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1  Introduction
Due to significant advancements in technology, the current network has become 
increasingly complex, resulting in network traffic flow [1]. This massive network 
traffic can lead to congestion. Consequently, network management and traffic 
measurement issues have emerged [2]. Manual network administration is impractical, 
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and software-defined networking (SDN) addresses these problems by providing a 
centralized controller that monitors and collects parameters for efficient management 
and intelligent routing. SDN separates the control plane from the forwarding plane, 
allowing network intelligence to be centrally located in the control plane software 
controllers [3]. Communication between the planes is performed through an open 
interface known as the OpenFlow Protocol. OpenFlow is one of the primary SDN 
protocol standards [4].

SDN’s network programmability promotes efficient network management, traffic 
management, dynamic resource management, and security. The objective of the SDN 
paradigm is to decouple network intelligence from network devices, enabling centralized 
network intelligence. However, as the network size and number of flows increase, the 
computational complexity of the control panel also increases exponentially. Additionally, 
the traffic explosion and the increase in various network requirements, driven by the 
rapid acceleration of 5G networks, multimedia data traffic, and cloud computing, 
pose numerous challenges in terms of routing problem complexity, network scale, and 
network traffic size. Traditional routing algorithms are not suitable for SDN due to their 
limitations in convergence, adaptability to network topology changes, and lack of future 
vision on network traffic. Traffic engineering (TE) in SDN involves examining network 
conditions through the SDN controller to act on flow data by rapidly changing flow table 
information for forwarding devices [5]. Periodically rerouting flows balance the load on 
the network, reducing congestion and enhancing network performance. Two types of 
traffic flows exist in a network: mice flow and elephant flow [6]. Elephant flows indicate 
heavy traffic flows that require more network resources, while quick accumulation of 
mice flows can also degrade network performance. These traffic flows continually require 
resource allocation for efficient usage of scarce resources through traffic engineering 
(TE).

Machine learning (ML) enables the logical mining of valuable data from collected 
data and automatically finds correlations. The heterogeneous traffic data generated 
from various sources exhibit various forms and complex correlations. Traditional ML 
can struggle to solve this issue of interest. ML offers poor performance when dealing 
with a large volume of traffic data and cannot handle high-dimensional data. With a 
large volume of traffic data, deep learning (DL) provides hierarchical feature extraction, 
facilitating timely network analysis and management. Thupae et  al. [7] presented an 
SAE-based scheme for the classification of unencrypted data flows. However, this 
scheme only applies to unencrypted traffic data and cannot be applied to encrypted 
data. Lim et al. [8] introduced a method to classify encrypted traffic based on SAE and 
CNN techniques. Wang et al. [9] proposed three DL models using MLP, SAE, and CNN 
for traffic classification based on all encrypted streaming packets from open-source 
data. However, these models cannot be applied to real network traffic flows because 
they were performed on an offline dataset. Azzouni and Pujolle [10] proposed an LSTM-
RNN framework for predicting traffic matrix (TM) in a large network. Azzouni et  al. 
[11] introduced dynamic network routing based on LSTM to predict internet traffic with 
high accuracy. Azzouni and Pujolle [12] performed future network traffic assessments 
using LSTM, leveraging past and current network data. LSTM models exhibit more 
accurate long-range dependencies compared to RNN.
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Zeng et al. [13] introduced a lightweight framework using DL for encrypted traffic 
classification and demonstrated its superiority. The proposed framework classifies 
network traffic based on the time features of the network traffic. Zhang et  al. [14] 
performed automatic feature extraction from network traffic and classification of 
malicious traffic using CNN. In vehicular ad hoc networks, the SDN controller utilizes 
CNN to learn the highest routing path trust value. The CNN-enabled SDN controller 
provides trust-based optimized routing with a classification accuracy of 98.2%. CNN 
is also used for optimized feature selection using the CNN algorithm [15]. Tang et al. 
[16, 17] proposed a new DL algorithm to predict traffic and congestion in SDN. Deep 
belief and deep CNN were used, and the prediction algorithm was coupled with a 
DL-based channel assignment algorithm to route traffic. The gated recurrent unit 
(GRU) network is a DL model widely used in speech and image processing [18] and 
natural language processing [19]. It is well-suited for solving complex and nonlinear 
forecasting problems [20], such as traffic flow prediction [21], energy consumption 
prediction [22], and rainfall prediction. Tang et  al. [16, 17] introduced a gated 
recurrent unit-recurrent neural network (GRU-RNN)-based intrusion detection 
system for SDN. The proposed system was tested with the NSL-KDD dataset and 
achieved an accuracy of 89% with only six raw features. It was concluded that the 
proposed GRU-RNN does not degrade network performance. Sun and Guan [23] 
proposed a traffic situation prediction model based on the GRU network in SDN. 
The Salp Swarm algorithm is used to optimize the hyperparameters of the GRU 
automatically. However, the GRU possesses problems such as a low convergence rate 
and low learning efficiency, resulting in excessively long training times, and even 
under-fitting [9].

