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Abstract 

Compressive sensing (CS) has been widely used to sense the wideband spectrum 
with fewer measurements by taking advantage of radio spectrum underutilization. 
As new smart devices, such as IoT devices, smart home devices, and wearables, use 
batteries and have limited memory, more research is needed to reduce the overuse 
of cognitive radio (CR) resources through spectrum sensing. To reduce the number 
of compressive measurements required for spectrum recovery, researchers proposed 
approaches like weighted and sequential compressive sensing. In this paper, we 
estimate the primary user’s (PU) behavior statistics and use the estimated information 
in a novel weighted sequential compressive spectrum sensing approach. Our pro-
posed approach can reduce and adapt the number of measurements and the sensing 
time to the changing number of active channels in a dynamically changing wideband 
spectrum.

Keywords: Spectrum sensing, PU behavior statistics, Weighted compressive sensing, 
Sequential compressive sensing

1 Introduction
The need for mobile internet access is dramatically increasing as the number of smart-
phone users, Internet of Things (IoT) devices, and machine-to-machine (M2M) con-
nections grows. This is resulting in great demand for radio spectrum access. Traditional 
spectrum access and sharing techniques no longer cope with that great demand. Cogni-
tive radio (CR) is a promising technology that enables opportunistic spectrum access 
based on spectrum sensing [1, 2]. Primary users (PUs) are not utilizing their licensed 
spectrum all the time, giving secondary users (SUs) the opportunity to sense the spec-
trum and search for spectrum holes to utilize for their transmission. To enable SUs to 
sense a wideband spectrum, a high-rate analog-to-digital converter (ADC) is needed to 
sample the received signal at the Nyquist rate.

Compressive sensing (CS) has been considered a more suitable solution for sampling 
a wideband signal at a sub-Nyquist rate, taking advantage of the sparse nature of the 
wideband spectrum. Measurement campaigns have shown that the wideband spectrum 
is underutilized most of the time [3]. This made it possible to recover the wideband 
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spectrum at the SUs by a small number of measurements using CS recovery algorithms 
[4]. In [5], the authors proposed a compressive spectrum sensing (CSS) approach using 
an analog-to-information converter (AIC) for the reconstruction of the power spec-
tral density (PSD) of a sparse wideband spectrum with few compressed measurements. 
Cooperative CSS was proposed to take advantage of spatial diversity, in which measure-
ments from the SUs are sent to a fusion center to obtain the final spectrum sensing deci-
sion [6]. This approach can mitigate the effects of interference and multipath fading.

For enhancing spectrum sensing performance, various approaches have been pro-
posed. These approaches include modeling PU behavior in time, frequency, and spatial 
domains [7]. This helps in simulating and designing CR networks and a better selection 
of channels to be utilized by SUs. Another approach proposed is transmitting PU infor-
mation to SUs using pilot signals [8]. However, this approach requires modifications to 
legacy PU systems and signaling overhead. Using geo-locational databases to provide 
SUs with information about PU systems and spectrum utilization was proposed in [9]. 
However, this approach requires frequent updating of the databases and imposes com-
munication overhead on SU terminals.

Recently, deep learning (DL) techniques have been integrated into spectrum sensing, 
enabling CRs to detect the presence of primary signals in noisy environments. By being 
trained on large spectral datasets, DL algorithms can detect signals with different modu-
lation types and spectral patterns with high accuracy and speed. This enhances spectrum 
management and facilitates the optimization of scarce spectral resources. The authors in 
[10] repurposed AlexNet, which is an existing convolutional neural network (CNN), to 
perform spectrum sensing by sensing the spectrum energy using a small training set. 
The performance of the CNN detector outperforms traditional energy detectors in the 
existence of interference or noise. In [11], the authors proposed a deep neural network 
(DNN) that captures the temporal correlations by treating the received signal as time 
series data. The proposed DNN model detects various types of modulated primary 
signals even in low signal-to-noise ratio (SNR). Since SUs have limited hardware capa-
bilities, authors in [12] proposed a collaborative spectrum sensing approach. A DNN is 
used to detect the wideband spectrum utilization using the observations obtained from 
SUs sensing different narrowband parts of the spectrum.

This paper is organized as follows. In Sect.  , we discuss the related work concern-
ing our research problem. In Sect.  , we summarize our motivations and contributions. 
In Sect.  , we describe our system model. In Sect.  , we discuss our proposed weighted 
sequential approach. In Sect.  , the simulation and results are explained. The paper is 
finally concluded in Sect. .

2  Related work
Although CSS served well in reducing the number of measurements required for spec-
trum recovery, we still need to further reduce the number of measurements. This is due 
to the limited capabilities of smart devices such as (IoT devices, smart gadgets, weara-
bles, etc.), which rely on batteries and have limited hardware.

