm calculation for vectors. | · | 
is the modular computation of the set.

2 � Preliminaries
For the consistency with SUMIS algorithm, the real signal model is used in this paper. 
Considering an uplink MIMO system with NT /2 transmitting antennas and NR/2 
receiving antennas, the real reception model is

where y ∈ R
NR×1 , H ∈ R

NR×NT , x ∈ R
NT×1 , n ∈ R

NR×1 are the real received vector, real 
channel matrix, transmitted real symbol vector, and real white Gaussian noise, respec-
tively. x , y , n , and H are calculated from the corresponding complex form matrices xC , 
yC , nC , HC as follows

(1)y = Hx + n,
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Each element of n ∼ N (0, γ ) , where γ = NTN0
4  and N0 is the power of noise. The element 

xs of x belongs to the alphabet χ (such as 2PAM, xs ∈ χ = {1,−1} ), E{xs} = 0 , variance 
of xs is 1, where s ∈ {1, · · · ,NT }.

The optimal method to detect x from (1) is ML [9] with exponential complexity. To 
avoid the huge complexity of ML, SUMIS [10] was proposed to reduce the complexity, 
which constructs a subspace of size ns for the s-th symbol and detects s-th symbol within 
it. In two-stage SUMIS, the s-th subspace must contain the s-th symbol. Thus, NT sub-
spaces of two-stage SUMIS can also be indexed by s. The subspace division is based on

where ρs,j is the inner product of the s-th and j-th real channel of H , and the larger ρs,j is, 
the stronger the correlation between s-th channel and j-th channel is. Subspace s con-
tains s-th symbol and other ns -1 symbols with the strongest correlation to s-th symbol. 
Thus the reception model becomes

where H̄x̄ and H̃x̃ are the detection components and interference components of y , 
respectively. Obviously, the elements associated with s-th symbol are contained in x̄ and 
H̄.

SUMIS contains two stages. In the first stage (S1), SUMIS detects NT subspaces with-
out (priori) soft information of interference subspace. The result of subspace s only con-
tains log-likelihood ratios (LLRs) of s-th symbol. The i-th LLR of s calculated by max-log 
is

where bs,i is the i-th bit of s-th symbol and Q is the covariance matrix of ‘ y − H̄x̄ ’. 
∥∥y − H̄x̄

∥∥2
Q

 is the shorthand of the inner product (y − H̄x̄)TQ−1(y − H̄x̄) , which can be 
simplified as

where H̄r =
(
Q−1

)
H̄ , Ḡr = H̄TQ−1H̄ and Q = H̃H̃T + γ I.

In the second stage (S2), SUMIS detects NT subspaces after canceling soft information 
of the interference subspace. The posteriori expectation vector E

{
x̃|y

}
 (calculated by 

S1’s result) of symbols in the interference subspace should be canceled from y to get y′ 
by y′ � y − H̃E{x̃} and then Q′ = H̃�̄H̃T + γ I instead of Q . The operation 
y′ � y − H̃E{x̃} means subspace suppression. �̄ is a diagonal matrix composed of the 
posteriori variances of the interference symbols. The probability of s at constellation x is 

R{xC}
I{xC}

,
R{yC}
I{yC}

,
R{nC}
I{nC}

, and
R{HC} − I{HC}
I{HC}R{HC}

.

(2)HTH =



σ 2
1 ρ1,2 · · ·

ρ1,2 σ 2
2

...
. . .


,

(3)y = Hx + n =
[
H̄ H̃

][
x̄T x̃T

]T
+ n = H̄x̄ + H̃x̃ + n,

(4)�bs,i ≈ min
x̄:bs,i=0

1

2

∥∥y − H̄x̄
∥∥2
Q
− min

x̄:bs,i=1

1

2

∥∥y − H̄x̄
∥∥2
Q
,

(5)yT H̄r x̄ − 1

2
x̄T Ḡr x̄,
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defined as ps,x which is the ‘soft information’ throughout the paper. In SUMIS, the ps,x s 
is calculated from the LLRs of S1. So the posteriori expectation and posteriori variance 
of s-th symbol are 

∑
x∈χ

x · ps,x and 
∑
x∈χ

x2 · ps,x − {
∑
x∈χ

x · ps,x}2 , respectively. It is worth 

noting that in S1, the soft information of the s-th symbol is directly from the s-th sub-
space. Thus, the soft information softly canceled by S2 is updated only once.

The LLRs in (4) is calculated only for the s-th symbol while all cases of x̄ and ∥∥y − H̄x̄
∥∥2
Q

 within such subspace are traversed. If all x̄ are properly classified, the LLRs 
of the other ns -1 symbols can also be obtained directly. In each stage of SUMIS, the 
detection of subspaces is carried out independently, so each of the two stages of SUMIS 
can be processed parallelly. The core idea of this paper is that by only one stage, detect-
ing the NT subspaces serially and cumulatively updating the soft information for better 
performance. Specifically, the s-th subspace detection comprehensively utilizes the soft 
information from the previous s − 1 subspaces and executes soft cancellation in S1, 
instead of S2.

