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Abstract 

Unmanned Aerial Vehicle (UAV) swarms have emerged as a promising technology 
for various applications, such as delivery, surveillance, and infrastructure inspection. 
An additional feature of deploying large UAV swarms is their use in mobile offloading 
networking. At the same time, this implies a key challenge in the efficient management 
of the computational and networking requirements for these offloading processes. 
This paper aims to fill this gap through a systematic literature review (SLR) analys-
ing the research on distributed task offloading in UAV swarms. We conducted a sys-
tematic search of major scientific databases to identify relevant literature published 
between 2019 and 2023. A total of 63 papers were selected through a multistage 
screening process and their key contributions. This SLR aims to provide the current 
state of research on UAV swarm task offloading, including considerations for computa-
tion offloading, the role of UAV swarms, different aspects of UAV swarms, the number 
of UAVs in swarms impacting performance, and open issues. Our review also highlights 
UAV swarm offloading in various domains and discusses the challenges and limitations 
that must be addressed to ensure the widespread adoption of this technology. We 
outline the future research directions and potential applications of UAV swarm offload-
ing, including its integration with other technologies.

Keywords:  Internet of drones (IoD), UAV swarm, Computation offloading, Mobile edge 
computing (MEC), Systematic literature review (SLR)

1  Introduction
Unmanned Aerial Vehicles (UAVs), commonly known as drones, have emerged as trans-
formative technologies with a wide range of applications, including surveillance, deliv-
ery, and disaster response [1] [2]. The increasing capabilities and affordability of UAVs 
have led to a growing interest in using UAV swarms for various tasks. A UAV swarm is 
well suited for monitoring large areas or facilities via cameras and sensors, as the coor-
dinated group of drones can be rapidly deployed to observe wide regions from different 
angles and vantage points. UAVs can split tasks such as image capture, audio recording, 
chemical detection, or other sensor measurements across a swarm in a distributed man-
ner based on proximity to events or locations of interest [3].

Mobile edge computing (MEC) servers are deployed in various locations, such as cel-
lular base stations, aggregation points, customer premises, wireless Access Points (Aps), 
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or even UAVs. These servers play a crucial role in processing, analysing, and storing 
latency-sensitive or location-aware data [4]. By being located close to the source of data 
generation, MEC servers offer several benefits, such as lower latency, availability even 
during cloud or internet outages, and an improved user experience. This is particularly 
advantageous for applications involving Augmented Reality (AR), Virtual Reality (VR), 
the Internet of Things (IoT), and video analytics [5].

A UAV swarm refers to a group of UAVs that operate collaboratively and autono-
mously without direct human control in a coordinated manner to achieve a common 
goal [6]. These swarms can consist of a few drones to thousands of drones, and they 
operate with limited human control or intervention. UAV swarm architectures can be 
categorized as mesh-based, star-based, cluster-based or hybrid architectures [7]. A mesh 
architecture enables fully decentralized control as each UAV operates as a node in an ad 
hoc wireless mesh network, distributing information across the swarm through multi-
hop routing [8]. In a star architecture, UAVs connect directly to a central control node 
through long-range communication, allowing centralized coordination but introducing 
a single point of failure. Cluster-based architectures involve UAVs self-organizing into 
local clusters led by a cluster head for intra-cluster tasks, while also utilizing the benefits 
of a global mesh network for inter-cluster communication. Hybrid architectures seam-
lessly combine elements from two or more models, such as a central server that coordi-
nates multiple swarms and employs a mesh formation, providing flexibility to optimize 
architectures for different mission requirements [9].

With advancements in battery, processor, and wireless technologies, UAVs are being 
increasingly deployed for various applications across several domains. However, the 
resource constraints of UAV platforms pose significant challenges for the onboard 
execution of computationally intensive and latency-critical tasks. Offloading partial or 
complete workloads from resource-constrained IoTs or drones to powerful edge/cloud 
servers is a promising solution [10]. However, optimizing the offloading process in UAV 
environments involves addressing the unique challenges arising from intermittent con-
nectivity, high mobility, and security vulnerabilities [11]. Several techniques have been 
proposed that focus on minimizing the execution latency and cost of developing UAVs 
such as MEC [12] while maximizing energy efficiency and accounting for factors such 
as varying wireless channels, dynamic trajectories (by using differential evolution and 
Reinforcement Learning) [13], and location privacy (by developed algorithms) [14]. Off-
loading tasks to UAVs can reduce energy consumption and extend the battery life of the 
devices. UAVs can also provide high-performance computing capabilities, enabling the 
execution of complex tasks that may not be feasible on resource-constrained devices 
(through the developed grouping and role division algorithms) [15].

UAV swarm offloading involves the use of multiple UAVs to collaboratively offload 
data from a congested terrestrial network or to perform computation-intensive tasks. 
This approach can significantly improve the efficiency and reliability of wireless commu-
nication and computational systems [16]. One of the key benefits of UAV swarm offload-
ing is that it can alleviate network congestion. In areas with a high demand for data, such 
as densely populated urban centres or large-scale events, networks can become over-
loaded, leading to slow data transfer speeds and decreased connections. It is possible 
to distribute the load more evenly and improve the overall network performance [17]. 
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Another advantage of UAV swarm offloading is that it enables more efficient computa-
tions. Many modern applications require a significant amount of computational power, 
which is difficult to provide in resource-constrained environments. By offloading these 
computationally intensive tasks to a swarm of UAVs, it is possible to distribute the work-
load and take advantage of the collective processing power of the UAVs. This can lead to 
faster and more accurate results, as well as reduced energy consumption [18]. However, 
the implementation of UAV swarm offloading poses several challenges. One of the main 
challenges is ensuring reliable and secure communication between UAVs and ground 
networks. This requires the development of advanced communication protocols and 
algorithms to handle the dynamic nature of UAV networks. Additionally, it is important 
to consider the energy limitations of UAVs and design efficient algorithms and strategies 
for offloading data and computational tasks. Finally, regulatory and safety considerations 
must be considered when deploying UAV swarms for offloading purposes [19].

Overall, UAV swarm offloading has the potential to significantly improve the perfor-
mance and efficiency of wireless communication and computational systems. By lever-
aging the collective power of multiple UAVs, it is possible to offload data from congested 
networks and perform computationally intensive tasks efficiently. However, it is impor-
tant to carefully consider the associated challenges and trade-offs with this approach to 
ensure reliable and secure operations.

Figure 1 shows a swarm of UAVs distributed over a 2D area. It provides a visualiza-
tion of the applications of UAV swarms and how the UAV-MEC system integrates with 
terrestrial MEC systems. Specifically, this study illustrates that UAV swarms can be 
employed for various applications and shows the connectivity between UAV-MEC plat-
forms provided by swarms and traditional fixed terrestrial MEC infrastructures. Smaller 
drones hovering lower are depicted as internet of drones (IoDs), whereas larger drones 
hovering higher up represent the UAV swarm as MEC. IoD drones collect data, such 
as images and signals, via their onboard sensors. They offload some computations to a 
nearby terrestrial MEC or UAV swarm owing to resource constraints. An MEC swarm 
of UAVs has more powerful onboard processors, storage, and longer-range radios. They 
perform intensive tasks offloaded from IoDs and terminal devices, such as image analysis 

Fig. 1  UAV swarm offloading applications
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and data fusion [20]. The thin, solid lines show the wireless connectivity between the IoD 
and MEC drones. Although research on task offloading from single UAVs or static ter-
restrial MEC networks is well established, the area of offloading from cooperative UAV 
swarms is still emerging. To help identify the state of current knowledge and potential 
future directions in this domain, this paper presents a systematic literature review (SLR) 
of research related to task offloading into UAV swarm networks. SLR is a type of research 
paper that synthesizes and analyses the existing research on a particular topic. They are 
often used to provide a systematic overview of the current state of knowledge on a par-
ticular subject and to identify gaps in existing research that need to be addressed. In the 
case of task offloading in a UAV swarm, an SLR involves a thorough search of the avail-
able literature on the topic, including peer-reviewed articles and conference papers. The 
review then analyses and synthesizes the findings of these studies, identifying patterns, 
themes, and trends in the research [21].

Coordinating offloading across swarms of collaborating UAVs presents unique chal-
lenges owing to intermittent connectivity, resource constraints, and dynamic environ-
mental factors. While prior work has explored various techniques, a systematic review 
of the state-of-the-art methods is lacking. The contributions of our SLR are in answering 
the following research questions:

1.	 What are the relevant considerations for task offloading decisions in UAV swarms? 
(Sect. 4.1)

2.	 What are the different UAV swarm roles in task offloading proposed in the literature, 
and how are they distributed per year? (Sect. 4.2)

3.	 What factors are common in task offloading decisions in UAV swarm networks such 
as MEC network, but are different from those in single UAV-MEC or terrestrial MEC 
networks? (Sect. 4.3)

4.	 How does the number of UAVs in a swarm affect the performance of tasks offloading 
to a UAV swarm? (Sect. 4.4)

5.	 What are the key open issues and challenges in task offloading for UAV swarms basis 
of the current literature? (Sect. 4.5)

2 � Related works
This section summarizes and synthesizes the key related work from available surveys 
that have considered UAV swarms in recent years. Computational offloading from 
terminal devices to an edge/cloud infrastructure has been widely studied to optimize 
resource utilization and user experience. With the emergence of UAV swarm-assisted 
MEC, offloading paradigms require reexamination under new constraints. Surveys [20–
27] have conducted SLR in UAV swarms, whereas [28–30] are comprehensive surveys.