Weighted CS has been proposed where a sparse signal can be recovered from a 
fewer number of compressive measurements by introducing prior knowledge about 
the sensed signal as weights to the recovery algorithm. This prior knowledge can be 
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for example the probability of signal elements being non-zero. In [13], the authors 
proposed a recovery algorithm based on solving weighted l1 minimization, where the 
entries of the unknown signal were divided into two sets with different probabilities 
of the each set having non-zero elements. They computed the optimal weights utiliz-
ing the probability of each set and showed that their weighted l1 minimization per-
formed better than the traditional l1 minimization. In [14], the authors considered 
a heterogeneous wideband spectrum where similar applications are assigned to the 
same frequency block. The block-like structure of the spectrum was exploited to 
assign different weights for each block according to the block’s occupancy level. How-
ever, the aforementioned approaches divide the unknown signal into only two sets 
which is not enough to model a wideband spectrum with a variety of spectrum usage 
levels. In [15], the authors proposed to assign a different weight to each channel of 
the wideband spectrum. They proposed a weighted l1 approach where the weight is 
related to the channel’s duty cycle. Their weighted approach provided the best detec-
tion performance among the aforementioned approaches. However, incorporating 
prior knowledge of PUs behavior either require modifications to the primary systems 
or communication overhead on the SUs. Also, the accuracy of spectrum occupancy 
information or its source were not discussed in the scope of weighted CS studies.

To solve these problems, Researchers proposed that the SU can estimate information 
about the behavior of PUs and spectrum occupancy utilizing spectrum sensing deci-
sions. In [16], the authors utilized prior knowledge about the PU’s average idle and busy 
times to estimate the duty cycle of a single channel utilizing average estimators as well as 
maximum likelihood estimation (MLE). In [17], the authors compared the performance 
of sampling the spectrum using uniform and random sampling on the estimation of the 
mean idle and busy times. They found that random sampling provides better estima-
tion performance for a fixed sensing window. However, in both [16, 17] the PU activity 
periods were assumed to follow the exponential distribution which has been proved to 
be an imperfect fit in [18]. The authors of [19, 20] proposed to estimate the distribution 
of idle and busy times of a single channel utilizing spectrum sensing decisions by using 
the modified method of moments (MMoM). The idle and busy periods were assumed to 
follow the Generalized Pareto (GP) distribution [21] which was considered a good fit in 
practical scenarios, and they also provided a hardware experiment to confirm their find-
ings. In [22], we investigated the effects of compressive sensing parameters on the esti-
mation of PU behavior based on MMoM and showed that we can accurately estimate PU 
statistics under certain conditions of CS parameters. In another approach, the authors of 
[23] proposed an adaptive algorithm to sense the spectrum without the requirement of 
any prior knowledge of the spectrum sparsity.

In traditional as well as weighted CS, the number of the non-zero elements 
(denoted as sparsity order) of the sparse signal is needed as prior knowledge to cal-
culate the number of compressive measurements [24]. The number of compressive 
measurements is usually optimistically (more than required) calculated based on the 
sparsity order. The sparsity order of a wideband signal can be estimated by long-
term monitoring of the spectrum. However, using a fixed number of measurements 
calculated at the maximum sparsity order is a waste of the CR memory and power 
resources as the sparsity of a wideband spectrum is always changing.
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Sequential CS was proposed to adapt the acquisition of compressive measure-
ments [25]. In this approach, the measurements are acquired step by step until a 
satisfactory recovery of the spectrum is achieved. The authors proposed to stop 
measurement acquisition when two consecutive recoveries with a different number 
of measurements are the same. In [26], the authors proposed using the coherence 
between two consecutive spectrum decisions as the sopping rule for measurement 
acquisition. Authors of [27], proposed dividing the total sensing time into smaller 
time slots and in each time slot some measurements are taken. The acquired meas-
urements are then divided into a training set and a testing set, and then cross-vali-
dation is used to check if the spectrum is recovered accurately to stop measurement 
acquisition. The rest of the time slots can be used by the SU for signal transmis-
sion. However, the number of measurements in the testing set which is used to vali-
date the spectrum recovery needs to be larger than the number of measurements in 
the training set which is used to actually recover the spectrum. In [28], the authors 
proposed using the Euclidean distance between the measurements taken from the 
sensed signal and measurements taken from the signal after recovery to evaluate the 
accuracy of the recovery. However, for that approach to be usable, the number of 
measurements taken in each time slot must exceed a certain bound. A summary and 
comparison of the related work can be found in Table 1.

3  Motivations and contributions
Motivated by the need to sense the wideband spectrum with fewer measurements 
due to the limited hardware capabilities of IoT and smart devices, we proposed an 
approach that both adapts and reduces the number of measurements needed for CS 
recovery. The contributions of this paper can be summarized as follows: 

(1) We proposed estimating duty cycles of the channels of a wideband spectrum using 
the periodically obtained spectral decisions.

(2) The estimated duty cycles of the channels are incorporated as weights in the CS 
recovery algorithm.