3 � Methods
First, a one-stage SUMIS-SIA detection method through ‘serial detection’ and ‘utilizing 
accumulated soft information to perform interference cancellation’ is proposed. Then 
parameter optimization and channel shortening methods based on subspace suppres-
sion are derived. Based on these methods, USUMIS-SIA is proposed to further reduce 
the complexity.

Since SIA involves the adjustment of subspace order, define t as the index of sorted 
subspaces. The left side of Fig. 1 is an example of subspaces division while NT =8 and ns
=3. In the subspace [1, 6, 4], SUMIS only calculates the LLRs of symbol 1 while SUMIS-
SIA and USUMIS-SIA directly output the LLRs of symbols 1, 6, and 4 with almost no 
extra overhead. Define �t

a ∈ R
log2(|χ |)×NT (initialized by �0

a = 0 ) for each symbol to 
store the accumulative LLRs throughout the detection process. Due to the serial detec-
tion architecture, the superscript t here in �t

a represents the number of updates as the 
number of subspace detections increases. And �t

a ’s s-th column σ t
s is the accumulative 

LLRs of s-th symbol. Define �ts ( s ∈ 1, · · · , ns ) as the output LLRs from the t-th subspace. 

Fig. 1  An example of adjusting subspace order. Stream 4 (and 8) appears a total of 5 times across all 
subspaces, so prioritize detecting Subspace 4 (or 8). The occurrence counts for the 8 real symbols are “1, 
4, 2, 5, 1, 4, 2, 5” respectively. When these occurrence counts are arranged in descending order, SUMIS-SIA 
determines the detection order of the serial subspaces as: “4, 8, 2, 6, 3, 7, 1, 5”
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If the t-th subspace is detected, the �ts s of ns symbols will be merged into the correspond-
ing σ t−1

s  s to get σ t
s s. The soft cancellation operation of (t+1)-th subspace will be based 

on �t
a , which increases the performance of (t+1)-th subspace.

3.1 � SUMIS‑SIA

The details of SUMIS-SIA are given in Algorithm 1. Line 4 indicates that each subspace 
is detected only once. SUMIS-SIA detects subspaces in sorted serial order. Before a sub-
space detection, it is necessary to cancel the cumulative soft information of the interfer-
ing symbol. After a subspace detection, the cumulative LLRs need to be merged with 
the LLRs detected by the current subspace. The rest of this subsection will introduce the 
changes of SUMIS-SIA from SUMIS in three aspects, which include the sorting of sub-
spaces, the improved subspace detection, and the LLR merging.

3.1.1 � Sorting of subspaces

The division of subspace also uses HTH as SUMIS. In SUMIS, subspaces are detected in 
natural order (and parallel), and the symbol s must be included in s-th subspace. SUMIS-
SIA needs to adjust the above natural order first. By counting the total ns × NT symbols 
of all detection subspaces, it can be found that the occurrence times of each symbol may 
be different. SUMIS-SIA sorts the subspaces according to the descending order of occur-
rence times as Fig. 1 shows. In Fig. 1, Stream 4 (and 8) has a total of 5 occurrences in 
all subspaces, so detect the Subspace 4 (or 8) first. The occurrence times of the 8 real 
symbols are “1, 4, 2, 5, 1, 4, 2, 5” respectively. Arranging the above occurrence times in 
descending order, SUMIS-SIA obtains the detection order of the serial subspace as: “4, 
8, 2, 6, 3, 7, 1, 5”. The LLRs in �t

a will gradually become more accurate; serially detecting 
the subspaces with ‘descending order’ will get more accurate LLRs in �t

a of the symbols 
with fewer occurrence time, so that increasing the accuracy of accumulative LLRs com-
prehensively. Figure 4 in Section Results and Discussion proves the above statement.

3.1.2 � Subspace detection

Besides �t
a , define �t

c ∈ R
log2(|χ |)×NT (initialized by 0 ) to store the last LLRs detected 

from a subspace. The reason for �t
c is needed is that SUMIS-SIA outputs ‘ � ’ consistent 

with SUMIS rather than ‘ σ ’, which may not belong to the NT-th subspace (such as the 
right side of Fig. 1, the 1-st symbol doesn’t belong to the 8-th subspace).

Before t-th subspace detection, SUMIS-SIA selects σ t−1
m  s from �t−1

a  (index m is cor-
responding to the interference subspace) and calculates �̄ to give the most accurate soft 
information so far. The x̄ traversal of t-th subspace detection is consistent with two-stage 
SUMIS. Then the LLR vectors of the t-th detection �ts s shall replace the corresponding 
columns of �t−1

c  to get �t
c and merged with the accumulative LLR σ t−1

s  s through the 
method of 3.1.3 to get σ t

s s and �t
a . �NT

c  is the final output. The rationality here also lies in 
the growing accuracy of soft information.