The authors of [22] presented a systematic review of the drone-scheduling problem, 
which is an essential component of UAV swarm management. The authors discussed 
various approaches to drone scheduling, including optimization techniques, heuristics, 
and machine learning methods. They also highlighted the challenges and open research 
directions in this area. The work [23] provided a systematic review of the use of UAVs 
for urban traffic monitoring and analysis. The authors discussed various aspects of UAV-
based traffic monitoring, including data acquisition, processing, and analysis. They also 
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highlighted the challenges and limitations of UAV-based traffic monitoring and iden-
tified future research directions. The authors of [24] presented a systematic review of 
the use of micro-UAV swarms for industrial applications in indoor environments. The 
authors discussed various aspects of micro-UAV swarming, including swarm intelli-
gence, communication protocols, and application scenarios. They also highlighted the 
challenges and open research directions in this area. In [25], the authors presented a sys-
tematic review of the optimized routing of UAVs via bioinspired algorithms in flying ad 
hoc networks (FANETs). The authors explored the application of bioinspired algorithms, 
such as genetic algorithms, ant colony optimization, and particle swarm optimization, 
for efficient UAV routing in FANETs. This review discussed the advantages, challenges, 
and potential research directions of this area. The paper [26] presented a systematic 
literature review on the topic of the UAV-based internet of vehicles (IoV). The authors 
analysed existing research on the integration of UAVs and the IoV, including communi-
cation protocols, data fusion techniques, and applications. The review highlighted the 
potential benefits, challenges, and future directions of UAV-based IoV. In [27], a SLR 
was conducted on the topic of autonomous UAV path planning. The authors reviewed 
and analysed state-of-the-art techniques and algorithms used for autonomous path 
planning, including methods based on Artificial Intelligence (AI) and optimization algo-
rithms. The review provided insights into advancements, challenges, and future research 
directions in this area. The authors [28] explored state-of-the-art techniques, challenges, 
and perspectives in the field of FANETs, which are networks of UAVs that communicate 
with each other and ground stations. The authors discussed various aspects of FANETs, 
including the network architecture, communication protocols, and application scenar-
ios. They also highlighted the challenges and open research directions in this area.

The authors of [29] focused on a comparative analysis of different UAV swarm control 
methods for unmanned farms. The authors evaluated and compared the various control 
methods used to coordinate and manage UAV swarms in agricultural applications. The 
study provided insights into the advantages, limitations, and potential applications of 
different control methods for UAV swarms in farming. Reference [30] presented a survey 
on the topic of autonomous multi-UAV wireless networks. The authors focused on Rein-
forcement Learning (RL)-based approaches for achieving autonomy in UAV networks. 
The survey explored various RL techniques and their applications in UAV network opti-
mization, resource allocation, and cooperation. The paper provided a comprehensive 
overview of the current state-of-the-art, challenges, and future directions in this field.

Two comprehensive surveys related to UAV computation offloading were conducted. 
The first [31] viewed UAVs as IoT devices or mobile edge nodes, but discussed only 
some technical challenges without focusing on swarms. It also examines the applications 
and use of AI in edge computing. The second survey [32] considered only UAV swarms 
used as MEC. The authors focused on implementation considerations for swarms, as 
well as promising technologies for multi-UAV coordination and resource management. 
However, our SLR differs in that it covers the various roles that UAV swarms can play in 
computational offloading systems. It also examines common concerns for UAV swarm 
deployment and highlights differences compared with offloading via ground edge nodes 
or single UAVs. In addition, our survey analyses how the number of UAVs affects the 
offloading process. Finally, while some general surveys exist on UAV swarms and MEC 
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separately or only focus on comprehensive state-of-the-art methods, there has not been 
a rigorous systematic review specifically focused on computation offloading techniques 
in the context of UAV swarm networks. To the best of our knowledge, this is the first 
SLR to analyse an extensive research landscape on a UAV swarm for computational off-
loading. Table 1 presents a comparison of the survey results of the UAV swarm.

3 � Methodology
In this study, our focus is specifically on investigating UAV swarm offloading and its 
associated issues. It is important to note that we narrowed our scope to only consider 
issues directly related to task offloading into UAV swarms. The initial search process 
aimed to identified as many relevant studies as possible. Four popular digital librar-
ies/databases were searched, namely IEEE Xplore, Springer, MDPI, and ScienceDirect. 
These databases were selected because they index high-quality publications in the fields 
of computer science, engineering, and technology, which aligns with the topic of this 
review.

This resulted in an initial pool of 167 articles from four databases (IEEE Explore, 
MDPI, ScienceDirect, and Springer) from 2019 to 2023. After filtering based on coop-
erative UAV swarms of 3 or more drones, a final set of 63 primary studies was identi-
fied for full analysis as part of the SLR. The PRISMA diagram [33] in Fig. 2, detailing 
the selection process, clearly depicts the methodology. Citation searching and UCL 
LIBRARY SERVICES of the included papers were also performed to identify any further 
relevant studies. We found 13 articles that were added to 50 articles from four databases 
to complete 63 articles.

The Sankey diagram in Fig. 3 was used to visualize the distribution of the 63 included 
articles across journals, publishers, and years of publication. The journal box in the 
leftmost flow shows that most of the articles were published in IEEE. The next largest 
sources were journals from the MDPI. Moving to the right, the publisher box illustrates 
most of the included publishers. Finally, the year box on the far right of the diagram 
maps the number of articles published each year from 2019 to 2023. The majority were 
published in 2023, demonstrating that this field is still emerging with much work occur-
ring recently.

4 � Systematic literature review answers
4.1 � Common considerations for task offloading decisions in UAV swarm

This section reports the answer to RQ1 (What are the relevant considerations for task 
offloading decisions in UAV swarms?). This question highlights the key considerations 
commonly taken into account when making task offloading decisions across a UAV 
swarm. Understanding these typical evaluation criteria provides a foundation for then 
examining how swarms implement task allocation in practical applications. Identify-
ing shared dimensions routinely analysed, such as available resources, latency, energy 
usage, etc., establishes a standardized framework to facilitate assessing the strengths and 
weaknesses of different approaches. Several factors are commonly considered for task 
offloading decisions in UAV swarm networks:
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Fig. 2  PRISMA research study databases and inclusion/exclusion factors for article selection

Fig. 3  Sankey diagram showing journals versus publishers vs. year
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4.1.1 � Task characteristics

Task Priority: The prioritization of different tasks could depend on the dynamic field 
conditions and policies set for that deployment. While some tasks generally have 
more immediate importance, what qualifies as a high priority could change depending 
on real-time events. Additionally, offloading too many tasks at once to edge servers 
risks overburdening limited resources and delaying responses instead of improving 
them [21]. The equation that can be used for model latency-based priority for task 
offloading to UAV-MEC systems is as follows:

where TDeadline is the task deadline, and TCurrent is the current time. Tasks closer to their 
deadline have higher priority [21].

Task Size: Larger tasks may require offloading to MEC servers due to limited 
onboard resources on UAVs. Computationally intensive tasks such as high-resolution 
video analysis consume significant amounts of memory and CPU resources from 
resource-constrained UAVs [34]. Tasks that exceed available onboard storage/com-
putation limits will need to offload portions to MEC servers with higher capabilities 
[35].

Task Latency Requirements: Latency-sensitive UAV swarm or terminal device 
tasks may need to be offloaded to MEC servers or another UAV in the swarm to 
meet strict deadlines [36]. Real-time tasks supporting functions such as tracking, and 
surveillance cannot accommodate slower onboard processing alone. Latency-sensi-
tive applications requiring low single-digit millisecond responses are better served 
through UAV swarm offloading for accelerated execution [37].

The total delay depends on the longest delay because of parallel processing of several 
subtasks among multiple UAV-MEC or ground MEC, which is evaluated as follows [38].:

where I is the total number of UAVs in a swarm. For UAV to UAV (U2U) partial offload-
ing between nearby UAVs in a swarm, the transmission latency can often be ignored for 
a few reasons: the distances between nearby UAVs tend to be very short on the order of 
meters. This results in very low propagation delays. High communication rates are typi-
cally possible between nearby devices, due to technologies such as  WiFi Direct,  Blue-
tooth,  and 5G U2U. This means that data can be transmitted very quickly between 
devices. The transmissions between nearby devices often occur over line-of-sight, free-
space channels with few reflections/scatterings. Since devices process data in parallel, 
the transmission delays between them are often negligible [39].

Data Requirements: UAV swarm tasks that require access to large datasets or 
cloud-based services may be offloaded to MEC servers [40]. Tasks that rely on 
access to back-end databases, cloud services, or large neural network models stored 
remotely will need MEC connectivity. UAVs often have limited storage capacity, so 
tasks in which large datasets are fetched large datasets from network locations favour 
offloading versus local caching/analysing [41].

(1)Priority =
1

TDeadline − TCurrent

(2)Ttotal = TMEC + Tproccloca + max
0≤i≤I

{ToffloadUi2Ui+1}
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4.1.2 � UAV Characteristics

Computational Capabilities: UAVs with limited computational resources may need 
to offload tasks to MEC servers for processing [42].

Battery Life: UAVs with low battery levels may need to offload tasks to MEC serv-
ers to conserve energy. By offloading tasks, UAVs can reduce their computational 
workload and minimize battery usage [43, 44].