The main problem addressed in this research is the inefficiency and lack of 
adaptability in current SDN routing algorithms, especially concerning dynamic traffic 
patterns. While algorithms like shortest path first (SPF) and Dijkstra’s algorithm are 
efficient, they may lack adaptability and scalability in handling the dynamic nature of 
network traffic. Zhang et  al. [24] introduced box-covering-based routing (BCR) for 
large-scale SDN to reduce the time and space complexity of the Dijkstra algorithm 
by decreasing the number of nodes and edges in the network. Although the BCR 
algorithm decreases the network’s size, it still utilizes the Dijkstra algorithm in the 
routing process. This prompts the use of meta-heuristic techniques for the SDN’s 
routing process.

The incorporation of meta-heuristic algorithms becomes crucial due to several 
shortcomings in traditional routing approaches. The proposed meta-heuristic approach 
aims to overcome these limitations by considering real-time congestion levels during 
routing, optimizing network performance, and ensuring a high Quality of Service (QoS). 
In summary, the role of meta-heuristic algorithms, exemplified by the novel hunter prey 
optimization (HPO) technique, becomes pivotal in optimizing routing decisions based 
on real-time congestion awareness.

The subsequent sections will delve into the methodology and simulation outcomes, 
showcasing the contributions of the proposed multiplicative gated recurrent neural 
network (mGRNN) for traffic prediction and the congestion-aware hunter prey 
optimization (CA-HPO) algorithm for dynamic traffic routing in SDN.
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In this regard, the proposed research work develops two major units, namely, traffic 
prediction and traffic-aware routing unit. The following are the novel contributions of 
this research work.

•	 A novel multiplicative gated recurrent neural network (mGRNN) is developed for 
enhanced and accurate traffic prediction with excellent long-term dependencies. 
Consequently, mGRNN exhibits effective in handling temporal dynamics of the SDN 
traffic data including sudden changes, periodic fluctuations, and trends, as it can get 
adapted to the changes by learning from historical data.

•	 A novel congestion-aware hunter prey optimization (HPO) algorithm is developed 
for dynamic traffic routing. The HPO technique is influenced by the behavior of 
predatory animals such as lions, wolves, and leopards, as well as prey species such 
as stags and gazelles. The animal hunting behavior is used to find the shortest 
path between nodes. The advantages of meta-heuristic approach of HPO consider 
the current state of network congestion and seek to minimize congestion levels 
during traffic routing. This helps in optimizing the performance of the network and 
ensuring smooth transmission of data, thereby improving Quality of Service (QoS) 
and dynamic network adaptability.

The research paper is organized in a systematic structure with distinct sections at the 
end of Sect. 1 as follows. Section 2, titled “Literature review,” incorporates case studies 
to underscore the adaptability of software-defined networking (SDN) in addressing 
diverse challenges. This section serves as a foundational exploration, providing context 
and insights that contribute to the subsequent sections. Section  3, titled “Methods/
experimentation,” provides a comprehensive account of the experimental setup and 
methodologies applied in the study. It details the data collection process, model 
configurations, and experimental procedures conducted to ensure the reliability of the 
results. Following this, Sect.  4, titled “Proposed methodology,” introduces the novel 
framework developed for traffic engineering and congestion management in SDN. This 
section delves into the specifics of the multiplicative gated recurrent neural network 
(mGRNN) for traffic prediction and the congestion-aware hunter prey optimization 
(CA-HPO) algorithm for dynamic traffic routing. Section  5, titled “Results and 
discussion,” presents the outcomes of the experiments and provides an in-depth analysis. 
This section critically evaluates the performance of the proposed methodologies, 
drawing meaningful insights from the obtained data. Lastly, Sect. 6, titled “Conclusion,” 
encapsulates the key findings and summarizes the contributions. This organized 
structure guides the reader through a coherent progression from the foundational 
literature to the experimental methods, results, and concluding insights.

2 � Literature review
In the dynamic intersection of software-defined networking (SDN) and the Internet 
of Things (IoT), researchers have made significant contributions addressing various 
challenges. Keshari et al. [25] specifically concentrate on software-defined IoT networks, 
proposing an intelligent and energy-efficient strategy to manage traffic flow. Their 
study underscores the necessity of tailoring SDN solutions for IoT, emphasizing the 
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importance of energy-aware optimizations. Another crucial facet of SDN is explored by 
Taurshia et  al. [26], who delve into group key management, particularly for resource-
constrained IoT devices. The study highlights the challenge of securing communication 
in IoT environments with limited resources. Utilizing SDN capabilities, the authors 
propose a lightweight group key management solution, showcasing SDN’s broader 
applicability in enhancing security measures for resource-constrained devices.

Contributing to the evolving landscape of SDN applications and IoT, Mohammadi 
et al. [27] propose an efficient clustering scheme. Their study introduces the SDN-IoT 
framework, incorporating an improved Sailfish optimization algorithm for enhanced 
efficiency. By integrating SDN capabilities with optimization algorithms, the authors 
aim to create an intelligent clustering scheme tailored for IoT environments, addressing 
the unique challenges posed by IoT scenarios. In order to provide a comprehensive 
overview of the current state of SDN traffic management research, Xu et al. [28] present 
a detailed survey. Through a thorough review of existing literature, the authors offer 
insights into various approaches, methodologies, and challenges within the realm of 
SDN traffic management. This survey serves as a valuable resource for understanding 
the current landscape of SDN research, laying the foundation for the development of 
novel solutions.