(3) We proposed an adaptive CSS approach based on both sequential and weighted CS 
techniques. The proposed approach acquires measurements from the sensed signal 
in a step-by-step fashion until a satisfactory recovery of the spectrum is achieved. 
No prior knowledge about spectrum sparsity is required.

(4) The coherence between the consecutive obtained spectral decisions is used as a 
halting condition of measurement acquisition. This approach reduced the number 
of measurements required for the validation of the recovery accuracy compared to 
the related work.

(5) Our algorithm could reduce the number of measurements needed for spectrum 
recovery by approximately 50% on average while not sacrificing the Receiver Oper-
ating Characteristics (ROC) performance.
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4  Methods
4.1  System model

Let us consider a CR network where a single SU periodically senses a sparse wideband 
frequency spectrum to detect PUs as illustrated in Fig.  1. The sparse spectrum has N 
non-overlapping channels. The channel between the SU and each of the operating PUs is 
considered an Additive White Gaussian Noise (AWGN) channel. We assume a dynamic 
spectrum where the number of active PUs at a given time is randomly changing; while, 
the power transmitted by each PU is unknown. The wideband signal received by the SU 
unit as transmitted from L active PUs is denoted by si(t) where i ∈ [1, L] , and can be rep-
resented mathematically as follows

where w(t) is the AWGN.
To obtain the spectrum received at the SU, we can apply Discrete Fourier Transform 

(DFT) to Eq. (1) as follows

where S, X, and W are all N x 1 vectors representing the spectra of the transmitted, 
received, and noise signals, respectively

The SU has to compressively sample the signal, then a CS recovery algorithm is used 
to reconstruct the original signal and then the spectrum can be obtained. An AIC can be 
used to sample the received signal at a sub-Nyquist rate. As the number of active chan-
nels L is much lower than the total number of channels N, the SU can collect only M 
number of measurements where ( L < M < N  ). The M × 1 measurement vector can be 
represented as follows

(1)x(t) =

L
∑

i=1

si(t)+ w(t)

(2)X = S +W

Fig. 1 An illustration of the proposed cognitive radio network
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where � is the M × N  measurement matrix and F−1 is the N × N  inverse DFT matrix. 
To ensure perfect recovery of the N × 1 signal vector from the M compressive measure-
ments, the measurement matrix � must satisfy the restricted isometry property (RIP) 
[29] which states that if there exists an isometry constant δs where 0 < δs < 1 the meas-
urement matrix must satisfy the following inequality [29]

where ‖.‖2 denotes the l2-norm.
To achieve the RIP condition, the number of measurements or the number of rows of 

the measurements matrix M must be in the order of C L log(N/L) where C is a constant 
[30]. A measurement matrix where its elements are interdependently and identically dis-
tributed (i.i.d) from Gaussian distribution achieves RIP condition with a high probabil-
ity. CS recovery is done by solving the system of equations described in Eq. (3). However, 
this system of equations is an under-determined system as M is less than N which results 
in an infinite number of solutions. Fortunately, we are only interested in the sparsest 
solution. The desired solution can be obtained through an optimization problem such 
as l0-norm minimization; however, it is considered as an NP-hard problem. Instead, l1
-norm minimization is considered a more convenient solution which can be represented 
as follows [31]

Solving the optimization problem in (5) can be done using several algorithms such as 
Greedy algorithms like matching pursuit (MP) [32], orthogonal matching pursuit (OMP) 
[33], and Compressive sampling matching pursuit (CoSaMP) [34], or convex relaxation 
approaches such as Basis Pursuit (BP) [35] and Basis Pursuit Denoising (BPDN) [36].

4.2  Modeling of PU behavior

The wideband spectrum of N channels modeled in the paper is divided into j 
groups of channels having similar duty cycles, and each channel has a duty cycle 
�n where �n ∈ {�1,�2,�3, ...,�j} , and n is the channel index. The average duty 
cycle �̄ = 1

N

∑N
n=1�n is set to a low value to reproduce a sparse domain. In order 

to model the PU’s behavior for each channel, the Continuous-Time Semi-Markov 
Chain (CTSMC) model was used. According to this model the time index is con-
tinuous, and the activity of the PU is modeled as staying in an activity state (idle/
busy) for a random period of time called (state holding time) and then switching to 
the other state for another random period of time. The state holding times in the 
CTSMC model can follow any arbitrary distribution on the contrary to the Contin-
uous-Time Markov Chain where the state holding times can only follow the expo-
nential distribution. Monitoring the spectrum for the purpose of estimating the 
activity of PUs can be done by either sampling at high sampling rate, or a relatively 
lower sampling rate. High sampling rate or (high-resolution modeling) can be used 