Communication Capabilities: A swarm of UAVs with limited communication 
bandwidth or unreliable links may need to offload tasks to MEC servers to improve 
communication efficiency. However, UAVs may face challenges such as limited com-
munication bandwidth or unreliable links due to interference or signal attenuation 
[45]. In such cases, offloading tasks to MEC servers can improve communication effi-
ciency by leveraging the servers’ higher bandwidth and more stable connections [46].

UAV Mobility: UAVs in a swarm are mobile nodes, and their movement patterns 
can impact offloading decisions. Their movement patterns and trajectories can impact 
offloading decisions. For example, UAVs moving at high speeds may experience more 
frequent handovers with MEC servers, which can introduce additional latency and 
overhead [47]. Offloading decisions need to consider the mobility patterns and trajec-
tories of UAVs to leverage the proximity of UAVs to task locations [48].

Several mobility models can be used to approximate the movement of nodes in a 
swarm network. These models include the Gauss-Markov mobility model, Semi Ran-
dom Circular mobility model, Random Waypoint mobility model, Particle Swarm 
mobility model, and Paparazzi mobility model. Each of these models has its own 
advantages, disadvantages, and unique identifying characteristics [49].

The UAV will only move toward its next target when its neighbouring UAVs have 
reached their own targets. As the number of UAVs in the swarm increases, the prob-
ability of having to wait for other UAVs also increases. This waiting time contributes 
to a nonlinear increase in speed, which is defined as follows:

The duration decreases as the number of UAVs in the swarm increases. This means 
that even though the speed-up is not linear, there is still an improvement in efficiency 
when more UAVs are added to the swarm [50].

A 3-D Cartesian coordinate system is considered, in which each terminal device 
n ∈ N is in the ground, and its horizon coordinate is given by wn � (xi, yi) . The hori-
zontal coordinate of UAVi ∈ I at slot t is denoted as follows:

In slot t, each UAV flies to a new position [51] as follows:

At a speed of vi[t] ∈ [0, vmax
i ] and an angle of θi[t] ∈ [0,2π ] . At each slot, the 

UAV flies for �fly seconds and then hovers for the remaining seconds to pro-
vide sensing or MEC services to terminal devices [52]. Furthermore, each UAV 

(3)SpeedUp(IUAVs) =
Duration(1UAV)

Duration (iUAVs)

(4)qi[t] = (xi[t], yi[t])

(5)
(

qi[t + 1] =
(

xi[t]+�flyvi[t]cosθi[t], yi[t]+�flyvi[t]sinθi[t]
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must maintain a certain distance from other UAVs to avoid collisions. Therefore, 
for∀i, j ∈ I , i �= j, ∀t ∈ T  , we have:

where dUUi,j  is the distance between two different UAVs in the swarm, and dsafe represents 
the minimum distance that each UAV must maintain to ensure safe flying [53].

Collaboration and Cooperation: UAVs can collaborate and cooperate to share 
tasks and resources. This can involve offloading tasks to neighbouring UAVs with more 
resources or better connectivity, or coordinating task execution among multiple UAVs 
[54]. This integration requires the development of interoperability mechanisms and pro-
tocols to enable seamless task offloading between UAVs and between swarm and MEC 
servers in heterogeneous networks [55].

Integration with Existing Networks: UAV swarm networks may need to integrate 
with existing cellular networks or other wireless technologies. Ensuring compatibility 
and efficient communication between UAVs and MEC servers is crucial for successful 
offloading [56].

Coordination and Communication: In a swarm of UAVs, coordination and com-
munication among UAVs are crucial for effective task offloading. UAVs need to share 
information about their tasks, capabilities, and resource availability to make informed 
offloading decisions [57]. This requires reliable and efficient communication links 
between UAVs, which can be challenging in dynamic and congested environments [58].

Distributed Decision-Making: In a swarm of UAVs, task offloading decisions are 
often made in a distributed manner, without relying on a central authority [44]. This 
requires decentralized algorithms and mechanisms that enable UAVs to collaborate and 
reach consensus on offloading decisions. Distributed decision-making can be more scal-
able and robust, but it also introduces additional challenges in terms of coordination and 
achieving optimal solutions [59].

Heterogeneity: UAV swarms may consist of heterogeneous UAVs with different capa-
bilities, resources, and roles [60]. This heterogeneity needs to be considered when mak-
ing offloading decisions. For example, UAVs with more powerful processors or better 
communication links may be better suited for offloading certain tasks [61].

Dynamic Network Topology: In a swarm of UAVs, the network topology is dynamic 
and constantly changing as the UAVs move and join or leave the swarm [62]. This 
dynamic topology can impact the performance of offloading and requires adaptive and 
flexible offloading strategies that can handle changes in network conditions and resource 
availability [63].

4.1.3 � MEC Server characteristics

Servers play a crucial role in enabling task offloading for swarm of UAVs in urban envi-
ronments. These servers have specific characteristics that determine their effectiveness 
in handling offloaded tasks. The key characteristics of MEC servers for UAV swarm task 
offloading are as follows:

Processing capacity: UAV swarm with MEC servers has greater processing capabili-
ties and can handle more offloaded tasks. This capacity is measured in terms of CPU 

(6)dUUi,j (t) =

√

� qi(t)− qj(t)�
2 ≥ dsafe
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cycles or processing power. Servers with greater processing capacity can efficiently exe-
cute complex tasks and algorithms, enabling faster and more efficient task offloading 
[64].

Storage capacity: MEC servers mounted on UAV swarm or ground station with suffi-
cient storage capacity can store large datasets and intermediate results [65]. This storage 
capacity allows for efficient data management and processing. Servers with greater stor-
age capacity can handle a greater volume of data, enabling more extensive task offload-
ing [66].

Energy efficiency: Offloading tasks to MECs can help reduce the energy consumption 
on the swarm of UAVs, but it is important to consider the energy costs associated with 
data transmission and processing on MEC servers [67]. Energy-efficient MEC servers 
can optimize their operations to minimize energy consumption while still providing effi-
cient task offloading capabilities [68].

4.1.4 � Network conditions

Network conditions play a crucial role in the performance and effectiveness of task off-
loading in UAV networks. Several factors related to network conditions can impact the 
task offloading process. The following are some key aspects to consider:

Network latency: A high network latency can impact the performance of UAV swarms 
offloaded tasks or executing tasks from terminal devices [69]. High network latency 
can significantly affect the performance of offloaded tasks. This can lead to increased 
response times and reduced overall efficiency. Minimizing network latency is essential 
for ensuring real-time and responsive task offloading [70].

Network bandwidth: Limited network bandwidth can constrain the rate of task off-
loading and data transfer. Limited network bandwidth can pose challenges in task off-
loading scenarios [71]. Insufficient bandwidth can restrict the rate at which tasks can 
be offloaded and data can be transferred. Adequate network bandwidth is necessary to 
support the timely and efficient execution of offloaded tasks [72].

Network reliability: Unreliable network connections can lead to task offloading fail-
ures and data loss. [73]. In UAV swarm networks, where devices are constantly moving 
and changing their positions, maintaining reliable network connections becomes crucial 
for successful task offloading. Robust network infrastructure and protocols are required 
to ensure reliable communication between the swarm of UAVs and ground MECs [74].

Interference levels: Interference levels in the network can impact the performance of 
task offloading to UAV swarm mounted MEC or from UAV swarm to ground MEC [75]. 
Congested areas with high levels of interference can lead to degraded network perfor-
mance and hinder the offloading process. It is important to avoid such congested areas 
when deciding on the location for task offloading. Analysing and monitoring interfer-
ence levels in real time can help optimize task offloading decisions and ensure efficient 
data transfer [76].

4.1.5 � Security and privacy

Data confidentiality: Sensitive data may need to be encrypted or protected using secure 
protocols during offloading [77]. This is important for preventing unauthorized access to 
sensitive information during transmission between the swarm of UAVs and MEC servers 
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and between UAV swarm and terminal devices, as well as during processing and storage 
on MEC Encryption and secure protocols can help protect data confidentiality and pre-
vent unauthorized disclosure [78].

Data integrity: Mechanisms may be needed to ensure the integrity of data during off-
loading and processing. This is important to ensure that data are not tampered with or 
corrupted during transmission or processing [79]. Data integrity mechanisms can detect 
and correct errors or tampering, ensuring the reliability and accuracy of the data [80].

Authentication and authorization: Appropriate mechanisms should be in place to 
authenticate and authorize swarm of UAVs, terminal devices, and MEC servers involved 
in task offloading [81]. This is important for preventing unauthorized access to MECs 
and to ensuring that only the authorized swarm of UAVs can offload tasks to MEC serv-
ers or that terminal devices can offload to the UAV swarm. Authentication and authori-
zation mechanisms can verify the identity of UAVs and MEC servers and grant or deny 
access accordingly [82]. In regard to authentication and authorization, a challenge arises 
when dealing with UAV swarm systems from different vendors. The issue is that secur-
ing links and protocols may vary, making the task of ensuring security more complex.

Network segmentation: Implementing network segmentation involves dividing 
a network into smaller, isolated segments. This enhances security by limiting access 
to sensitive data. By compartmentalizing data centre networks and employing strict 
access controls and firewalls, networks can protect critical information from unauthor-
ized access [44]. Artificial Intelligence (AI) and Machine Learning (ML) can enhance 
the identification of anomalies and potential threats, enabling proactive threat mitiga-
tion [83]. Additionally, software-defined networking (SDN) allows for dynamic network 
segmentation, making it simpler to deploy and manage isolated network segments to 
enhance security [84]. Blockchain can offer decentralized and tamper-resistant solutions 
for data centre communication networks [85].