2.1 � Synthesis and contributions

These case studies collectively contribute to the evolving field of software-defined 
networking, offering unique perspectives on key aspects such as traffic flow control, 
group key management, and efficient clustering in the context of IoT. The studies 
underscore the adaptability and versatility of SDN, showcasing its potential to address 
diverse challenges in modern network architectures. As this literature review forms 
part of a broader investigation into a computationally intelligent framework for traffic 
engineering and congestion management in SDN, these case studies provide valuable 
context and inspiration for developing innovative solutions tailored to the dynamic 
demands of contemporary networks.

3 � Methods/experimentation
The aim of this study is to address the issue of congestion in SDN caused by a high volume 
of traffic in specific regions of the developed network topology. To achieve efficient traffic 
management in SDN, this research proposes a novel mGRNN and a CA-HPO algorithm 
as shown in Fig. 1. The SDN network is modeled with interconnected SDN controllers 
using the OpenFlow protocol to exchange control information. The method employs a 
simulation-based approach to evaluate the proposed SDN traffic prediction and routing 
optimization scheme. The simulations are performed using MATLAB R2021a and the 
image processing toolbox. The primary intervention in this research is the application 
of the proposed mGRNN and CA-HPO algorithm for traffic management in SDN. The 
mGRNN is used to predict traffic patterns and congestion-prone regions, while the 
HPO algorithm optimizes the routing decisions in the SDN to alleviate congestion. 
For comparison, two well-known optimization algorithms, namely genetic algorithm 
(GA) and particle swarm optimization (PSO), are used as baselines. The GA and PSO 
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algorithms are widely recognized in the literature for their effectiveness in optimization 
tasks. The work is validated to provide efficient results in congestion-aware routing.

3.1 � Improvements

In the dynamic landscape of software-defined networking (SDN), effective traffic 
management is crucial for optimizing network performance. This study introduces 
several key improvements to enhance the reliability and applicability of the mGRNN 
(modified general regression neural network) and CA-HPO (combinatorial algorithm 
with hyperparameter optimization) algorithms. The objective is to advance the 
understanding and application of these algorithms in the context of SDN traffic 
management.

3.1.1 � Summary of improvements

•	 Sensitivity analysis Conducting a sensitivity analysis on the parameters of both 
mGRNN and CA-HPO algorithms provides valuable insights into their behavior and 
impact on performance. This exploration allows for fine-tuning, ultimately improving 
the algorithms’ adaptability to diverse network conditions.

•	 Real-world dataset consideration In our study, we aimed to enhance the external 
validity of our proposed approach by rigorously validating the mGRNN and 
CA-HPO algorithms using real-world datasets. To bridge the gap between simulated 
environments and practical network scenarios, we utilized two distinct SDN datasets 
available at Mendeley Data.

	 The first dataset, curated by Wassie et  al. [29], was employed in their research on 
“Traffic prediction in SDN for explainable QoS using deep learning approach.” The 
second dataset, provided by Ahuja et al. [30], is specifically tailored for the study of 
DDoS attacks in the SDN context.

Fig. 1  Proposed congestion-aware SDN architecture. This figure illustrates the overall architecture of the 
proposed SDN traffic prediction and routing optimization. This architecture consists of two units: the traffic 
prediction unit and the traffic routing unit
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	 These datasets offer a diverse and comprehensive set of real-world scenarios, 
enabling us to thoroughly validate our algorithms in different traffic management 
contexts. For more details and access to the datasets, you can visit the following link: 
SDN datasets on Mendeley Data (https://​data.​mende​ley.​com/​datas​ets/​jxpfj​c64kr/1).

•	 Visualization The incorporation of visualizations depicting predicted traffic patterns, 
congestion-prone regions, and routing decisions contributes to the clarity of results. 
Visual representations facilitate a more intuitive understanding of algorithmic 
outputs, aiding network administrators and stakeholders in making informed 
decisions.

•	 Scalability assessment Evaluating the scalability of the proposed approach involves 
varying the size and complexity of the SDN network. This assessment is crucial 
for determining the algorithms’ efficiency as the network expands, ensuring their 
viability in handling large-scale and intricate SDN infrastructures.

•	 Comparative analysis A comprehensive comparative analysis with existing state-of-
the-art methods for SDN traffic management provides a benchmark for assessing 
the proposed approach’s efficacy. This analysis helps identify the strengths and 
weaknesses of the mGRNN and CA-HPO algorithms in comparison with established 
techniques.

•	 Robustness testing Robustness testing introduces variations in network conditions 
and traffic patterns to assess the adaptability of the proposed approach. By subjecting 
the algorithms to diverse and challenging scenarios, the study aims to validate their 
resilience and ability to maintain optimal performance in dynamic environments.

Incorporating these improvements collectively aims to advance the field of SDN traffic 
management, providing more nuanced insights into the capabilities and limitations of 
the mGRNN and CA-HPO algorithms in real-world scenarios.