(3)y = �x = �F−1X

(4)(1− δs)�x�
2
2 ≤ ��x�22 ≤ (1+ δs)�x�

2
2

(5)
min
x

�x�1

s.t. y = �x
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to accurately characterize the spectrum utilization but only for a short time scale 
due to the huge amount of samples to be stored and processed. However, a relatively 
lower sampling rate or (low-resolution modeling) can be used to model how a CR 
unit can monitor the spectrum. It was found that in low-resolution modeling, the 
idle/busy periods of a channel follow the GP distribution over a wide range of radio 
technologies [21]. The cumulative distribution function (CDF) of GP distribution is 
as follows [7]:

where T represents time period length and µ, �,α are location, scale and shape param-
eters, respectively. The GP parameters satisfy these conditions:

The mean E{T } and the variance V{T } are given by [7]:

The channel’s duty cycle (DC) is a simple yet an important parameter to characterize the 
usage of a channel and the PU’s behavior. The duty cycle is a commonly used parameter 
in time domain models which describes the average occupancy of a channel, or the prob-
ability of finding a channel in busy state as being utilized by a PU. The DC is denoted by 
� and can be expressed mathematically as [7]

where E{Tbusy} is the mean value of busy periods and E{Tidle} is the mean of idle periods.

5  The proposed system
In this section of the paper, we discuss our proposed approach. We aim to design a 
spectrum sensing algorithm that can learn the spectrum utilization information and 
utilize it to reduce the consumption of CR resources. To achieve this goal, we first 
estimate the occupancy level of the N channels through the periodically obtained 
spectrum sensing decisions. Then we use the estimated information to solve a 
weighted compressive spectrum sensing problem that recovers the spectrum using a 
few number of compressive measurements. We use a sequential method for measure-
ment acquisition so that we can stop the process once a satisfactory spectrum recov-
ery is achieved. The block diagram of the system is shown in Fig. 2.

(6)FGP(T ;µ, �,α) = 1−
[

1+
α(T − µ)

�

]−1/α

T ≥ µ for α > 0

µ ≤ T ≤ µ−
�

α
for α < 0

µ > 0, � > 0 and α < 1/2

(7)E{T } =µ+
�

1− α

(8)V{T } =
�
2

(1− α)2(1− 2α)

(9)� =
E{Tbusy}

E{Tbusy} + E{Tidle}
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5.1  Signal recovery

For the SU to be able to recover the sensed wideband spectrum and detect the pres-
ence of PUs, a CS recovery algorithm is required. Since we assume an AWGN channel 
between the SU and the PUs, we use BPDN as the recovery algorithm as it can recover 
the spectrum from noisy measurements. The optimization problem BPDN is given by 
[36]:

where ǫ is the amount of noise in the measurements. To balance between the minimiza-
tion of signal recovery error due to the noise effect and finding the sparsest solution, a 
penalty parameter � is used. Therefore, the optimization problem given in (10) can be 
solved as an unconstrained minimization problem given as:

The spectrum decision is then acquired by comparing the PSD level of each channel in 
the recovered spectrum with a threshold as follows

where D̂ ∈ R
N is the spectrum decision vector, and ρ is a threshold chosen according to 

the noise level.

5.2  Estimation of channels’ duty cycles

The binary spectrum sensing decisions (or the obtained states of the channels) denoted 
as D̂ are used to reconstruct the lengths of the idle and busy periods as illustrated in 
Fig. 3, where S0 and S1 are idle and busy states of a channel, respectively. The time taken 
by a channel to flip from one state to another (denoted by Ti ) is considered as an estimate 
of the original activity period, where i = 1 represents a busy period and i = 0 represents 
an idle period. Hence, the activity (idle/busy) periods of a PU in a certain channel can 

(10)
min
x

�x�1

s.t.
∥

∥y−�x
∥

∥

2

2
< ǫ

(11)min
x

∥

∥y−�x
∥

∥

2

2
+ ��x�1

(12)D̂n =

{

1 if |X̂n| > ρ, where n ∈ [1,N ]

0 if |X̂n| < ρ, where n ∈ [1,N ]

Fig. 2 Block diagram of the proposed system
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be estimated as integer multiple of the sensing period Ts which is defined as the time 
between two sensing events (i.e., T̂i,n = KTs or (K + 1)Ts relative to the position where 
the sensing of a period started with respect to the original period, where ’K’ is an integer 
representing the number of consecutive binary decisions of the same channel state, and 
’n’ represents the index of the periods.

There are three ways to reconstruct an activity (idle/busy) period. For example we can 
estimate the idle period denoted as T0 in Fig. 3 as the following: 

(1) T̂0 = tb − ta , where the estimated period would be an underestimation of the actual 
period.

(2) T̂0 = ty − tx , where the estimated period would be an overestimation of the actual 
period.

(3) T̂0 =
(tb−ta)+(ty−tx)

2
 , where the estimated period would be a more accurate estima-

tion of the actual period which is used in this paper.