4.1.6 � Cost and pricing

The cost of offloading tasks to MEC servers or MEC mounted in UAV swarms may be a 
factor in the offloading decision. MECs may charge a swarm of UAVs (IoDs) or terminal 
devices for offloading services, and these costs can vary depending on the MEC provider 
and the pricing model used [86, 87]. UAV swarm operators need to consider the cost of 
offloading when making offloading decisions, especially for tasks that require extensive 
processing or data transfer [88, 89]. While various pricing models have been proposed 
for computational task offloading in UAV swarm networks, the literature lacks research 
on dynamic pricing schemes specifically for UAV swarm computation offloading. Most 
works assume a single UAV provider rather than addressing the additional challenges of 
a multi-vendor UAV environment. There remains an opportunity to investigate dynamic 
pricing mechanisms that can optimize resource allocation and task distribution across 
swarms comprising UAVs from different operators [90]. This would need to account for 
the distributed and autonomous nature of the network as well as uncertainties intro-
duced by the unpredictable mobility of multiple independent UAV collectives. Conse-
quently, there is still a gap in revenue sharing when UAV swarms are not all from one 
operator or when MEC systems are from multiple vendors. This means that the current 
revenue sharing models may not adequately address the complexities and challenges 
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that arise when multiple operators or vendors are involved in the deployment and opera-
tion of UAV swarms and MEC systems. Table  2 compares common considerations of 
UAV swarm task offloading.

Table  2 compares common factors considered in the literature for UAV swarm task 
offloading. However, several limitations remain, task and network characteristics can be 
difficult to accurately predict due to dynamic conditions, UAV topology changes intro-
duce uncertainty into coordination, MEC models neglect infrastructure variability, envi-
ronmental factors are unpredictable, security increases overhead and complexity for 
decentralized systems, and cost feedback may lag for large deployments. Most research 
also focuses individually on single objective solutions [21, 44] rather than multi-objec-
tives solutions such as [71]. Self-organizing mechanisms may better handle topology 
dynamism [42]. Balancing multi-objectives under practical limitations remain challeng-
ing. Offline optimization also requires testing under real stochastic execution environ-
ments. Additionally, proposed methods typically consider homogeneous systems for 
tractability, but diversities in nodes and workloads may degrade performance. The scal-
ability of techniques for industry scale deployments with thousands of nodes is untested.

4.1.7 � Open issues related to RQ1

1.	 Resource constraints:

	 Models assume unlimited resources but constraints such as energy, and bandwidth 
impact feasibility require investigation.

2.	 Dynamic topology:
	 Unpredictable topology changes affect coordination, but approaches typically assume 

static settings.
3.	 Fault tolerance:
	 The dependency on wirelessly exposed vulnerabilities but resilience to failures is 

underexplored.
4.	 Security complexity with heterogeneity:
	 The mix of devices from multiple vendors introduces interoperability challenges for 

access controls.
5.	 Inaccurate Price with Heterogeneity:
	 Cost models do not capture variations in pricing due to diverse node capabilities.

4.2 � Role of UAV swarm for task offloading

This section reports the answer to RQ2 (What are the different UAV swarm roles in task 
offloading proposed in the literature, and how are they distributed per year?). Under-
standing the evolving roles of UAV swarms in task offloading is crucial as it reflects the 
rapid advancements in both UAV technology and edge computing. By examining these 
roles and their distribution over time, we can identify trends, challenges, and opportu-
nities in the field. This analysis provides insight not only into the current state of UAV 
swarm applications in task offloading, but also predicts future directions and potential 
breakthroughs. Moreover, this question sets the foundation for our subsequent research 
questions by establishing the context of UAV swarm capabilities and their development 
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timeline. UAV swarms can play an important role in distributed task offloading systems, 
either as IoD devices that generate computational tasks or as MEC platforms themselves 
[16]. When functioning as IoDs with resource constraints, a UAV swarm collects sensed 
data and generates tasks that need to be processed. However, when a UAV swarm col-
laboratively acts as a MEC platform through distributed computation and resource 
sharing among its members, it can provide low-latency localized processing of tasks in 
a scalable manner [91, 92]. The swarm of UAVs in hybrid role task offloading roles com-
bines aspects of IoDs and aerial mobile edges.

4.2.1 � UAV internet of drones

Swarm of UAVs, commonly known as drones, can be utilized as IoT devices with sensors 
and cameras onboard for data collection. UAVs can play a crucial role in various applica-
tions, including surveillance, monitoring, and data gathering [10]. Multiple drones form 
a swarm/cluster and connect with each other via short-range wireless protocols such 
as WiFi-Direct and Bluetooth to establish an aerial ad hoc network [93], where UAVs 
connect to a Base Station (BS) through intermediate devices known as cluster heads. In 
certain situations, multiple UAVs collaborate to serve a specific region, thereby result-
ing in a swarm of UAVs. In practical scenarios, multiple stakeholders combine to form 
a UAV swarm configuration and provide surveillance services. In [93], the authors pro-
posed a pricing Stackelberg game involving UAVs, cluster heads, and BSs by defining 
their behavioural utilities. By utilizing PSO for each entity’s utility functions, an optimal 
pricing strategy is created for each entity to maximize its profits. They coordinated their 
flight paths, shared sensor data, and performed tasks in a decentralized peer-to-peer 
manner within a drone swarm network.

After UAV i perceives the task data, it may process the tasks locally. The local execu-
tion time can be computed as

where λi indicates the computational capability of UAV i and ci,,κ denotes the number 
CPU needed to complete task κ. There is more than one UAV that will offload tasks to 
the same MEC server in the same time period. The distance between UAV i and MEC 
server m is:

where dvi,m and dhi,m, indicate the vertical and horizontal distances between the UAV 
i and MEC server m, respectively. Then the transmission time ltri,k ,m of the task data for 
UAV i can be represented as

ζi,k is the achieved data transmission rate. After the task data are transmitted to the MEC 
server m, the data processing time lexei,k ,m on the MEC server m can be represented as 
follows:

(7)t loci,k =
ci,k

�i

(8)di,m =

√

dv2i,m + dh2i,m

(9)ltri,k ,m =
di,k

ζi,k
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in which λm denotes the computational capability of MEC server m. Therefore, the total 
time consumed by UAV i during offloading is expressed as [51]:

4.2.2 � UAV aerial mobile edge computing (MEC)

The UAV swarm can move around in the network, providing computational resources 
to different locations, as needed. This mobility can be advantageous in scenarios where 
the demand for computational resources varies across different areas [94]. Drones act 
as flying access points or edge nodes that provide on-the-wing computation and net-
working to other drones in the swarm or to any terminal device. Selected drones with 
higher capabilities take on edge-computing roles to excuse tasks from others and pro-
cess data collaboratively [95]. The authors of [34] presented a network architecture that 
involves multiple Low Earth Orbit (LEO) satellites, UAVs, and IoT devices. The UAV acts 
as an intermediary device between LEO satellites and IoT devices, collecting resource 
information from the satellites and task information from the devices to offload ground 
tasks to either the UAV or LEO satellites. The optimization problem was then defined 
as a Markov decision process (MDP), and a deep deterministic policy gradient and long 
short-term memory (DDPG-LSTM)-based algorithm was developed to address the issue 
of task offloading and resource allocation. This approach aimed to improve the efficiency 
and reliability of the network by offloading tasks to the most suitable node based on the 
current resource availability and task requirements.

The UAV servers utilize OFDMA or NOMA technology to serve the TDs, which is 
utilized to avoid transmission interference between multiple TDs. Due to the flight alti-
tude of the UAVs, there is a good line-of-sight link between the UAVs and TDs. Thus, the 
channel between the UAVs and terminal devices is modelled as a line-of-sight channel 
model. When the computational tasks are offloaded to the UAV servers via the Ground-
to-Air (G2A) channel, the required transmission time can be formulated as

where Vup
i,k (t) is the uplink transmission rate, and the Dk denotes the task size of the TD.

When UAVi receives an offloading task from the TD, the computation time tcomi,k (t) 
caused by UAVi processing the task is given by

where ci and υi denote the number of CPU cycles and computational capability of UAVi, 
respectively.

Since the downlink delay is negligible in comparison with the uplink delay, it is ignored 
when calculating the total transmission latency for offloading a computational task. The 
latency of UAV-MEC consists mainly of transmission latency and computation latency

(10)lexei,k ,m =
cm,k

�m

(11)lMEC
i,k = ltri,k ,m + lexei,k ,m

(12)ttri,k(t) =
Dk

V
up
i,k (t)

(13)tcomi,k (t) =
DkCi

vi
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4.2.3 � UAV hybrid role

Drones utilize swarm networking for local onboard coordination and task sharing. 
Computation-intensive or delay-sensitive tasks are pushed to nearby aerial edge 
drone nodes. In scenarios where multiple UAVs are deployed, data can be offloaded 
from one UAV that collected data to another. This can be achieved through wireless 
communication protocols such as Wi-Fi or Bluetooth [21]. UAVs can also execute 
tasks locally, and the UAV swarm can then process and utilize the collected offloaded 
data for various applications [96]. In the context of data collection, a UAV swarm [81] 
is utilized to gather information from various sources, such as sensors or IoT devices, 
in a distributed manner. This allows for efficient and comprehensive data collection 
over a wide area. On the other hand, the UAV swarm also serves as an MEC platform, 
enabling edge computing capabilities. By leveraging distributed neural networks, 
the UAV swarm can perform fast inference tasks at the edge, reducing latency and 
improving real-time decision-making capabilities. This hybrid approach combines the 
advantages of both data collection and edge computing, enabling the UAV swarm to 
efficiently collect and process data in a distributed manner.