3.1.3 � The merger of LLRs

SUMIS-SIA uses a damped merge approach as [13]. When subspace detection obtains a 
series of new LLRs, they are merged with the previous accumulative LLRs as
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Through a large number of tests, ζ = 0.6 gives good performance in various simulations. 
Thus the LLRs of a symbol from all detection subspaces are merged together smoothly. 
This means that SIA needs to gradually correct LLR from the a priori equivalency of two 
cases of each bit.

Algorithm 1  SUMIS-SIA

3.2 � USUMIS‑SIA with trellis structure

Taking advantage of UOM’s reduction complexity method by shortening memory length, 
we then propose USUMIS-SIA, which also takes one stage as SUMIS-SIA while the trellis 
of UOM is introduced to the subspace detection at line 5 to 7 in Algorithm 1. The channel 
input–output relationship based on y and Q (or y′ and Q′ ) of (3) is

where H̄r and Ḡr are same as them in (5). And the recursive factorization of (7) is

Combining (7) with channel shortening can further reduce the complexity of subspace 
detection under the same ns . For a limited memory v [14], the number of states of trellis 
is equal to 

(√
|χ |

)v , and there are 
(√

|χ |
)v+1 branches within a trellis unit. if v < ns − 1 , 

Ḡr is a symmetric band matrix, i.e., Ḡr
m,n = 0 , if |m− n| > v . Recursive factorization [15] 

of (7) with v is

(6)σ
t
s = ζ · σ t−1

s + (1− ζ ) · �ts .

(7)p̃(y|x̄) � exp

(
yT H̄r x̄ −

1

2
x̄T Ḡr x̄

)
,

(8)p̃(y|x̄) =
ns∏

k=1

exp

(
rk x̄k −

1

2
|x̄k |2Ḡr

k ,k − x̄k

k−1∑

l=1

Ḡr
l,k x̄l

)
.

(9)p̃(y|x̄) =
ns�

k=1

exp


rk x̄k −

1

2
|x̄k |2Ḡr

k ,k − x̄k

k−1�

l=k−v

Ḡr
l,k x̄l


,
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where r = (H̄r)Ty . By comparing the changes from (8) to (9), channel shortening is 
manifested in the fact that the k-th symbol is only related to the forward-neighboring 
v-1 symbols. Based on (9), BCJR in [16] is adopted to complete the detection. The branch 
metric [17] (gamma) is

Combining with (10), other operations (recursive calculation of α s, β s and to calculate 
the symbol’s marginal probability (decision) of the trellis) of BCJR can be run on the 
trellis.

The following of this subsection will introduce how to shorten the channel under 
subspace suppression. Unlike the description in [14], on the premise that the channel 
is shortened, H̄r and Ḡr are given as

Upper triangular matrix V satisfies Vm,n = 0 , if n−m > v , and its calculation is consist-
ent with that in [14].

Proposition 1  Define

Define Bv
k as the submatrix of B,

Define bvk =
[
Bk ,k+1, · · · ,Bk ,min(ns ,k+v)

]
 as the row submatrix of B , and 

vvk =
[
Vk ,k+1, · · · ,Vk ,min(ns ,k+v)

]
 as the row submatrix of V . Define

Finally, define vk ,k = (ck)
− 1

2 as the diagonal element of the matrix V , and

together with vk ,k form the row submatrix of V . �

The proof of (11) is given in Appendix A. Due to (3), derivation process only analyze 
H̄Nx  , which leads to γ I changing to Q . It should be noted that although UOM directly 
obtains symbol-level probabilities, USUMIS-SIA still follows the LLR merger method 

(10)ϕ(x̄k , r) = exp


rk x̄k −

1

2
|x̄k |2Ḡr

k ,k − x̄k

k−1�

l=k−v

Ḡr
l,k x̄l


.

(11)H̄r =
[
H̄H̄T +Q

]−1
H̄
[
Ḡr + I

]
,

(12)Ḡr =VTV − I,

(13)B � −H̄T

[
H̄H̄T +Q

]−1

H̄+ I.

(14)Bv
k =




Bk+1,k+1 · · · Bk+1,min(ns ,k+v)

...
. . .

...
Bmin(ns ,k+v),k+1 · · · Bmin(ns ,k+v),min(ns ,k+v)


.

(15)ck = Bk ,k − bvk
(
Bv
k

)−1(
bvk

)T
.

(16)vvk = −vk ,kb
v
k

(
Bv
k

)−1
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described in 3.1.3. This requires converting the symbol-level probabilities into bit-
level LLRs

where ps,x is the symbol-level probability from the BCJR decision. The other operations 
are no different from Algorithm 1.