4 � Proposed methodology
Traditional networks have limitations in terms of function expansion and configuration. 
To enhance network management convenience, the development of software-defined 
networking (SDN) has been initiated. SDN is a new network architecture that separates 
network control and forwarding functions, simplifying network management and 
improving network programmability and flexibility. SDN enables better utilization of 
network resources, controls over network infrastructure expansion, and protects the 
underlying network complexity for upper-level users. It is continuously evolving based 
on traditional networks, significantly improving the utilization of network resources.

Network traffic exhibits variations in both time and space. In terms of time, network 
traffic varies throughout the day, with higher traffic during daytime compared to 
nighttime. SDN controllers are interconnected and exchange control information 
through the OpenFlow protocol. The SDN network is divided into application, control, 
and data layers. The control layer consists of one or more controllers that connect 
the data forwarding layer to the application layer through an interface. The control 
layer has centralized control over the network topology and can design approaches to 
manage data transmission paths. The data forwarding layer consists of switches, hosts, 
and other underlying network devices, which implement the data plane. The data layer 

https://data.mendeley.com/datasets/jxpfjc64kr/1
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does not have the capability to choose forwarding paths but relies on the control layer’s 
provided paths for communication. Network flows are dynamic variables that change 
continuously in a fine-grained perspective but remain stable over time.

Although mitigation can improve network performance by supporting current burst 
network data flows and reducing overall network delay, it cannot guarantee improvement 
within a specific time frame. When the SDN network employs optimized routing 
configurations, especially during burst flows, the load flow may exceed the network 
capacity. To prevent congestion and achieve traffic control goals, suitable transmission 
resources must be allocated for data traffic based on transmission requirements. 
Additionally, restricting traffic flow from entering bottleneck links becomes essential. In 
this context, a dynamic and efficient traffic engineering (TE) scheme, such as SDN-based 
traffic prediction and routing optimization, has been developed. Figure 1 illustrates the 
overall architecture of the proposed SDN traffic prediction and routing optimization. 
This architecture consists of two units: the traffic prediction unit and the traffic routing 
unit.

4.1 � SDN controller

SDN separates the data plane and the control plane, transferring network intelligence 
to the controller, where all calculations are performed, and various applications and 
features can be added as required. In this regard, a lightweight carrier-grade controller 
is proposed, focusing on essential modules. These modules include the link discovery 
module, topology module, storage module, strategy-making module, flow table module, 
and control data module. The topology manager and link discovery modules play a 
crucial role in providing routing services. The link discovery module is responsible 
for discovering and maintaining the state of the network’s physical links. There are 
two methods of link discovery: link discovery between OpenFlow Nodes (OpenFlow 
switches) using the standard link layer discovery protocol (LLDP) and link discovery 
between edge OpenFlow Node and Host. When any unknown traffic enters the 
OpenFlow domain, the controller initiates the link discovery process. The information 
gathered by the link discovery module is used to build the neighbor database in the 
controller, which captures all the OpenFlow neighbors. As a result, the topology 
manager creates and maintains topology information in the controller, as well as 
calculating network paths. Based on the information obtained from the link discovery 
module, this module uses the neighbor database to construct network topologies. At the 
controller, the Topology Manager creates the global Topology Database, which contains 
information on the shortest (and alternate) paths to every OpenFlow node or host.

Our proposed methodology builds upon and extends prior work in traffic prediction, 
particularly leveraging concepts from the multiplicative recurrent neural network 
(mRNN) model [31]. Recognizing the strengths of both mRNN and gated recurrent 
unit (GRU) architectures, our model, termed mGRNN, represents a hybrid approach 
that combines these frameworks. This combination results in a novel architecture with 
improved expressiveness and adaptability. It extends the work of Lohrasbinasab et  al. 
[32] by introducing a model that incorporates distinct recurrent transition functions and 
memory cells, enhancing the model’s capability to capture intricate patterns in traffic 
data.
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It complements the attention mechanism and spatiotemporal features utilized by Hu 
et al. [33] by introducing a hybrid architecture that integrates the strengths of mRNN 
and GRU, offering improved adaptability to varying network conditions. It extends the 
GRU-based predictive model proposed by Patil et al. [34] by combining the factorized 
hidden-to-hidden transition of mRNNs with the gating framework of GRUs, resulting 
in a more robust and expressive traffic prediction model. This novel methodology 
represents a significant advancement in the field of traffic prediction, offering a unique 
and effective solution for dynamic software-defined network (SDN) environments 
(Fig. 2).

4.2 � Traffic prediction unit

To prevent congestion and enhance network performance, it is crucial to predict the 
future growth of network traffic. In this regard, a novel mGRNN is proposed for network 
traffic prediction. Network traffic prediction involves estimating future traffic based on 
past and current network traffic data. The current traffic matrix is estimated and sent as 
input to the traffic prediction unit. A network traffic matrix represents the amount of 
traffic between all pairs of source–destination nodes in a network at a specific time. The 
nodes within a traffic matrix can comprise of Points of Presence, routers, switches, or 
links. In OpenFlow SDNs, the controller makes use of packet in messages to construct a 
comprehensive view of the network. When a new flow arrives at a switch, it is compared 
against forwarding rules to estimate the appropriate forwarding path. If the flow does 
not match any rule, the switch forward either the first packet or just the packet header 
to the SDN controller. Furthermore, the SDN controller can request packet counts from 
switches, which track the count of packets and bytes processed by each switch.