Figure 4 illustrates the focus on UAV swarm roles of task offloading in the period 
from 2019 to 2023, which is likely due to the potential benefits of MEC in improving 
the performance of mobile applications and services. MECs can provide low-latency 
and high-bandwidth connectivity, which is essential for many applications, such as 
augmented reality, virtual reality, and real-time video streaming. The trend toward 
UAV swarms applying a hybrid role in 2023, as shown in Fig. 4, is maximized due to 
the growing recognition of the benefits of this approach.

(14)talli (t) = ttri,k(t)+ tcomi,k (t)

Fig. 4  UAV swarm offloading role publication trends
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When the objective is to reduce latency for task offloading between small drones 
(IoDs) and large drones, the approach is to first compare the total latency of the two 
options on a per-task basis. For each task, the latency of performing the computation 
locally on the IoDs is calculated. Then, the latency of transmitting the data from the 
small drone to a large drone for remote processing is estimated. This involves assess-
ing both the transmission delay and processing time if offloading to the large drone. 
Latency-based decision-making can be described as follows:

where tc is the latency comparison. If the latency of performing the computation locally 
on the small IoD drone itself is less than the total latency of transmitting the raw data 
to a large drone and then processing it there, then the IoD drone will choose to execute 
the task locally. Conversely, if transmitting the data and processing it remotely on a large 
drone would have lower latency compared to local execution on the IoD drone, then the 
IoD drone will instead opt to offload the task [97]. Table 3 compares the roles of the UAV 
swarm in the task offloading process.

The choice of UAV swarm role for task offloading depends on the specific application 
and network requirements. For applications that require real-time data processing and 
low latency, a UAV swarm as IoD devices offloading tasks to the MEC may be more suit-
able. For applications that require low-latency, high-bandwidth communication, a UAV 
swarm in the MEC role may be more suitable. For applications that require a combi-
nation of data collection and computation, a UAV hybrid role may be the best choice. 
From Table 2 there are more references about UAV swarms as MECs for data offloading 
than UAV swarms that are working only as IoDs or working in hybrid mode, since MEC 
has been around for longer and has been widely adopted by mobile network operators 
and cloud providers. This means that there is a large body of research and development 
on MEC, including research on task offloading in UAV swarm networks. UAV swarms 
offer several advantages for MEC, including their mobility, flexibility, and ability to pro-
vide coverage in areas where traditional cellular networks are not available. This makes 
UAV swarms a good choice for deploying MEC servers in remote or underserved areas. 
However, there is growing interest in these areas, and it is likely that we will see more 
research and development on hybrid mode UAV swarms in the future.

4.2.4 � Open issue related to RQ2

1.	 Communication constraints:

	 Rapidly changing wireless links impact operations. Optimizing role selection given 
unreliable connectivity during movement requires exploration.

2.	 Fault tolerance:
	 Failure resilience is crucial, but the dependence on wireless links increases vulner-

ability. Evaluation of the adaptive approaches for maintaining service continuity 
despite faults is needed.

3.	 Scalability:

(15)tc =
(

ti,k
com + ttri,k

)

− tlocj,k
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	 Validation is needed for techniques for managing gigantic industrial scale fleets that 
perform hybrid roles with thousands of nodes operating under constraints.

4.	 Coordination constraints:
	 Harmonizing autonomous operations across mixed role combinations introduces 

complexity. Understanding decentralized coordination at immense scales is an open 
challenge.

4.3 � Differences in UAV swarm offloading from a single UAV or terrestrial MEC

This section reports the answer to RQ3 (What factors are common in task offloading 
decisions in UAV swarm networks such as MEC, but are different from those in sin-
gle UAV-MEC or terrestrial MEC?). This question examines how task offloading differs 
for UAV swarms compared to single UAVs or terrestrial MEC systems. Understanding 
the distinguishing aspects of swarms provides valuable context when analysing their 
offloading approaches. While common considerations are shared with other environ-
ments, swarms also present unique challenges due to their operational characteristics. 
Identifying these divergences explains why techniques tailored for other domains may 
not directly translate and underscores the need for solutions. The key differences in task 
offloading decisions for UAV swarms compared with other contexts such as single UAV, 
terrestrial MEC, or cloud computing are as follows:

4.3.1 � Distributed decision‑making

In a UAV swarm, offloading decisions can be made in a decentralized and coopera-
tive manner. This is because each UAV in the swarm has limited communication and 
computational resources, and the topology of the network is constantly changing due 
to the mobility of the UAVs [136]. Therefore, each UAV needs to make offloading deci-
sions based on inputs from multiple peers and local information. For example, a UAV 
may decide to offload a task to another UAV or to the edge/cloud node, which has more 
computational resources available [89]. In UAV swarms, task offloading decisions can be 
based on the proximity of UAVs to the task location. UAVs that are closer to the task can 
execute the offloaded task, reducing latency and improving response time [137]. This 
approach is different from ground MEC or cloud computing, where offloading decisions 
are typically based on factors such as network conditions, computational capabilities, 
and energy efficiency. UAV swarms operate in dynamic environments, where the task 
requirements and the availability of resources can change rapidly. The proposed Distrib-
uted Neural Network (DNN) in the [138] operation scheme utilized an Improved PSO 
(IPSO) algorithm to enable efficient offloading of distributed decision-making in UAV-
assisted MEC networks. The IPSO algorithm is employed to optimize task allocation 
and resource scheduling among UAVs and MEC servers, considering factors such as task 
priorities, UAV capabilities, network conditions, and energy consumption. By leverag-
ing the distributed nature of UAVs and the computational resources of MEC servers, 
the scheme enables collaborative decision-making and reduces the burden on individ-
ual UAVs. The approach improves the overall system performance, reduces latency, and 
enhances the reliability of decision-making in UAV-assisted MEC networks. The IPSO 
algorithm facilitates efficient offloading of distributed decision-making tasks, enabling 
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UAVs and MEC servers to work cooperatively and make optimal decisions in a distrib-
uted manner.

4.3.2 � Load balancing (UAV swarm cooperation)

In UAV swarms, multiple UAVs work together to accomplish a common goal. Therefore, 
task offloading decisions need to consider the coordination and collaboration among 
UAV-MEC servers, which is different from single UAV scenarios [139]. In UAV swarms, 
tasks can be distributed among multiple UAVs, allowing parallel processing and faster 
completion of tasks. This is in contrast to single UAV scenarios where a single UAV 
handles all the tasks. Additionally, the computational load must be distributed smartly 
among swarm members and edge resources based on their varying capabilities over time 
[140]. For example, a UAV with more computational resources may be assigned more 
complex tasks, while a UAV with less computational resources may be assigned simple 
tasks. This helps to balance the computational load and ensure that all tasks are com-
pleted efficiently. The distributed nature of UAV swarms allows for data-centric routing 
and collaborative task execution at multiple nodes [66]. This means that tasks can be 
offloaded and executed at different UAVs within the swarm, leveraging their computa-
tional capabilities. By distributing the computing load, the overall efficiency and perfor-
mance of the swarm can be improved [141]. For example, the mission-planning layer in 
[42] aimed to schedule the mission of UAV swarm in such a way that the total mission 
cost was minimized. This involved assigning tasks to the UAVs and monitoring their sta-
tus and completion. Load balancing plays a crucial role in the process by ensuring that 
tasks are evenly distributed among the UAVs, taking into account factors such as task 
dependencies, UAV capabilities, and mission constraints.

4.3.3 � Energy efficiency

UAV swarms are typically powered by batteries or fuel, so optimizing energy usage is 
crucial. This includes minimizing energy consumption for tasks, coordination, and off-
loading across the swarm. By efficiently allocating tasks and coordinating the workload, 
energy can be conserved, extending the operational time of UAVs [142]. In UAV swarms, 
energy consumption needs to be optimized across all UAVs to ensure that the swarm 
can accomplish its mission without running out of power. This means that task offload-
ing decisions must consider the energy consumption of the UAVs and avoid offloading 
tasks that would drain their batteries too quickly [143]. [122] addressed the challenges of 
traditional fixed base stations in complex terrains by proposing the use of UAVs as MEC 
nodes in the air. The goal is to provide additional computation and storage capacity for 
smart city applications and the industrial IoT. The paper presented a multi-UAV-assisted 
MEC offloading algorithm that involves global and local path planning controlled by a 
ground station and onboard computer.

4.3.4 � Privacy and security

Task offloading decisions in UAV swarms may involve sharing sensitive data. Therefore, 
strong mechanisms are required to ensure the secure management of these data [57]. 
UAV swarms can be vulnerable to security attacks such as eavesdropping or jamming, 
so task offloading decisions must consider the associated security risks. This includes 
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evaluating the trustworthiness of other UAVs or the ground MEC system before off-
loading tasks [144]. For example, secure UAV-enabled massive vaccine distribution for 
the COVID-19 Underlying 6G network is a proposed solution in [104] that aimed to 
address the challenges of fake vaccine distribution by utilizing UAVs and 6G enhanced 
Ultra-Reliable Low Latency Communication (6G-eURLLC) technology. The scheme 
incorporated blockchain technology to ensure secure and transparent vaccine distribu-
tion. It involved user registration, vaccine requested, and distribution through a public 
Solana blockchain [145] setup, which allows scalable transaction rates. The scheme uti-
lized UAV swarms triggered by vaccine requests at production setups to deliver vaccines 
to nodal centres in real time. Additionally, an intelligent edge offloading scheme is pro-
posed to support UAV coordinates and routing path setups.