3.3 � Complexity analysis

This subsection discusses the complexity of the SUMIS, SUMIS-SIA, and USUMIS-SIA 
based on real addition and real multiplication. Firstly, partial ML in a subspace requires 
pre-processing of H̄TQ−1H̄ . Based on (5), traversal ( ̄x ) complexity of a partial ML sub-
space detection is

which is the complexity of detecting a subspace once. For each of the NT subspaces, 
SUMIS requires two times the above pre-processing and (18) while SUMIS-SIA requires 
only once.

Secondly, USUMIS-SIA only needs to preprocess and traverse each NT subspace once. 
BCJR detection in subspace requires preprocessing of Q , (11) and (12). Due to the exist-
ence of finite v, the BCJR detection structure is a combination of a tree and trellis. The 
BCJR algorithm adopted by a USUMIS-SIA’s subspace needs to iterate over a trellis with 
branches of

within a subspace detection. The BCJR algorithm can use max-log algorithm [18] to 
merge α s, β s and to calculate the symbol’s marginal probability (decision) of each trellis 
unit, these above operations are directly related to the number of branches in (19). The 
gamma computation of a subspace is

At the same time, total α and β computation need multiplication of two times (19) 
respectively, and total decision computation needs the addition of one time (19).

4 � Results and discussion
This section introduces the experimental results of SUMIS-SIA and USUMIS-SIA in 
fast-fading MIMO channels. In the MIMO scenario, NT /2 codewords are transmitted in 
parallel over complex MIMO channels. Under fast-fading Rayleigh channels, modulation 

(17)�bs,i ≈ max
x∈χ :bs,i=0

ln(ps,x)− max
x∈χ :bs,i=1

ln(ps,x),

(18)





|χ |ns ·
�
n
2
s + 2ns

�
, mult

|χ |ns · 0.5 · (n2s + 3ns − 4), add

,

(19)(ns − v) · |χ |v+1 +
v−1∑

i=1

|χ |i

(20)





(v + 4)(ns − v)|χ |v+1 + 3|χ | +
v−1�

i=2

(i + 3)|χ |i, mult

(v + 1)(ns − v)|χ |v+1 + |χ | +
v−1�

i=2

i|χ |i, add

.
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symbols mapped from the same codeword will experience different channel fading coef-
ficients. The elements in matrix H are independently and identically distributed, fol-
lowing a real Gaussian distribution with N (0, 12 ) . For ease of expression, this section 
describes the configuration in complex MIMO. For example, the real-form “32 ( NT ) × 
32 ( NR ) MIMO 4PAM” will be described as the complex-form “ 16× 16 MIMO 16QAM”. 
The discussion in this section focuses on Eb/N0 , where the bit error rate (BER) being 
discussed of the performance curve is 10e−4 , and each point is based on 300 codeword 
errors. The codewords are encoded using LDPC codes with a length of 576 from 802.16e 
[20], and the output of the detector is decoded using a layered decoder with up to 25 
iterations. The code rate is 1/2 (for Fig. 2) or 3/4 (for Fig. 3, 5, 6, 7, 8, 9, 10, 11 and 12).

Fig. 2 presents the simulation results for complex 6x6 MIMO 4QAM with 1/2 LDPC, 
including SUMIS, SUMIS-SIA, ML, MMSE, and Achievable Information Rate based 
Partial Marginalization (AIR-PM) [21]. The size of r determines the complexity of maxi-
mum likelihood search in AIR-PM, and r satisfies ns=r+1. In the experimental results, 
SUMIS has matched the detection performance of ML at ns =3 (with a gap of less than 
0.1 dB). SUMIS-SIA needs to achieve performance close to ‘ ns =3 SUMIS’ with ns =4 
(with a gap of 0.05 dB), and the search complexity of ‘ ns =3 SUMIS’ and ‘ ns =4 SUMIS-
SIA’ is similar. This indicates that under small-scale MIMO and low-order modulation, 
SUMIS-SIA has fewer soft information updates, which cannot reflect its advantages. 
Furthermore, SUMIS-SIA has at least a 1 dB advantage over linear detection. AIR-PM 
requires several times the preprocessing overhead of SUMIS-SIA to achieve the perfor-
mance of ‘ ns =4 SUMIS-SIA’ at r=5. To demonstrate the advantages of SUMIS-SIA, the 
next experimental configuration will increase the MIMO scale and modulation order.

Figure  3 focuses on the impact of ns on changes in the performance gap between 
USUMIS-SIA and SUMIS under 16× 16 MIMO 16QAM. It can be found that as ns 
increases from 2 to 4, only when ns = 2 , SUMIS has smaller BER, and when ns becomes 
larger, SUMIS-SIA outperforms SUMIS. As ns increases, SUMIS-SIA has faster perfor-
mance convergence. This is because the larger ns is, the more the average number of 
updates of each symbol’s soft information is, and the more accurate the obtained symbol 
soft information is.