In the proposed approach, the current and past traffic matrices are used as input to the 
mGRNN model to forecast the traffic matrix for the next state. The network operates by 
allowing information to flow both forward and backward, traversing input nodes, hidden 
nodes, and output nodes through recurrent cycles. Furthermore, the proposed model 

Fig. 2  Proposed traffic prediction network. This figure illustrates the functioning of the proposed 
mGRNN-based traffic prediction network
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incorporates distinct recurrent transition functions for each possible input, enhancing 
its expressiveness. Additionally, the model includes memory cells that utilize past 
information during the learning process. The effectiveness of the prediction relies on the 
quality of the learning process. These unique characteristics differentiate the proposed 
mGRNN traffic prediction model and position it as superior to existing traffic prediction 
models.

The employment of mGRNN for the traffic prediction involves two distinct phases: 
(a) the training phase and (b) the testing phase. During the training phase, the mGRNN 
is supervised and learns from the data by obtaining the training data at the input layer. 
The mGRNN dynamically adjusts its parameters to attain the desired output value for 
the given input set. The backpropagation algorithm is employed to train the mGRNN. 
This algorithm propagates the error backward, from the output layer to the input layer, 
uninterruptedly modifying the weights until the output error reaches a predefined 
threshold. Consequently, the mGRNN learns to identify patterns between input sets 
and their corresponding target values. On the other hand, the testing phase involves 
testing the mGRNN. A new, unseen traffic matrix input is presented to the mGRNN, 
and the output predicted next state traffic matrix is calculated, enabling the prediction of 
outcomes for novel input data.

The concept of mGRNN is inspired by the multiplicative recurrent neural network 
(mRNN) model [31]. The model combines the advantages of mRNN and gated recurrent 
unit (GRU) cell model. The mRNN model is specifically developed to enable adaptable 
transitions based on input changes. Recognizing the complementary characteristics 
of the GRU and mRNN architectures, a hybrid model called mGRNN is introduce, 
which combines the factorized hidden-to-hidden transition of mRNNs with the gating 
framework of GRUs. By incorporating connections from the mRNN’s intermediate state 
mt to each gating unit in the GRU, a system is created that merges the strengths of both 
architectures as follows.

The objective of this architecture is to integrate the adaptable input-dependent 
transitions found in mRNNs with the ability of GRUs to retain and utilize information 
over longer sequences. By leveraging the gated units of GRUs, it becomes more 
manageable to regulate or bypass the intricate transitions that arise from the factorized 
hidden weight matrix. The model thus captures complex dependencies and retains 
important information contributing to enhanced accuracy and robustness in the 
performance of traffic prediction (Fig. 3).

(1)mt = Wmxxt ⊙Wmhht−1

(2)rt = σ(Wrx ∗ [ht−1, xt ]+Wrmmt)

(3)zt = σ(Wzx ∗ [ht−1, xt ]+Wzmmt)

(4)ht ′ = tanh (Wh ∗ [rt ∗ ht−1, xt ])

(5)ht = (1− zt) ∗ ht−1 + zt ∗ h
′
t
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4.3 � Traffic routing unit

To meet the required QoS, the traffic flow should be routed following the best routing 
procedure. As the traffic flow relies upon the type of data transported in the network, 
the selection of the best routing path to that flow improves the QoS. Accordingly, 
the congestion-aware hunter prey optimization (HPO) algorithm was proposed 
that dynamically determines the optimal path. The input given in the traffic routing 
unit is the possible set of routes. The output optimal dynamic route is calculated 
based on three factors such as the predicted traffic matrix, congestion rate, and link 
availability of the route chosen to provide an optimal congestion-aware route for data 
transmission.

Initially, the population of the search agents are the possible set of routes which are 
defined as X = {x1, x2, . . . , xn} , and the fitness values of each member of the population 
are denoted as F =

{

f1, f2, . . . , fn
}

 . The movement and direction of the population within 
the search space are controlled and directed by a set of rules and strategies inspired by 
the HPO algorithm. This process continues iteratively until maximum search iteration is 
reached. In each iteration, the position of each population member is updated according 
to the algorithm’s rules, and the newly determined position is evaluated using the 
objective function. As a result, the solutions gradually improve with each iteration.

where Ai is the sum of availabilities of links of the route i (link availability 0 indicates that 
the link is unavailable and 1 indicates that the link is available), Ci is the congestion rate 
of the route, and Ti+1 is the traffic matrix predicted by the traffic prediction unit.