Using the method above we can reconstruct the activity periods for all the N chan-
nels. Then to estimate the duty cycles � (average occupancy) of the channels, we need to 
firstly estimate the mean of the reconstructed activity periods as follows:

where Np denotes the number of reconstructed periods.
The duty cycle of any channel is estimated as:

where n is the channel index.

5.3  The proposed weighted sequential approach

5.3.1  Weighted CSS model

The weighted CSS approach incorporates prior knowledge about spectrum utilization 
(PU behavior statistics) into the CS problem. This is done by multiplying the elements 

(13)E(T̂i) =
1

Np

Np
∑

n=1

T̂i,n

(14)�̂n =
E(T̂1)

E(T̂0)+ E(T̂1)

Fig. 3 Reconstruction of activity periods from binary spectrum sensing decisions. S1 , S0 are busy and idle 
channel states, respectively, while Ts is the sensing period, and T0 represent an actual idle period
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of the wideband spectrum denoted here by X ∈ R
N by a weights vector w to refine the 

search space of the CS recovery algorithm and help it to find the sparsest solution. It is 
wanted to give lower weights to the part of the spectrum where it is more likely to be 
occupied, and higher weights to the part where it is more sparse. The question is how to 
assign those weights.

Let a sparse signal x has a support denoted by xT which contains the non-zero ele-
ments of the signal. If the support xT is known or can be easily estimated, researchers 
proposed using the following weighted l1 minimization to solve the problem [37]

where xcT is the support complement, and 0 ≤ w ≤ 1.
However, in a wideband radio spectrum the support which determines the active 

channels cannot be easily estimated or be known as prior information due to the highly 
dynamic change of PUs behavior. So, it was proposed to divide the spectrum frequency 
channels into two different groups according to their average level of sparsity, and each 
group is assigned different weights related to the inverse of the sparsity level as in [14]. 
But, dividing the channels into two groups is not enough to give accurate weights for 
each channel according to its unique sparsity level.

In our work, we used the weighted model proposed in [15] which was found to give 
more accurate weights related to each channel’s sparsity level. The weights in this model 
are assigned according to the duty cycle � of the channel. In this paper, we will use the 
estimated duty cycles to assign those weights as

where �̂n is the estimated duty cycle of the n-th channel.
Note that in traditional BPDN the weights vector is assumed to be only ones by default 

as all the elements of x are treated equally in CS recovery. The weighted CSS recovery 
problem using BPDN to recover the spectrum then can be described as

5.3.2  Sequential CSS model

In traditional compressive spectrum sensing, the number of compressed measurements 
needed to accurately recover the spectrum should be in the order of C Lmax log(N/Lmax) 
[30], where C is a constant that is chosen optimistically to ensure that enough measure-
ments are acquired for proper spectrum recovery, and Lmax is the maximum sparsity 
level (maximum number of active channels) that can be estimated by long-term moni-
toring of the spectrum through measurement campaigns.

(15)
min
x

�x�w1 = min
x

N
∑

n=1

wnxn

with wn =

{

1 n ∈ xcT
w n ∈ xT

(16)wn = 1− �̂n

(17)min
x

∥

∥y−�x
∥

∥

2

2
+ ��x�w1
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However, this approach tends to require a large number of compressed measurements 
to ensure accurate recovery of the spectrum at the maximum sparsity level which is not 
always the case. This results in acquiring an excessively unnecessary number of measure-
ments, which results in wasting the sampling effort of the sampler, and utilizing unneeded 
sensing time and consumed power by the hardware.

On the other hand, using a technique that acquires the compressive measurements 
sequentially while adapting the number of measurements to the actual sparsity level can 
significantly save the sampling effort, the required sensing time, and the power consumed 
by the hardware.

In sequential CSS, the sensing time τ which is the time required by the hardware to 
acquire the compressed measurements, is divided into p time slots where p ∈ [1,P] . The 
employed sensing time used by the CR should be smaller than the channel coherence time 
and the dynamic change in the PU behavior, so that the spectrum holes pointed out in the 
spectrum recovery decision can be used by the SU before the spectrum occupancy states 
change. This enables us to assume that the spectrum is block stationary during the sensing 
process, and the spectrum occupancy does not change during the sensing time. In each 
time slot, �M measurements are taken to give a spectrum recovery denoted as X̂ , and the 
sequential acquisition of measurements does not stop until a satisfactory recovery of the 
sparse spectrum is achieved.

This sequential approach does not require the CR to sense the spectrum for the whole 
sensing time, which enables the CR to obtain spectrum decisions faster and the remaining 
of sensing time can be utilized for transmission by the SU. The spectrum recovery error 
defined as e =

∥

∥

∥
X − X̂

∥

∥

∥

2
 cannot be used to stop measurement acquisition in practice as 

the actual spectrum X is unknown to the CR. Hence, the research field is still open to find-
ing an appropriate stopping condition to be able to stop acquiring the measurements 
sequentially when an accurate spectrum recovery is achieved.