In order to prove the correctness of the above statement, this section gives a perfor-
mance comparison of the subspaces. According to the description of SUMIS, S2 per-
forms a soft cancellation operation of interference subspace symbols from the received 
signal. It is precisely because the symbol soft information of the interference subspace 
is close to the correct transmitted symbol that S2 of SUMIS can obtain better results 
than S1. If the accuracy of the symbol is higher, the symbol-level mathematical expecta-
tion is closer to the correct symbol. Based on this, if the soft information of SUMIS-SIA 
gradually becomes more accurate, the accuracy of subspace detection should also gradu-
ally increase. Figure  4 shows the SER simulation results under 4 × 4 MIMO 16QAM. 
The corresponding subspace index of the performance curve in Fig. 4 is the reordered 
subspace index as 3.1.1. From this result, it can be seen that in this group of 8 subspace 
detections, the accuracy of the hard decision of the symbol gradually increased, which 
confirmed that the soft information of the symbol gradually became more accurate.

Figures 3, 5, 6, 7 and 8 show the performance gains of SUMIS-SIA under different 
simulation configurations. As the modulation orders or MIMO scales increase, the 
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advantages of SUMIS-SIA over SUMIS become increasingly significant. This means 
that with only a small ns required, the BER performance of SUMIS-SIA can be supe-
rior to SUMIS. For example, in the 16× 16 MIMO 4QAM scenario, when ns = 5 , the 
BER performance of SUMIS-SIA is better than that of SUMIS, while in the 16× 16 
MIMO 16QAM scenario, only ns = 3 is needed. In the 8× 8 MIMO configuration, the 
BER performance of SUMIS-SIA is better than that of SUMIS only when the mod-
ulation order reaches 64. It is worth noting that Figs.  3, 5, 6, 7 and 8 are only for 
displaying the performance changes of SUMIS-SIA. The BER performance and com-
putational complexity of SUMIS-SIA are better than SUMIS in most scenarios. The 
reason SUMIS-SIA can outperform SUMIS is entirely due to the sufficient number 
of symbol updates provided by ns . Under the SIA structure, the average number of 
updates for the soft information of symbols is ns , rather than just once in SUMIS.

Table 1  One subspace detection complexity corresponding to Figs.  9, 10, 11, the complexity 
relationship under the same configuration is “SUMIS > SUMIS-SIA > USUMIS-SIA”

‘× 2’ under SUMIS means two times detection for a subspace and ‘–’ under USUMIS-SIA means this ns is insufficient to use 
such a large v. Q−1 is calculated based on Cholesky decomposition [19]

Subspace size Complexity type SUMIS SUMIS-SIA USUMIS-SIA

v = 1 v = 2 v = 3 v = 4

ns = 3 Pre-processing 132140× 2 132,140 138,830 138,840 – –

Traversing 1408× 2 1408 384 1040 – –

ns = 4 Pre-processing 137060× 2 137,060 146,300 146,310 146,330 –

Traversing 9216× 2 9216 560 1872 4880 –

ns = 5 Pre-processing 142240× 2 142,240 154,190 154,220 154,240 154,260

Traversing 54272× 2 54,272 736 2704 8720 22,288

4 4.2 4.4 4.6 4.8 5 5.2 5.4 5.6
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Fig. 2  Performance of SUMIS-SIA and comparative detection algorithms in 6× 6 MIMO 4QAM configuration. 
With such small-scale MIMO and low-order modulation configurations, SUMIS-SIA needs to achieve 
comparable detection performance at a complexity close to SUMIS. The 7 curves belong to ‘ML’, ‘SUMIS 
ns = 3 ’, ‘SUMIS-SIA ns = 3 ’, ‘SUMIS-SIA ns = 4 ’, ‘AIR-PM r = 4 ’, ‘AIR-PM r = 5 ’, and ‘MMSE’, respectively
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The complexity of SUMIS-SIA is half that of SUMIS. When ns increases enough 
to enable SUMIS-SIA to outperform SUMIS, the performance-complexity trade-off 
of SUMIS-SIA can outperform that of SUMIS: achieving better performance than 
SUMIS with lower complexity than SUMIS.
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Fig. 3  Comparison between SUMIS-SIA and SUMIS under 16× 16 MIMO 16QAM. Under this configuration, 
SUMIS-SIA’s performance is already better than SUMIS since ns=2. The 6 curves belong to ‘SUMIS ns = 2 ’, 
‘SUMIS ns = 3 ’, ‘SUMIS ns = 4 ’, ‘SUMIS-SIA ns = 2 ’, ‘SUMIS-SIA ns = 3 ’, and ‘SUMIS-SIA ns = 4 ’, respectively