The search mechanism typically involves two major phases: exploration and exploitation. 
Exploration refers to the algorithm’s inclination toward highly random behaviors, resulting 
in significant changes in the solutions. These changes facilitate further exploration of the 
search space, supporting in the process of discovering promising areas. Once promising 
regions are determined, random behaviors are reduced to focus the algorithm’s search 
around these favorable regions, which is called as exploitation. For the hunter search 

(6)fi = Ai +
1

Ci
+

1

|Ti+1|

Fig. 3  Proposed traffic routing unit. This figure illustrates the functioning of the proposed CA-HPO-based 
traffic routing unit
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mechanism, the equation governing the update of the hunter’s position is described as 
follows.

where x(t) represents the current hunter position, x(t + 1) represents the hunter next 
position, Ppos represents the prey position, µ represents the mean of all positions, and Z 
is an adaptive parameter computed using the following equation.

where R1 is a random number in the range [0,1] and �R2 is a random vector in the range 
[0,1], idx is the index numbers of the random vector �R3 which is also in the range [0,1] 
and satisfies the condition (P == 0). P is a random vector with values 0 and 1 equal to the 
number of problem variables.

The balance parameter C computes the trade-off between exploration and exploitation. 
Its value gradually decrements from 1 to 0.02 as the iterations progress. The value of C is 
calculated using the Eq. (9).

where it denotes the current iteration and itmax denotes the maximum number of 
iterations.
Ppos is then calculated using the Euclidean distance D as follows.

where

The update equation of the prey position for each iteration is given by,

where kbest = round(C × N ) , N represents the total number of search agents.
When the prey is attacked, it instinctively attempts to escape and reach a safe spot. It is 

assumed that the optimal global position represents the best safe position for the prey, as it 
provides the highest chance of survival and potentially allows the hunter to pursue another 
prey. The following equation represents the final update of the prey’s position.

(7)xi(t + 1) = xi(t)+ 0.5
[

2CZPpos(i) − xi(t)+
(

2(1− C)Zµ(i) − xi(t)
)]

(8)Z = R1 ⊗ idx + �R2 ⊗ (∼ idx)

(9)C = 1− it

(

0.98

itmax

)

(10)Ppos = xi
∣

∣i is the index of Max(end)sort(D)

(11)D =





d
�

j=1

(xi − µi)
2





1
2

(12)µ =
1

n

n
∑

i=1

xi

(13)Ppos = xi
∣

∣i is sorted D(kbest)

(14)xi(t + 1) = Gpos(i) + CZ cos (2πR4)×
(

Gpos(i) − xi(t)
)
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where Gpos represents the optimal global position and R4 is a random number within 
the range of − 1 to 1. Thus the final optimal dynamic route determined by the proposed 
congestion-aware HPO-based traffic routing algorithm is Gpos.

5 � Results and discussion
The experiment was performed in MATLAB R2021 using the proposed approach and 
image processing toolbox. The proposed model was trained on a Windows 10 system 
with an Intel(R) Core™ i7-8650U processor, 16 GB of random access memory (RAM), 
and an NVIDIA GeForce MX150 graphics processing unit (GPU).

5.1 � SDN deployment

The data packets are captured using the hypertext transfer protocol in the Wireshark 
platform. The transmission of packets from one node to another is captured using the 
interface. The information on data transmission and traffic during routing was saved as 
output csv file format. The traffic files of all the nodes in the network for a specific period 
of time are also recorded and saved. These files are then utilized for further processing 
of traffic prediction and optimal route selection in the framework. The set of the traffic 
prediction was done during the data transmission and saved as shown in Fig. 4.

5.2 � Performance measures

The performance of the proposed framework was assessed using various performance 
metrics such as mean absolute error (MAE), mean square error (MSE), and root-mean-
square error (RMSE).

5.2.1 � Mean absolute error (MAE)

Absolute error is the difference between the predicted observation (Data) and the actual 
values of that observation. MAE takes the average of absolute errors for a group of 

Fig. 4  SDN deployment. This figure shows the SDN deployment, where the data packets are captured using 
the hypertext transfer protocol in the Wireshark platform. This shows the set of the traffic prediction done 
during the data transmission



Page 14 of 22Prasanth and Uma ﻿J Wireless Com Network         (2024) 2024:63 

predictions and observations as a measurement of the magnitude of errors for the entire 
group. The expression for MAE was given as follows;

5.2.2 � Mean square error (MSE)

MSE is the simplest and most commonly used to calculate the loss function. The loss 
function is a method of evaluating how well the algorithm models the dataset. A larger 
MSE indicates that the data points are dispersed widely around its central moment 
(mean), whereas a smaller MSE suggests the opposite. The expression for MSE was given 
as follows:

5.2.3 � Root‑mean‑square error (RMSE)

RMSE is one of the most commonly used measures for evaluating the quality of 
predictions. It shows how far predictions fall from measured true values using Euclidean 
distance. RMSE is commonly used in supervised learning applications, as RMSE uses 
and needs true measurements at each predicted data point. The expression for RMSE 
and RRMSE was given as follows:

where x̂i is the predicted observations; x̂i is the true or actual values; n is the total 
number of observations.

5.3 � Performance evaluation

5.3.1 � Traffic prediction

The performance of the proposed traffic prediction model was compared with the 
existing methods such as SVM, KNN, DT, ANN, and RNN. Table  1 presents the 
comparisons of values of MAE, MSE, and RMSE of the proposed and existing method.

Figure 5 graphically shows the MAE value of the proposed and existing models. It was 
seen that the MAE value of the proposed model was less as compared to the existing 
model such as SVM, KNN, DT, ANN, and RNN. The MAE value of the proposed model 
was 4.2–91% lesser than the existing models.