5.3.3  The proposed weighted sequential model

Here we describe the proposed algorithm to recover the spectrum using a weighted sequen-
tial approach as shown in Algorithm 1. The SU will acquire the compressive measurements 
sequentially followed by a spectral recovery in each time slot to obtain a spectrum sens-
ing decision denoted as D̂p , where p is the index of the time slot. At the end of each time 
slot a measurement vector yp is acquired by concatenating the �M measurements taken in 
each time slot where �M = Mp −Mp−1 and M1 < M2 < · · · < MP . This can be modeled 
mathematically as the following:

and spectrum recovery X̂p is done in each time slot after signal recovery using weighted 
BPDN as the following:

where Xp is the Fourier transform of xp , then spectrum sensing decision is obtained by 
comparing the PSD level of each channel to a certain threshold ρ as the following:

(18)yp = ��1x1 +��2x2 + · · · +��pxp

(19)min
xp

∥

∥yp −��pxp
∥

∥

2

2
+ �

∥

∥xp
∥

∥

w1
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The weights vector w in Eq. (19) is assumed to equal ones at the beginning of the execu-
tion of the algorithm which is equivalent to using the traditional non-weighted BPDN 
algorithm. That is because we cannot incorporate the weights in the recovery algorithm 
until we reach some confidence level of the estimated weights. This issue will be dis-
cussed at the end of this section.

Algorithm 1 Weighted Sequential Compressive Spectrum Sensing With Coherence as Stopping Condition

After that the coherence between each two consecutive spectrum decisions which 
are obtained using different number of measurements is calculated. If the coherence 
reaches 1, measurement acquisition stops and a final spectral recovery is declared. If not, 

(20)D̂p = |X̂P | > ρ
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measurements acquisition continues until a satisfactory spectral recovery is achieved. 
The coherence between consecutive spectral decisions is calculated as

where < · > denotes dot product. As the recovery algorithm is the main contributor to 
the computational complexity in CSS, Table 2 shows the computational complexity of 
the CS recovery algorithms used in our proposed approach compared to the work done 
in related work. Our approach proposes to reduce and adapt the acquired compressive 
measurements but at the cost of having a higher computational complexity compared 
to the other approaches. The advances made in the manufacturing of microprocessors 
with more computational power and even less power consumption can allow us to use 
higher computational complexity algorithms to guarantee the best accuracy for spec-
trum recovery.

Now comes the question of when to incorporate the weights. Since the weights are 
based on the estimated duty cycles and duty cycles represent the average occupancy 
level of the channels, we need to wait until we have an accurate estimation. If duty cycles 
are incorporated as weights; while, the estimation error is high or not saturated, this will 
lead to faulty spectrum sensing decisions at the output of the recovery algorithm. To 
measure the accuracy of the estimated duty cycles we used the Root Mean Square Error 
(RMSE) and showed that when enough measurements are considered in the CS recov-
ery, we can estimate the duty cycles accurately and that the estimation error saturates 
in [22]. However, in practical implementation, we cannot measure the RMSE to know 
when we can incorporate the weights in CS recovery as we do not know the real values 
of duty cycles. So we proposed to use the ℓ2-norm distance between each of two con-
secutive estimated weights vectors denoted as wd to know when the estimated weights 
have converged and we have confident weights. This is valid if the spectral recovery is at 
a desired level of accuracy, so no estimation errors are to be assumed due to excessive 
miss-detection or false alarm which is what we assume in this paper.

The weights distance wd is shown against time instances in Fig. 4, and is calculated as:

where J is the time instance index.
It can be seen in Fig. 4, that both RMSE of duty cycle estimation and wd decrease with 

time as more activity periods are reconstructed resulting in a more accurate estima-
tion of the periods’ expected values. So we can incorporate the weights in the recovery 

(21)Cohp =
< D̂p, D̂p−1 >

∥

∥

∥
D̂p

∥

∥

∥

2

∥

∥

∥
D̂p−1

∥

∥

∥

2

(22)wd(J ) =
∥

∥wJ − wJ−1

∥

∥

2

Table 2 Comparison of computational complexity

Approach Recovery algorithm Complexity

Malioutov et al [25] OMP O(LMN)

Wang et al [26] BP O(N3)

Zhang et al [28] AR-IRLS O(NM2)

The proposed approach BPDN O(N3)
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algorithm when the weights distance is below a certain threshold wdthr . A flowchart of 
the proposed approach is shown in Fig. 5.

6  Results and discussion
In this section, we discuss the benefits of using our proposed weighted sequential com-
pressive spectrum sensing approach on the measurements and the sensing time. In our 
simulation we considered an SU observing a wideband frequency spectrum of N equals 
128 non-overlapping channels. The channels were divided into 7 groups, where each 
channel had a duty cycle �n where �n ∈ {0.01, 0.05, 0.1, 0.3, 0.5, 0.7, 0.9} . The number of 
channels per group was selected to give an overall average duty cycle �̄ = 0.1 to repre-
sent a sparse spectrum.