10 12 14 16 18 20 22 24 26 28 30

SNR
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Fig. 4  SER simulation curves of 8 subspaces under 4× 4 MIMO 16QAM. According to the reordered 
subspace index, the hard decision accuracy of symbols in SUMIS-SIA subspace detection gradually increases 
as the index grows. This confirms that the soft information of the symbols becomes increasingly accurate. The 
8 curves belong to ‘Subspace 1’, ‘Subspace 2’, ‘Subspace 3’, ‘Subspace 4’, ‘Subspace 5’, ‘Subspace 6’, ‘Subspace 7’, 
and ‘Subspace 8’, respectively



Page 12 of 19Xiong et al. J Wireless Com Network         (2024) 2024:51 

USUMIS-SIA changes the subspace detection method of SUMIS-SIA to a tree 
or trellis structure based on UOM. In the SIA architecture, the average number of 
symbol soft information updates is still ns . In the previous analysis, SUMIS-SIA has 
already outperformed SUMIS by utilizing a sufficient ns . The following experiments 
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Fig. 5  Comparison between SUMIS-SIA and SUMIS under 8× 8 MIMO 4QAM. Compared with Fig.2, the 8× 8 
MIMO scale is not large enough to achieve SUMIS-SIA outperforming SUMIS. The 8 curves belong to ‘SUMIS 
ns = 2 ’, ‘SUMIS ns = 3 ’, ‘SUMIS ns = 4 ’, ‘SUMIS ns = 5 ’, ‘SUMIS-SIA ns = 2 ’, ‘SUMIS-SIA ns = 3 ’, ‘SUMIS-SIA ns = 4 ’, 
and ‘SUMIS-SIA ns = 5 ’, respectively
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Fig. 6  Comparison between SUMIS-SIA and SUMIS under 16× 16 MIMO 4QAM. Compared with Fig.5, the 
16× 16 MIMO scale is large enough to achieve SUMIS-SIA outperforming SUMIS. The 8 curves belong to 
‘SUMIS ns = 2 ’, ‘SUMIS ns = 3 ’, ‘SUMIS ns = 4 ’, ‘SUMIS ns = 5 ’, ‘SUMIS-SIA ns = 2 ’, ‘SUMIS-SIA ns = 3 ’, ‘SUMIS-SIA 
ns = 4 ’, and ‘SUMIS-SIA ns = 5 ’, respectively
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demonstrate that as long as ns is large enough, USUMIS-SIA can still outperform 
SUMIS by moderately reducing the memory length v. Figures 9, 10, and 11 show the 
performance of USUMIS-SIA with subspace detection using channel shortening. 
Firstly, when ns =3 and v=1, USUMIS-SIA can achieve performance comparable to 
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Fig. 7  Comparison between SUMIS-SIA and SUMIS under 8× 8 MIMO 16QAM. Compared with Fig. 5, 
a modulation order of 16 is not large enough to achieve SUMIS-SIA outperforming SUMIS. The 8 curves 
belong to ‘SUMIS ns = 2 ’, ‘SUMIS ns = 3 ’, ‘SUMIS ns = 4 ’, ‘SUMIS ns = 5 ’, ‘SUMIS-SIA ns = 2 ’, ‘SUMIS-SIA ns = 3 ’, 
‘SUMIS-SIA ns = 4 ’, and ‘SUMIS-SIA ns = 5 ’, respectively
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Fig. 8  Comparison between SUMIS-SIA and SUMIS under 8× 8 MIMO 64QAM. Compared with Fig. 7, a 
modulation order of 64 is large enough to achieve SUMIS-SIA outperforming SUMIS. The 6 curves belong to 
‘SUMIS ns = 2 ’, ‘SUMIS ns = 3 ’, ‘SUMIS ns = 4 ’, ‘SUMIS-SIA ns = 2 ’, ‘SUMIS-SIA ns = 3 ’, and ‘SUMIS-SIA ns = 4 ’, 
respectively
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‘ ns =3 SUMIS’. When ns =4 and ns=5, even if the memory length of subspace detection 
is shortened to v=2, USUMIS-SIA can still outperform SUMIS. These experimental 
results fully demonstrate the effect of ns on performance improvement in the SIA: a 
sufficiently large ns provides sufficiently accurate soft information, allowing subspace 
detection to tolerate moderate channel shortening.
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Fig. 9  Comparison between USUMIS-SIA and SUMIS under 16× 16 MIMO 16QAM with ns=3. USUMIS-SIA ( ns
=3), whose memory length v is shortened to 1, can still achieve performance comparable to SUMIS ( ns=3). 
The 3 curves belong to ‘SUMIS ns = 3 ’, ‘USUMIS-SIA ns = 3, v = 2 ’, and “USUMIS-SIA ns = 3, v = 1 ’, respectively
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Fig. 10  Comparison between USUMIS-SIA and SUMIS under 16× 16 MIMO 16QAM with ns = 4 . USUMIS-SIA 
( ns=4), whose memory length v is shortened to 2, can still outperform SUMIS ( ns=4). The 4 curves belong 
to ‘SUMIS ns = 4 ’, ‘USUMIS-SIA ns = 4, v = 3 ’, “USUMIS-SIA ns = 4, v = 2 ’, and “USUMIS-SIA ns = 4, v = 1 ’, 
respectively
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In order to more intuitively understand the complexity of the algorithms in this 
figure, the subspace detection complexity corresponding to all involved configura-
tions is listed in Table 1. Each data in the table represents the sum of real multipli-
cation and real addition required for subspace detection under such algorithm and 
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Fig. 11  Comparison between USUMIS-SIA and SUMIS under 16× 16 MIMO 16QAM with ns = 5 . USUMIS-SIA 
( ns=5), whose memory length v is shortened to 2, can still outperform SUMIS ( ns=5). The 5 curves belong 
to ‘SUMIS ns = 5 ’, ‘USUMIS-SIA ns = 5, v = 4 ’, “USUMIS-SIA ns = 5, v = 3 ’, “USUMIS-SIA ns = 5, v = 2 ’, and 
“USUMIS-SIA ns = 5, v = 1 ’, respectively
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Fig. 12  Comparison between SUMIS-SIA and ‘SUMIS-SIA with parallelism 2’ under 16× 16 MIMO 16QAM. 
Pairwise detection of subspaces does not cause significant performance loss. The 6 curves belong to 
‘SUMIS-SIA ns = 2 ’, ‘SUMIS-SIA ns = 3 ’, “SUMIS-SIA ns = 4 ’, ‘SUMIS-SIA parallel-2 ns = 2 ’, ‘SUMIS-SIA parallel-2 
ns = 3 ’, and “SUMIS-SIA parallel-2 ns = 4 ’, respectively
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configuration. As shown in Table 1, when measuring complexity in terms of real addi-
tion and multiplication, the complexity relationship under the same configuration is 
“SUMIS > SUMIS-SIA > USUMIS-SIA”. Firstly, the preprocessing and traversal com-
plexities of SUMIS-SIA are both half of those of SUMIS. The computational complex-
ity of USUMIS-SIA is further reduced. This is mainly because USUMIS-SIA employs 
the max-log BCJR algorithm, where some multiplications and additions are simplified 
to additions and comparisons.