Figure  6 graphically shows the MSE value of the proposed and existing methods. 
The proposed mGRNN model shows the least MSE value of 0.00905. The MSE value 

(15)MAE =

∑n
i=1

∣

∣x̂i − xi
∣

∣

n

(16)MSE =

∑n
i=1

(

x̂i − xi
)2

n

(17)RMSE =

√

∑n
i=1

(

x̂i − xi
)2

n

(18)RRMSE =

√

√

√

√

√

√

(

∑n
i=1 (x̂i−xi)

2

n

)
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(

x̂i
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Table 1  Performance of proposed and existing methods

Models MAE MSE RMSE RRMSE

Decision tree 0.00792 0.039437 0.07708 0.065079

KNN 0.00453 0.030577 0.03946 0.0852192

SVM 0.00482 0.061588 0.058821 0.072883

ANN 0.08065 0.01002 0.12840 0.05929

RNN 0.08766 0.01468 0.12623 0.06296

Proposed MG-RNN model 0.0026 0.00905 0.029 0.0127
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Fig. 5  MAE value of the proposed and existing methods. This figure graphically shows the MAE value of the 
proposed and existing models. It was seen that the MAE value of the proposed model was less as compared 
to the existing model such as SVM, KNN, DT, ANN, and RNN. The MAE value of the proposed model was 
4.2–91% lesser than the existing models
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Fig. 6  MSE value of the proposed and existing methods. This figure graphically shows the MSE value of the 
proposed and existing methods. The proposed mGRNN model shows the least MSE value of 0.00905. The 
MSE value of the proposed model was 9.6–85.3% lesser than the existing model such as SVM, KNN, DT, ANN, 
and RNN
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of the proposed model was 9.6–85.3% lesser than the existing model such as SVM, 
KNN, DT, ANN, and RNN.

Figure  7 graphically shows the RMSE value of the proposed and existing models. 
It was seen that the RMSE value of the proposed model was less as compared to the 
existing models. The RMSE value of the proposed model was found to be 26.5–77.4% 
lesser than the existing models such as SVM, KNN, DT, ANN, and RNN.

Figure 8 graphically shows the RRMSE value of the proposed and existing models. 
It was seen that the RRMSE value of the proposed model was less as compared to 
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Fig. 7  RMSE value of the proposed and existing methods. This figure graphically shows the RMSE value 
of the proposed and existing models. It was seen that the RMSE value of the proposed model was less as 
compared to the existing models. The RMSE value of the proposed model was found to be 26.5–77.4% lesser 
than the existing models such as SVM, KNN, DT, ANN, and RNN
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Fig. 8  RRMSE value of the proposed and existing methods. This figure graphically shows the RRMSE value 
of the proposed and existing models. It was seen that the RRMSE value of the proposed model was less as 
compared to the existing models. The RRMSE value of the proposed model was found to be 7.85–85.7% 
lesser than the existing models such as SVM, KNN, DT, ANN, and RNN
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the existing models. The RRMSE value of the proposed model was found to be 7.85–
85.7% lesser than the existing models such as SVM, KNN, DT, ANN, and RNN.

5.3.2 � Comparison with other machine learning algorithms

In our rigorous evaluation, the proposed mGRNN model has been systematically 
compared with other machine learning algorithms commonly used in the context of 
SDN traffic prediction. The comparison extends to algorithms such as long short-
term memory (LSTM), gated recurrent unit (GRU), and traditional machine learning 
algorithms.

The key aspects of this comparative analysis include:

•	 Accuracy: The mGRNN model exhibits competitive or superior accuracy compared 
to alternative machine learning algorithms. This is particularly significant in SDN 
environments where precise traffic prediction is essential for efficient network 
management.

•	 Training efficiency: The mGRNN model demonstrates efficient training, benefiting 
from the back propagation algorithm that continuously refines weights until a 
predefined error threshold is reached. This contributes to quicker convergence 
during the training phase.

•	 Generalization capability: The mGRNN model showcases strong generalization 
capabilities, effectively learning patterns and relationships in input sets. This is 
crucial for the accurate prediction of outcomes for novel input data during the 
testing phase.

5.3.3 � Traffic routing

The performance of the proposed traffic routing model was compared with the existing 
GA and PSO models in terms of routing overhead (packets), Normal throughput, and 
average delay.

The normalized throughput of the network can be defined as:

where NC is the number of data packets correctly received, and NT is the total number of 
data packets sent.

The average delay can be defined as:

where M , is the number of travelled links, L is the length of the data packet and Tr is the 
rate of data transmission.

Figure  9 presents the routing overhead of the various methods such as CA-HPO, 
GA, and PSO against various numbers of nodes. It was seen that the routing overhead 
decreases with the increase in number of nodes. The routing overhead of the 
proposed model was very less than the GA and PSO methods. The proposed CA-HPO 

(19)Normalized throughput =
NC

NT

(20)Average delay = mean

(

M × L

Tr

)
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accomplished a lower routing overhead of 2854 at 50 nodes, where the routing overhead 
of the existing models, such as GA and PSO, achieved 3412 and 3260, respectively.