4.3.5 � Dynamic network topology

Attributes such as the dynamic topology, unpredictable connectivity, and energy/com-
putation constraints of flying nodes need greater consideration. The mobility of UAVs in 
a swarm introduces unique challenges for task offloading decisions [120]. For instance, 
the dynamic topology of the network due to the movement of UAVs can result in unpre-
dictable connectivity, which can affect the ability to offload tasks. Additionally, UAV 
swarms have highly dynamic network topologies, with UAVs joining or leaving the 
network at any time and rapidly changing the network structure. Task offloading deci-
sions need to be adaptive and responsive to these changing network conditions. This 
may involve dynamically reassigning tasks, adjusting communication routes, or adapting 
the offloading strategy based on the current network topology [74]. Airborne computing 
proposed in [119] is a toolkit that enables UAV-assisted federated computing for sustain-
able smart cities. It leveraged the capabilities of UAVs to support distributed comput-
ing and data processing in smart city dynamic environments. The goal was to enhance 
the efficiency and sustainability of smart city operations by utilizing the computational 
power and mobility of UAVs.

4.3.6 � Quality of service (QoS) requirements

UAV swarms are often used in mission-critical applications, such as search and rescue 
operations, where low latency and high reliability are essential for success. Task offload-
ing decisions need to consider the QoS requirements of individual tasks and ensure 
that they are met while optimizing resource utilization and energy consumption [146]. 
For example, tasks that require real-time processing may need to be offloaded to UAVs 
with high computational capabilities, while tasks that can tolerate some delay may be 
offloaded to UAVs with lower computational capabilities or even to the ground MEC 
[66]. The proposed approach in [114] utilized multi-agent DRL for joint task offloading 
and resource allocation in a multi-UAV-enabled IoT edge network. Multiple DRL agents, 
each representing a UAV, learned to make optimal decisions regarding which tasks to 
offload and which resources to allocate, considering factors such as task priorities, UAV 
capabilities, network conditions, and energy consumption. The agents interacted with 
each other and the environment to learn a cooperative strategy that maximizes the over-
all system QoS performance. The approach enabled efficient task offloading, reduced 
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communication overhead, and improved resource utilization, resulting in enhanced net-
work performance and QoS for IoT devices.

4.3.7 � Heterogeneity

UAVs in a swarm may have different capabilities and resource availability, such as dif-
ferent computational power, memory, energy, and communication range. Task offload-
ing decisions need to consider the heterogeneity of the UAVs and allocate tasks to the 
most suitable UAVs based on their capabilities and availability [147]. For example, tasks 
that require high computational power may be offloaded to UAVs with more power-
ful processors, while tasks that require more memory may be offloaded to UAVs with 
greater memory capacity [148]. The framework in [60] is a decentralized task offload-
ing algorithm for multi-UAVs operating in U2X (UAV to everything)-assisted heteroge-
neous networks. DRL is utilized to enable each UAV to learn optimal task offloading 
decisions based on local observations and interactions with neighbouring UAVs. This 
decentralized approach eliminates the need for a central controller, making the sys-
tem more scalable and robust. The framework considered various factors such as UAV 
capabilities, task requirements, network conditions, and energy consumption to make 
informed offloading decisions. By offloading tasks to U2X APs or other UAVs with suf-
ficient resources, the framework improves the overall performance of the UAV swarm in 
terms of task completion time, energy efficiency, and network utilization. Heterogeneity 
in UAV swarm offloading can pose major challenges when the UAV swarm is not from 
the same operator and requires inter-working between multiple vendors. This is because 
different operators and vendors may have varying hardware, software, communication 
protocols, and operational procedures.

4.3.8 � Communication constraints

In UAV swarms, task offloading decisions need to consider the limited communication 
range. These involve dynamic multi-hop aerial mesh networking between numerous 
mobile nodes [124], which is vastly more complex than simple point-to-point links for 
single UAVs or fixed infrastructure [149]. Offloading decisions need to consider the com-
munication overhead and minimize the amount of data transmitted over the network 
[150]. The authors of [21] proposed a prioritization-based task offloading mechanism for 
UAV-assisted edge networks that optimizes bandwidth utilization. Without centralized 
coordination, UAVs cooperatively gather information on current network conditions, 
tasks queued at edge nodes, and their own bandwidth capabilities. An auction-based 
distributed algorithm allowed the UAVs to negotiate and determine the priority of dif-
ferent tasks based on latency-criticality, execution status, and data transfer require-
ments. Higher priority tasks are assigned to UAVs with sufficient available bandwidth 
to minimize their completion delay [151]. Spatial coordination is needed across multiple 
UAVs to efficiently share wireless resources, avoid interference, and aggregate bandwidth 
across different locations [71]. Moreover, on-board computation competes for limited 
transmission power and antenna space with communication radios on each UAV. Line-
of-Sight (LoS) blocking and signal attenuation also occur more often in 3D mobile aerial 
networks than in 2D ground setups [152]. Offloading decisions should be made to mini-
mize communication overhead and ensure reliable communication between UAVs and 
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MEC servers or between terminal devices and the UAV swarm [37]. In MEC or cloud 
computing, communication constraints may be less critical because the communication 
infrastructure is typically more robust. UAV swarms often operate in environments with 
limited or unreliable communication links. This can make it difficult to coordinate task 
offloading decisions among individual UAVs and can also limit the amount of data that 
can be transferred between the UAVs and the ground MEC and between UAV swarm 
and terminal devices [31]. The authors of [15] considered task offloading in UAV swarm-
based edge computing to involve grouping UAVs into clusters and assigning roles to 
each UAV within a cluster to optimize task execution and resource utilization. UAVs can 
be grouped based on their capabilities, locations, and energy levels, while their roles can 
include data collection, computation, and communication. The grouping and role divi-
sion enabled efficient task offloading, reduced communication overhead, and improved 
the overall performance of the UAV swarm in providing edge computing services.

4.3.9 � Cost constraints

UAV swarms can be expensive to operate, and the cost of task offloading can be a sig-
nificant factor in determining the overall cost of swarm’s operation. This means that 
task offloading decisions must consider the cost of offloading tasks to other UAVs, to 
the ground MEC, or from terminal devices to the UAV swarm [114]. For example, tasks 
that require high computational power may be offloaded to UAVs with more power-
ful processors, but this may come at a higher cost in terms of energy consumption and 
communication overhead. Additionally, the security service pricing model in [93] for 
UAV swarms using a Stackelberg game approach allowed stakeholders, including the 
UAV swarm provider, cluster heads, and the base station, to determine optimal pricing 
strategies that maximize their profits while ensuring that users receive security services 
at a reasonable price. The approach promoted competition among cluster heads, lead-
ing to lower prices for UAVs, and facilitating the development of a sustainable and effi-
cient UAV swarm security service market. Table 3 shows a comparison between using a 
swarm of UAVs and using either a single UAV or ground-based MEC for the purpose of 
offloading computational tasks.

4.3.10 � Applications

UAV swarms for computational offloading have several unique applications that are 
different from single UAV or terrestrial MEC applications. Some of these applications 
include the following:

1.	 Large-scale data collection and processing: UAV swarms can be used for large-
scale data collection and processing, such as environmental monitoring [98], disaster 
response [100], and precision agriculture [129]. Multiple UAVs can cover larger areas 
and collect more data in a shorter amount of time than single UAVs or terrestrial 
MEC.

2.	 Real-time processing and decision-making: UAV swarms can be used for real-time 
processing and decision-making in applications such as search and rescue [54], mili-
tary operations, and sports events [73]. Multiple UAVs can provide real-time data 
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and offload computations to edge servers for real-time processing, which is critical 
for making quick and accurate decisions [153].

3.	 Dynamic network topology: UAV swarms can provide dynamic network topol-
ogy, which is useful for applications such as enhanced coverage and connectivity 
in remote or hard-to-reach areas [40], temporary networks [114], ad hoc networks 
[103], and mobile networks. The UAVs can move to different locations based on the 
demand for computation and network resources, providing a flexible and adaptable 
network infrastructure [154].

4.	 Cooperative computing: UAV swarms can be used for cooperative computing, 
where multiple UAVs work together to solve complex computational tasks. This 
approach can be useful for applications such as scientific simulations, machine learn-
ing [64], and data analytics.

5.	 Mapping: UAV swarms can create high-resolution maps of areas that are difficult to 
access or too large to map using traditional methods. They can quickly and efficiently 
gather and process large amounts of data, providing accurate and up-to-date maps 
[155].

Table 4 shows the comparison between the UAV swarm and single or ground MEC in 
computation offloading [128].

The majority of existing research on computational offloading in UAV swarm networks 
tends to focus on optimizing energy consumption [62, 127] and latency [73, 79] related 
to communication constraints as the primary objectives. Ensuring certain levels of QoS 
[111, 114] is also a relatively common area of study that receives notable attention. How-
ever, other important factors such as fault tolerance, security [81], cost [114] modelling, 
and heterogeneity [77] have been comparatively less explored and analysed within the 
literature thus far. Moreover, research has focused more on the theoretical optimization 
of one objective such as latency ignoring practical economic limitations. Cost analysis 
requires comprehensive modelling of diverse factors, which increases complexity and 
validation efforts. In general, decentralized and dynamic swarms introduce uncertain-
ties that single systems do not face as much. While cooperative swarms provide benefits, 
the coordination and connection volatility aspects have limitations that require ongoing 
research to fully address.