If ns is sufficiently large, even with a moderate reduction in memory length v, 
USUMIS-SIA still outperforms SUMIS. Combining the complexity statistics in Table 1, 
the performance-complexity trade-off of USUMIS-SIA can also outperform that of 
SUMIS: achieving better performance than SUMIS with lower complexity than SUMIS.

The results show that when ns is greater than a certain threshold, SUMIS-SIA based 
on SIA’s reasonable utilization and combination of soft information can outperform 
SUMIS. As previously mentioned, under SIA architecture, the symbol’s soft information 
needs to be updated many times (instead of SUMIS’s only one time in its S1). The above 
situation allows the detector to achieve better performance than SUMIS at a computa-
tional complexity lower than SUMIS. Situation results show that both SUMIS-SIA and 
USUMIS-SIA are very good trade-off cases between complexity and performance.

The following experiments will evaluate the detection performance of moderately par-
allelized SIA. According to the Algorithm 1, SIA is a fully serialized detection algorithm. 
In this experiment, the parallelism of SIA is increased to 2. In the improved SIA, sub-
spaces to and to +1 (where to is an odd number) share the same set of soft information for 
soft cancellation. After the two parallel subspace detections are completed, the subspace 
output results are merged into the accumulated soft information. Figure  12 compares 
the performance of SUMIS-SIA and SUMIS-SIA with a parallelism of 2 under 8× 8 
MIMO 16QAM. When ns=2, SUMIS-SIA shows a performance advantage of approxi-
mately 0.12dB. When ns increases to 3 and 4, the performance gap between SUMIS-SIA 
and ‘SUMIS-SIA with parallelism 2’ is only 0.07dB. The experimental results show that 
as the average number of symbol updates increases, the performance loss caused by par-
allelism can be partially compensated. This is also attributed to the multiple updates of 
symbol soft information in SIA.

5 � Conclusion
Two detection algorithms, SUMIS-SIA and USUMIS-SIA, are proposed by combining 
SUMIS architecture and soft information acceleration as the main contribution of this 
paper. For USUMIS-SIA, channel parameter optimization and channel shortening meth-
ods suitable for subspace suppression are also proposed so that the proposed algorithm 
can be flexibly adjusted in two aspects of subspace size ns and memory length v. Com-
pared with the SUMIS under the same ns , the complexities of these two algorithms are 
lower. Under scaling-up MIMO and high order modulation, with the increasing of ns , 
the performance convergence of SUMIS-SIA is faster than that of SUMIS; under suf-
ficiently large ns , the performance of USUMIS-SIA after moderate channel shortening 
is also better than that of SUMIS. To sum up, the two algorithms proposed in this paper 
can rely on SIA to achieve a better trade-off between performance and complexity.
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USUMIS‑SIA with trellis structure
In this paper, the lower bound to the information rate ILB � −EY[log2(p̃(y))] + EY,X̄[log2(p̃(y|x̄))] 

[14] is used for derivation. Integrating (7) gives the expectation of p̃(y) . Define Ḡr = U�UT 
( UTU = I ) as the eigenvalue decomposition expression of Ḡr and z = UT x̄.