In order to model the behavior of a PU in each channel, idle and busy periods were 
randomly drawn from the GP distribution, and the parameters were chosen as in Table 3 
to reproduce the channels’ duty cycles by using Eqs. (7) and (9). The parameters were 
chosen to provide a PU behavior compared to what was done in [19], and to simulate a 
PU behavior similar to a real spectrum scenario with the parameters found in [7]. The 
received signal at the SU was assumed to have an SNR of 30 dB. The SU sensed the spec-
trum every Ts seconds to obtain the spectrum decision D̂ , where Ts must be less than or 
equal to the minimum activity period to achieve an accurate estimation as shown in [22]. 
Here the minimum period which is equal to the location parameter µi is 0.5 s, so Ts is 
also set to equal 0.5 s.

The binary spectrum decisions were then used to estimate the lengths of idle and busy 
periods of the PU in each channel. After that, the duty cycle was estimated to calcu-
late the weights. In Algorithm 1, the total permitted number of measurements MP was 
calculated as 1.7× Lmax log(N/Lmax + 1) [24] to equal 75 for recovering the signal at 

Fig. 4 RMSE of duty cycle estimation v.s. the weights distance wd
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Lmax plus the additional �M of 5 measurements for validation. The sensing time was 
divided into P = 16 time slots; while, �M = MP/P was to equal 5. You can freely choose 
the value of �M , but choosing a very low value can result in taking more time slots to 

Fig. 5 A flowchart illustrating the steps of the proposed approach

Table 3 GP parameters used in the simulation

Duty cycle ( �) µ1 �1 α1 µ0 �0 α0

0.01 0.5 0.019 0.0065 0.5 45.22 0.0148

0.05 0.5 0.047 0.0071 0.5 9.78 0.0142

0.1 0.5 0.14 0.0092 0.5 5.25 0.0137

0.3 0.5 0.35 0.0094 0.5 1.55 0.0134

0.5 0.5 0.5 0.01 0.5 0.5 0.01

0.7 0.5 1.28 0.011 0.5 0.22 0.0099

0.9 0.5 5.45 0.013 0.5 0.095 0.0095
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achieve the appropriate number of measurements to recover the spectrum which means 
high computational processing due to the excessive spectrum recoveries, and choosing 
a larger value can result in faster time to decision (less time slots) but leads to use extra 
unwanted measurements. The weights distance threshold wdthr was set to 0.001 to ensure 
we have accurate weights.

Firstly, we investigate the effect of using the weighted sequential approach introduced 
in Algorithm 1 on the needed number of measurements to reconstruct the spectrum in 
two conditions. The first is when no weights are incorporated which we will call ‘Non-
weighted Sequential BPDN’, and the second is after incorporation of the weights which 
we will call ‘Weighted Sequential BPDN’. Figure  6 shows that by using the proposed 
approach we can adapt the number of measurements needed to recover the spectrum 
with the actual number of active PUs (sparsity order) compared to the traditional tech-
nique which requires a fixed number of measurements for any sparsity order. We can see 
that when the weights are incorporated the proposed sequential approach significantly 
saves the CR from taking unnecessary additional measurements. As the measurements 
are an integer multiple of the time slots, similar results for the average time slots are to 
be expected.

Secondly, in Fig. 7 we show the saving in the measurements and the sensing time using 
the proposed weighted sequential approach over the traditional BPDN approach. The 
saving percentage is calculated as Saving =

Mtr−Mpr

Mtr
× 100 =

Timeslotstr−Timeslotspr
Timeslotstr

× 100 , 
where Mtr , and Mpr are the average number of measurements for each sparsity order 
in traditional BPDN and the proposed weighted sequential BPDN, respectively, and 
Timeslotstr , and Timeslotspr are the average number of time slots for each sparsity order 
for BPDN and the proposed weighted sequential BPDN, respectively. Note that Mtr is 

Fig. 6 Average number of compressed measurements against the number of active channels, at �M = 5
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always 75 measurements for all sparsity orders, and Timeslotstr is always 16 for all spar-
sity orders. It is obvious that the proposed weighted sequential BPDN reduces both the 
measurements and sensing time requirements for spectrum sensing which saves the CR 
resources. The difference between the two saving curves is due to the fact that tradi-
tional BPDN takes 75 measurements in 16 time slots; while, our system is designed to 
take up to 80 measurements in 16 time slots as an extra time slot is always needed to 
validate spectrum recovery before ceasing measurements acquisition.

Finally, we evaluate the performance of the proposed weighted sequential BPDN and 
traditional BPDN. We are interested in the ability to detect the presence of the PU, so in 
Fig. 8 we show the ROC curve for the two approaches averaged over 1000 time instances, 
where Pd is the probability of detection, and Pf  is the probability of false alarm. We can 
see that both approaches have a very close performance in the case of �M = 5 . Our 
approach can achieve a slightly better performance than the traditional approach at 
Pf  of 0.1 with a Pd of approximately 100% which is compatible with spectrum sensing 
standards. It is commonly desired in spectrum sensing to have a probability of detection 
above or equal to 0.9 with a false alarm probability not exceeding 0.1 such as in the IEEE 
802.22 [38].