4.3.11 � Open issues related to RQ3

1.	 Scalability:

	 Most studies consider small-scale scenarios lacking rigor at larger scales. An evalua-
tion is needed for optimization techniques for handling industrial scale swarms with 
thousands of nodes under realistic system dynamics.

2.	 Security complexity:
	 Decentralized access controls and encryption across dynamically changing networks 

introduce challenges. Moreover, exploration of adaptive security approaches that are 
resilient to system dynamism needed.

3.	 Dynamic topology:
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	 Current works oversimplify topology variations that impact offloading. Understand-
ing the effects of rapid connectivity changes on optimization is important.

4.	 Resource constraints:
	 While models optimize objectives, limitations of constrained resources such as 

bandwidth and energy capacity at scale require investigation. Adaptive algorithms 
respecting constraints aid feasibility.

4.4 � Number of UAVs impacting a swarm on the performance of offloading

This section reports the answer to RQ4 (How does the number of UAVs in a swarm 
affect the performance of tasks offloading to a UAV swarm?). This question establishes 
the analytical methods needed to fully address the relationship between the swarm scale 
and task offloading ability. Understanding scalability differences provides insight into 

Table 4  Comparison between UAV swarms and single or ground MEC for computational offloading

No. Factor Single UAV/terrestrial MEC UAV swarm computational 
offloading

1 Distributed Decision-Making 
[110]

Centralized decisions Decentralized coordination 
through cooperation

2 Load Balancing (Cooperation) 
[111]

No cooperation Task distribution through coopera-
tion & resource sharing

3 Energy Efficiency [67] Focus on individual energy usage 
(focuses on single system)

Collective energy optimization 
leveraging proximity (optimizes 
collective usage)

4 Privacy and Security [81] Centralized control & storage 
(easier to monitor single unit)

Data distributed across swarm 
raises new threats (decentralized 
access control needed)

5 QoS [112] Depends on individual capacity Improved through cooperative 
computing resources can aggre-
gate resources spatially

6 Cost Constraints [87] Infrastructure deployment costs 
(hardware and operation costs)

Swarm flexibility reduces costs vs 
infrastructure (economies of scale 
possible)

7 Communication Constraints [124] Stable wireless links Temporary intermittent links 
impacting decisions (self-organized 
aerial mesh network)

8 Heterogeneity [60] Homogeneous resources Diverse nodes require more com-
plex coordination

9 Applications [103] Localized processing needs Applications requiring wide-area 
sensing, mobile edge services

10 Dynamic Network Topology [119] Static/predictable topology Dynamic topology from node 
mobility raises coordination chal-
lenges

11 Limitations Single point of failure if the node 
goes offline
Restricted coverage area that 
cannot be expanded
Static deployment, cannot follow 
dynamic users/tasks
Load imbalance under varying 
demands
No parallel task processing 
capability
Vulnerable to attacks on the 
single node

Higher coordination overhead for 
distributed decision-making
Single UAV/node still has limited 
resources for large individual tasks
Dynamic connectivity issues as 
UAVs move in/out of range rapidly
Increased energy costs to maintain 
numerous wireless links
Scalability challenges in controlling 
a large number of UAVs
Requires interoperable hardware/
software across UAVs
Adds complexity for security, fault 
tolerance across multiple nodes
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how well methods utilize increasing swarm resources through distributed task alloca-
tion. This also indicates method long-term viability as swarms scales up. The offload-
ing performance can be influenced by various factors such as the number of UAVs in 
the swarm and the algorithm used for task allocation and scheduling. When considering 
the impact of UAVs in a swarm on the offloading performance, it is important to evalu-
ate the scalability and efficiency of different algorithms. The scalability of an algorithm 
refers to its ability to handle an increasing number of UAVs in the swarm without a sig-
nificant decrease in performance [128].

When comparing the scalability of task offloading in UAV swarms, several algorithms 
have been proposed for task allocation and scheduling in UAV swarm-based offloading 
scenarios. These algorithms can be categorized into different types based on their archi-
tectural approach, such as centralized, distributed, and hybrid-based offloading [156].

4.4.1 � Centralized offloading

Centralized offloading algorithms rely on a single central entity (e.g. a base station or a 
UAV with high computational capabilities) to make offloading decisions for all UAVs in 
the swarm. As the number of UAVs increases, the computational complexity and com-
munication overhead of the central entity also increase, leading to scalability issues [42]. 
A central entity, such as a cloud server, is responsible for managing the task offloading 
decisions for all UAVs in the swarm [157]. The UAV swarm is managed by a central-
ized controller/server that has an overall view of network resources. The controller 
uses an optimization algorithm to determine the best UAV to offload each task based 
on factors such as computational power, energy level, and location. The controller then 
sends instructions to the individual UAVs about which tasks to execute. UAVs simply 
follow commands from controllers and do not make independent decisions [124]. If the 
load on a UAV increases, the controller can reallocate some tasks dynamically to bal-
ance resources. The controller also tracks UAV movements and associations to main-
tain optimal allocation as topology changes. It centrally coordinates all task assignments, 
scheduling, and distribution of computation results. The centralized approach provides 
uniform management, but a single controller can become a bottleneck. Failure of the 
central entity will disrupt the whole system operation until a new controller takes over. 
Scalability is also a concern because the controller must process data from all UAVs to 
make optimal assignments [158].

Scalability: In a centralized architecture, where a central entity coordinates and man-
ages the offloading process for the entire UAV swarm, scalability can be affected. As 
the number of UAVs in the swarm increases, the central entity may face challenges in 
efficiently allocating tasks and managing the offloading decisions for a large number of 
UAVs. Centralized architecture may become a bottleneck, leading to scalability limita-
tions [42, 159].

4.4.2 � Distributed offloading

Distributed offloading algorithms distribute the decision-making process among mul-
tiple UAVs in the swarm. Each UAV makes offloading decisions for itself based on local 
information and coordination with neighbouring UAVs. Distributed algorithms are 
more scalable than centralized algorithms because they do not rely on a single point of 
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failure. In distributed offloading, each UAV makes its own offloading decisions based on 
local information and communication with nearby UAVs [16, 51].

The UAV swarm operates without any centralized controller and makes decisions in a 
fully distributed manner. UAVs cooperate by sharing information about their capabili-
ties, locations, trajectories, and task loads via localized communication. User devices 
directly offload tasks to nearby UAVs via D2D communication technology such as WiFi 
or Bluetooth [160]. Each UAV processes tasks locally based on its available resources. 
Some tasks may also be forwarded to other UAVs. UAVs negotiate task allocations 
among themselves via consensus-based algorithms while considering factors such as 
network topology, mobility patterns, and the affinity of tasks to resources [161]. This 
allows tasks to be dynamically matched to the most suitable UAVs in real-time based 
on the collective intelligence of the swarm. Tasks are prioritized and UAVs with more 
resources accept tasks from resource-constrained UAVs to balance the load. If a UAV 
fails or moves of range, others reallocate its tasks using distributed coordination to 
maintain service continuity. The system is self-organized, adaptive, and scalable, and 
UAVs can autonomously join or leave without any master entity [75]. It provides compu-
tational services to users in a distributed manner without relying on centralized control-
lers which can become bottlenecks.

Scalability: Distributed architectures, where each UAV makes its own offloading deci-
sions based on local information and interactions with neighbouring UAVs, can offer 
better scalability. As the number of UAVs increases, the distributed nature of the archi-
tecture allows for more parallel and independent decision-making. Each UAV can make 
offloading decisions locally, reducing the dependency on a central entity and enabling 
scalability [16].

4.4.3 � Hybrid offloading

Hybrid offloading algorithms combine centralized and distributed approaches. A central 
entity is responsible for high-level coordination and resource allocation, whereas indi-
vidual UAVs make fine-grained offloading decisions based on local information. Hybrid 
algorithms offer a balance between optimality and scalability. Some offloading decisions 
are made centrally, while others are made by individual UAVs [71].

The UAV swarm is divided into multiple clusters based on proximity. Each cluster 
has 3–5 UAVs [162], and within a cluster, the UAVs communicate directly and make 
task offloading decisions in a distributed manner. They cooperate, share information, 
and allocate tasks locally. One UAV in each cluster is designated as the cluster head. 
It has higher computational capabilities. The cluster heads then communicate with 
each other and a centralized controller (which could also be a UAV) to coordinate 
tasks between clusters [163]. The user devices offload computational tasks to the 
swarm of UAVs. Tasks can either be processed locally by UAVs or offloaded further. 
Cluster member UAVs offload tasks to their cluster head if they do not have suffi-
cient resources or if the task requires more capabilities. The cluster head processes 
as many tasks as possible. The remaining tasks are forwarded to other cluster heads. 
Cluster heads negotiate and allocate inter-cluster tasks in a centralized manner based 
on collective UAV resources and task requirements. UAV movements and failures 
are also coordinated centrally to maintain optimal clustering. This hybrid approach 
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distributes intra-cluster control while centrally coordinating inter-cluster allocations 
for better scalability and efficiency as the number of tasks and UAVs increase. This 
approach leverages the benefits of both centralized and distributed control for scal-
able MEC functionality in dynamic UAV swarms [164].