5.3.4 � System performance

Figure 10 presents the normalized throughout of the various methods such as CA-HPO, 
GA, and PSO against various simulation times. The normalized throughput was 
increased with the increase in simulation time, which demonstrates that the network 
was enhanced. The normalized throughout of the proposed CA-HPO was 0.99 packets/
seconds, whereas the normalized throughout of the GA and PSO was 0.99 packets/
seconds and 0.99 packets/seconds. It was observed that the normalized throughout of 
the proposed CA-HPO algorithm was 3.4–7.6% higher than the normalized throughout 
of GA and PSO algorithms. The proposed CA-HPO algorithm showed a high speed in 
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Fig. 9  Routing overhead of proposed and existing methods. This figure presents the routing overhead of 
the various methods such as CA-HPO, GA, and PSO against various numbers of nodes. It was seen that the 
routing overhead decreases with the increase in number of nodes. The routing overhead of the proposed 
model was very less than the GA and PSO methods. The proposed CA-HPO accomplished a lower routing 
overhead of 2854 at 50 nodes, were the routing overhead of the existing models such as GA and PSO, 
achieved 3412 and 3260, respectively
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Fig. 10  Normalized throughout of the proposed and existing methods. This figure presents the normalized 
throughout of the various methods such as CA-HPO, GA, and PSO against various simulation times. It was 
observed that the normalized throughout of the proposed CAHPO algorithm was 3.4–7.6% higher than the 
normalized throughout of GA and PSO algorithms. The proposed CA-HPO algorithm showed a high speed in 
searching the optimized routing path with minimum RMSE
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searching the optimized routing path with minimum RMSE. In the HPO technique, 
which includes prey and predator populations, a predator attacks the victim who 
wanders far from their group. The animals can place themselves farther from danger 
as the hunter moves closer to the distant target. It was assumed that the search agent’s 
station has a great fitness value and was a secure area. With the inspiration of the animal 
hunting behavior, the HPO algorithm can search the optimized routing path.

Figure  11 presents the variation of average delay against the variation in simulation 
time of existing and proposed methods. The average delay of the proposed CA-HPO 
method was 58–65% lesser than GA and PSO methods. It was observed that average 
delay in data transmission was increased with increase in simulation time. This shows 
that the QoS of the network was enhanced.

5.3.5 � Comparison with PSO and GA algorithms

In addition to the comparison with traditional machine learning algorithms, our 
research extends the evaluation to include particle swarm optimization (PSO) and 
genetic algorithms (GA).

The aspects under consideration in this comparison are:

•	 Optimization performance: The mGRNN model is evaluated against PSO and GA 
in terms of its optimization performance. This involves assessing how well the 
model adapts to changing conditions and refines its parameters to optimize traffic 
prediction accuracy.

•	 Convergence rate: The speed at which the mGRNN model converges to an optimal 
solution is compared with PSO and GA. This is crucial for determining the efficiency 
of each algorithm in finding the optimal configuration for traffic prediction.

•	 Robustness: The robustness of the mGRNN model in handling variations and 
uncertainties in SDN traffic data is compared with PSO and GA. This assessment 
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Fig. 11  Average delay of the proposed and existing methods. This figure presents the variation of average 
delay against the variation in simulation time of existing and proposed methods. The average delay of the 
proposed CA-HPO method was 58–65% lesser than GA and PSO methods. It was observed that average delay 
in data transmission was increased with increase in simulation time. This shows that the QoS of the network 
was enhanced
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considers the ability of each algorithm to maintain prediction accuracy under 
different network scenarios.

In summary, the proposed mGRNN model stands out as a novel and effective approach 
for traffic prediction in SDNs, offering unique features that contribute to its accuracy 
and adaptability. The thorough comparison with other machine learning algorithms, as 
well as PSO and GA, provides a comprehensive understanding of the model’s strengths 
and advantages in the context of our research objectives.

6 � Conclusions
The evolution of AI and ML in route optimization for the SDN can be viewed as a 
decision-making policy that does not require a complex mathematical model when the 
model has been trained. The high computation cost would be the shortcoming of using 
meta-heuristic algorithms such as the ant colony optimization (ACO) algorithm, etc., for 
optimal routing in SDN. In comparison with various research articles such as Albakri 
et  al. [35] and Thenmozhi et  al. [36], the authors of this study have not conducted a 
comprehensive comparison of performance measures, including mean absolute error 
(MAE), mean squared error (MSE), root-mean-squared error (RMSE), and relative 
root-mean-squared error (RRMSE). The model proposed in this article demonstrates a 
significant enhancement in SDN traffic management with a lower error rate.

In this paper, a novel multiplicative gated recurrent neural network (mGRNN) and 
congestion-aware hunter prey optimization (HPO) algorithm was utilized for effective 
traffic prediction and routing for efficient traffic management in the SDN. It was seen 
that the proposed mGRNN can effectively predict the traffic of the SDN. The MAE, 
MSE, RMSE, and RRMSE of the proposed model were found to be 4.2–91%, 9.6–85.3%, 
26.5–77.4%, and 7.85–85.7% lesser than the existing models like SVM, KNN, DT, ANN, 
RNN. The performance of the CA-HPO algorithm is also better in searching for optimal 
routing with improved QoS of the network.
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