Firstly, the follwing is the derivation of the part EY[log2(p̃(y))] . Given no priori probabil-
ity about x̄ , E{x̄} = 0 and the variance of the elements of x̄ are 1. Given 

∫
e−x2dx =

√
π  , 

substitute the above disassembly into (7) and integrate it to obtain the following expression,

where dk is from vector d � UT
(
H̄r

)T
y (or d � UT

(
H̄r

)T
y′ for S2). According to (A1), 

the expectation EY[log2(p̃(y))] is

Define the covariance matrix R of d as

And EY[|dk |2] is a diagonal element of the R matrix.
Secondly, the follwing is the derivation of the part EY,X̄[log2(p̃(y|x̄))] . The expectation in 

trace form is

and y′ is used when S2.

Notice that the terms related to H̄r are 
ns∑
k=1

Rkk
2(δk+1) and Tr((H̄r)

T
H̄) . In S1, for example, 

rewrite 
ns∑
k=1

Rkk
2(δk+1) in matrix form as

(A1)

p̃(y) =
1

√
π
2ns

∫
e
−�z�2

2 e

(
yT H̄rUz− 1

2 z
T
�z

)

dz

=
1

πns

∫ ns∏

k=1

exp(zkdk −
1

2
z2k [δk + 1])dzk

=
ns∏

k=1

1

2
(
δk + 1

) exp
(

|dk |2

2
(
δk + 1

)
)

,

(A2)

EY[log2(p̃(y))] = EY

[
ns∑

k=1

[
log

1

2(δk + 1)
+

|dk |2

2(δk + 1)

]]

=
ns∑

k=1

[
− log(2(δk + 1))+

EY[|dk |2]
2(δk + 1)

] .

(A3)

{
UT

(
H̄r

)T
H̄H̄T H̄rU +UT

(
H̄r

)T
QH̄rU S1

UT
(
H̄r

)T
H̄H̄T H̄rU +UT

(
H̄r

)T
Q′H̄rU S2

.

(A4)
EY,X̄[log(p̃(y|x̄))] = EY,X̄

[
−
1

2
x̄T Ḡrx̄ + x̄T H̄ry

]

= −
1

2
Tr(Ḡr)+ Tr((H̄r)

T
H̄)

,

(A5)ILB =
ns∑

k=1

[
log(2(δk + 1))−

Rkk

2(δk + 1)
−

δk

2

]
+ Tr((H̄r)

T
H̄)
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Define objective function as

Given the gradient calculation methods ∂Tr
(
ZTA

)

∂Z
= A and ∂Tr

(
ZTBZA

)

∂Z
= BTZAT + BZA , 

the gradient of (A7) is calculated as

At zero point of the first derivative, H̄r is as follow

which guarantees ILB is optimal. What’s more, Q′ is used in (A9) when S2. So far, (11) has 
been proved.

Abbreviations
MIMO	� Multiple input multiple output
SIA	� Soft information acceleration
SUMIS	� Subspace marginalization with interference suppression
ZF	� Zero forcing
MMSE	� Minimum mean square error
ML	� Maximum likelihood
K-LAS	� Likelihood ascent search based on K symbols
UOM	� Ungerboeck observation model
LLR	� Log-likelihood ratios
AIR-PM	� Achievable information rate based partial marginalization
BER	� Bit error rate

Acknowledgements
Not applicable.

Author contributions
An algorithm jointly proposed by four authors. Xiaoxiong Xiong completed the simulation work and wrote the paper.

Funding
This research is funded by the Key Program of the National Natural Science Foundation of China of funder grant number 
92067202.

Availability of data and materials
The datasets used during the current study are available from the corresponding author on reasonable request.

Materials availability
Not applicable.

(A6)

ns∑

k=1

Rkk

2(δk + 1)
=

1

2
Tr

(
R[�+ I]−1

)

= 1

2
Tr

(
UT (H̄r)

T
[
H̄H̄T +Q

]
H̄rU[�+ I]−1

)

= 1

2
Tr

(
(H̄r)

T
[
H̄H̄T +Q

]
H̄rU[�+ I]−1UT

)

=
1

2
Tr

(
(H̄r)

T
[
H̄H̄T +Q

]
H̄r[Ḡr + I]−1

)

.

(A7)f
(
H̄r

)
=Tr((H̄r)

T
H̄) −1

2
Tr

(
(H̄r)

T
[
H̄H̄T +Q

]
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