Using our proposed weighted sequential approach can significantly reduce both the 
number of measurements and the sensing time needed for spectrum recovery, by adapt-
ing to the actual number of active channels in the sensed spectrum, while achieving a 
similar detection performance compared to the traditional approach. This enables sens-
ing the spectrum efficiently and reduces the consumption of the CR resources especially 
the power consumed in sampling the spectrum repeatedly, and the memory required 
to store and process the acquired measurements. Also, the time required for the CR to 

Fig. 7 Saving in the measurements and the sensing time achieved using weighted sequential BPDN over 
traditional BPDN
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sense the spectrum is reduced which enables faster detection of spectrum holes. For 
future work, we would consider using DL techniques to predict PU behavior. This would 
adapt the measurements directly to the spectrum utilization levels and significantly 
reduce the number of iterations in our approach.

7  Conclusions
We proposed a weighted sequential compressive spectrum sensing algorithm in this 
paper. Our algorithm recovers the spectrum by adapting compressed measurements 
to dynamic changes in the number of active channels of the underutilized wideband 
spectrum. Furthermore, it can reduce the amount of time required for spectrum sens-
ing, resulting in faster spectrum decisions and more time available for secondary user 
transmission. It also incorporates its estimated knowledge of the primary user’s presence 
to help further reduce measurements and sensing time. It can reduce CR resource con-
sumption, such as the power consumed by the hardware to sample the wideband spec-
trum, which is critical for low-cost and battery-powered devices, as well as the memory 
requirement to store and process the measurements. It also reduces the required sens-
ing time required to obtain a spectrum sensing decision resulting in faster utilization 
of spectrum holes. In noisy measurements, we demonstrated that our proposed algo-
rithm could maintain the same ROC performance as traditional compressive sensing 
techniques.
Abbreviations
IoT  Internet of things
M2M  Machine-to-machine
CR  Cognitive radio
PU  Primary user
SU  Secondary user

Fig. 8 ROC comparison of the traditional BPDN and the proposed weighted sequential BPDN, at SNR = 5 dB
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ADC  Analog-to-digital converter
CS  Compressive sensing
CSS  Compressive spectrum sensing
AIC  Analog-to-information converter
PSD  Power spectral density
DL  Deep learning
CNN  Convolutional neural network
DNN  Deep neural network
SNR  Signal-to-noise ratio
MLE  Maximum likelihood estimation
MMoM  Modified method of moments
GP  Generalized pareto
OMP  Orthogonal matching pursuit
ROC  Receiver operating characteristic
AWGN  Additive white gaussian noise
DFT  Discrete Fourier transform
RIP  Restricted isometry property
NP  Non-deterministic polynomial
MP  Matching pursuit
CoSaMP  Compressive sampling matching pursuit
BP  Basis pursuit
BPDN  Basis pursuit denoising
CTSMC  Continuous-time semi-Markov Chain
CDF  Cumulative distribution function
DC  Duty cycle
RMSE  Root mean square error
AR-IRLS  Adaptively regularized iterative reweighted least square

Notations
N  Number of channels in the spectrum of interest
L  Number of active PUs
si(t)  The signal transmitted by a PU
x(t)  The signal received by the SU
X  The frequency spectrum of the signal received at the SU
S  The frequency spectrum of the signal transmitted by the PUs
M  Number of compressive measurements
y  Measurement vector
�  Measurement matrix
F−1  Inverse discrete Fourier transform matrix
�  Duty cycle of a channel
�̄  Average duty cycle of the whole wideband spectrum (spectrum utilization)
T  Time period length
µ  GP distribution location parameter
�  GP distribution scale parameter
α  GP distribution shape parameter
Tbusy  Busy activity period (Channel being used by a PU)
Tidle  Idle activity period (Channel being vacant)
D̂  The wideband spectrum decision vector
D̂n  The nth channel spectrum sensing decision
ρ  Decision threshold
S0  A channel in idle state (as decided by spectrum sensing)
S1  A channel in busy state (as decided by spectrum sensing)
K  Integer number of consecutive channel’s sensing decisions of the same type (idle or busy)
T0  Time period of a channel in idle state
T1  Time period of a channel in busy state
Ts  Sensing period
xT   The support of a sparse signal x (a vector containing the non-zero elements of the spares signal
w  Weights vector
P  Number of time slots
�M  Number of compressive measurements taken in one time slot
e  Spectrum recovery error
X̂p  The spectrum recovered in the pth time slot
Cohp  The coherence between consecutive spectrum decisions calculated in the pth time slot
wd  The Euclidean distance between two consecutive weights vectors
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