Scalability: Hybrid architectures, which combine elements of both centralized and 
distributed approaches, can offer a balance between scalability and coordination. By 
leveraging the benefits of both architectures, critical or complex tasks can be man-
aged centrally, while less critical tasks can be handled in a distributed manner. This 
hybrid approach enables scalability by allowing parallel processing of tasks while 
maintaining centralized control for critical operations [30]. Table  5 compares the 
scalability of UAV swarm architectures.

Distributed and hybrid architectures are more scalable than centralized architectures 
for swarm UAV offloading. The mobility and coverage capabilities of UAVs can also con-
tribute to scalability by extending MEC services and reducing the burden on individual 
UAVs. Additionally, considering the energy efficiency of UAVs can help maintain scala-
bility by ensuring that UAVs have sufficient battery life to support offloading operations.

Table 5  Comparison of UAV swarm architectures

Architecture Refs. Characteristics Scalability Limitations

Centralized [44, 47, 55, 57, 64, 69, 
73, 79, 89, 98, 100, 104, 
105, 107, 115, 119, 
128, 134]

Single controller opti-
mally assigns tasks

Does not scale well as 
the central controller 
becomes a bottleneck 
with increasing UAVs

Single point of failure 
if the central control-
ler fails
Bottleneck as the 
controller handles all 
coordination load
Not scalable as coor-
dination -complexity 
increases with swarm 
size
Requires stable high 
bandwidth backhaul 
links

Distributed [15, 16, 21, 36, 40, 
45, 60, 62, 65, 67, 77, 
81, 87, 99, 103, 106, 
110–113, 116–118, 
121–124, 126, 129]

UAVs cooperatively 
assign tasks through 
local decisions

Scales much better as 
control is decentral-
ized

Higher coordination 
overhead to maintain 
distributed consensus
Increased communica-
tion latency compared 
to centralized approach
Resources may not be 
optimally allocated in 
a fully decentralized 
manner
No global view of net-
work state available

Hybrid [34, 42, 54, 71, 75, 114, 
120, 125, 130–133, 
135]

Hierarchical clus-
tered architectures 
combine centralized 
intra-cluster and dis-
tributed inter-cluster 
control

Better scalability 
than centralized by 
dividing swarm into 
clusters handled in 
distributed manner

Increased complexity 
compared to central-
ized/distributed alone
Single cluster head 
failure can impact task 
coordination in its 
cluster
Inter-cluster coordina-
tion overhead in addi-
tion to intra-cluster
Determining optimal 
number of clusters and 
cluster sizes is nontrivial
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On the other hand, the type of algorithm used for UAV swarm offloading can have 
a significant impact on the scalability of the system, particularly in terms of the num-
ber of UAVs that can be effectively managed and coordinated. PSO [100] can scale 
reasonably well as each agent only communicates with topological neighbours. How-
ever, as the swarm size increases, maintaining cohesive movement becomes challeng-
ing due to the increased variance in the optimal solutions across space. Game theory 
approaches [106], which utilize concepts such as potential games, achieve faster con-
vergence for best response dynamics with larger populations as equilibrium selection 
becomes easier statistically. However, modelling complex interactions limits scalabil-
ity. Distributed machine learning such as Multi-Agent DRL (MADRL) [114] over-
comes single-agent training costs and improved with more agents due to increased 
collection experience. However, stability and shared understanding become issues as 
agent heterogeneity grows substantially with large swarms. Genetic Algorithms [79] 
struggle with very large problem spaces as population diversity declines, requiring 
larger populations that increase complexity. The selection of optimal solutions also 
becomes more difficult. Consensus algorithms [60] can leverage the repetitive aver-
aging nature to scale linearly with size for simple problems. However, convergence 
slows and communication costs rise nonlinearly as the number of agents and com-
plexity increase. In general, algorithms that adapt solutions dynamically, such as PSO, 
DRL, and local-rule nature inspiration, provide better scalability than algorithms that 
rely on global assessment or infrequent interactions in UAV swarms. However, all of 
these methods face coordination and noise challenges as group sizes become enor-
mously large.

4.4.4 � Open issues related to RQ4

Fault tolerance:
As swarm sizes increase, individual node failures become more common. Existing 

approaches need to be evaluated for their ability to maintain functionality, redun-
dancy, and graceful degradation as failure rates rise with scale. Distributed recovery 
mechanisms require further exploration.

1.	 Scalability:

	 While simulations show promise, approaches involving thousand of nodes need 
testing at extremely large realistic scales involving thousands of nodes. Challenges 
include managing complexity, constrained resources, and wireless interference given 
nonlinear increases. Adaptivity to failure/dynamics is also a concern at immense 
numbers.

2.	 Coordination constraints:
	 As heterogeneity, autonomy, and dynamism grow exponentially with swarm size, so 

does coordination complexity. Maintaining coherent collaborative behaviour and 
efficient decision-making under real-time constraints is an open question, especially 
for massively distributed systems. The adaptive mechanisms that are scalable for 
industrial deployments require investigation.
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4.5 � Open issues in UAV swarm offloading

This section reports the answer to RQ5 (What are the key open issues and challenges 
in task offloading for UAV swarms basis of the current literature?). Identifying gaps and 
limitations is important for understanding room for improvement and guiding future 
work. However, simply listing problems provides an incomplete picture. In essence, this 
question establishes an evidence-based process to define open issues precisely, ensuring 
the most relevant problems are targeted forward. This optimized the research progress. 
We provide the literature on UAV swarm computation offloading in a table format along 
with limitations aimed at identifying open issues in this research area. Summarizing the 
work in this way allows us to draw conclusions about gaps and opportunities for further 
study.

A review the literature in Table 6, clearly reveals that the majority of studies did not 
account for high mobility or changing network topologies. Additionally, only one work 
[42] mentioned fault tolerance in UAV swarm offloading networks. Consequently, there 
has been minimal investigation into the interference between UAVs in swarms [121] and 

Table 6  Limitations in 63 articles on UAV swarm task offloading

No. Limitation References Corresponding open 
issues

Note

1 UAV deployment is 
assumed to be static 
over time

[15, 16, 21, 34, 40, 45, 47, 
54, 55, 57, 60, 62, 65, 67, 
69, 73, 77, 79, 89, 105, 
106, 108–111, 113–115, 
117–120, 123–126, 
129–135]

Dynamic network 
topology

Majority of works consider 
static deployment

2 Consider only one 
aspect optimized

[44, 47, 65, 75, 87, 98, 
100, 107–109, 120, 121, 
126]

Multi-objectives solution Most works only optimize 
single objective

3 Centralized method may 
not scale well

[15, 119] Scalability Centralized approaches do 
not consider scalability

4 Does not consider 
on-demand/real-time 
computation offloading

[21, 36, 42, 45, 62, 69, 
100, 103, 104, 112, 116, 
117, 122, 131, 135]

Resource constraints On-demand offloading 
not widely studied

5 Connectivity changes as 
UAVs move

[16, 34, 40, 54, 60, 69, 71, 
77, 98, 99, 111–114, 122, 
127, 131, 132]

Communication Con-
strains

Mobility effects not deeply 
analysed

6 Heterogeneity across 
devices, traffic work-
loads, topology condi-
tions not completely 
captured

[42, 54, 55, 67, 79, 81, 89, 
110, 118, 123, 127, 130]

Heterogeneity The research papers 
do not discuss how 
heterogeneity in terminal 
devices and UAV capabili-
ties would be addressed 
when those components 
are sourced from multiple 
operators or vendors. 
Specifically, they fail to 
consider the implications 
of diversity introduced via 
third-party suppliers on 
two important aspects—
revenue maintenance and 
security

7 Does not consider 
failures

[104, 105, 109, 126, 134] Fault Tolerance Only one work mention 
fault tolerance [42]

8 Data not secure [100, 107] Security and privacy Only 2 articles considering 
security [42, 104]
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fluctuating channel conditions with MEC infrastructure. Security and privacy concerns 
have only been briefly discussed in a few papers as well, without considering the com-
plex and heterogeneous networking environments involved. Overall, more attention is 
still needed on these important real-world factors that have not been adequately repre-
sented in current models and solutions. Based on the existing literature on UAV swarm 
computation offloading summarized in the table, several key challenges and open issues 
can be identified:

4.5.1 � Heterogeneity affects revenue and security

Heterogeneity in UAV swarm task offloading refers to the presence of different vendors 
or operators with varying capabilities, resources, and objectives [45]. This heterogene-
ity can lead to challenges in interworking between these different entities, including the 
problem of revenue sharing. This complex issue needs to be addressed to fully realize the 
potential of UAV swarm computing offloading [165]. One of the main challenges in UAV 
swarm task offloading is ensuring that devices from different vendors or operators can 
work together seamlessly. This is because each vendor’s devices may have different hard-
ware, software, communication protocols, and coordination mechanisms, making it dif-
ficult for them to communicate and work together effectively. Revenue sharing between 
different operators requires a high level of trust and cooperation. However, in a hetero-
geneous environment, building trust and establishing fair revenue sharing mechanisms 
can be challenging. Operators may have concerns about the accuracy and transparency 
of revenue calculations, leading to disputes and difficulties in reaching mutually benefi-
cial agreements. Moreover, different vendors or operators may have different security 
measures in place, and integrating their systems may require addressing potential vul-
nerabilities and ensuring data privacy and integrity [166]. This lack of interoperability 
between heterogeneous devices can limit the potential of UAV swarm task offloading 
systems [48, 167]. To overcome this challenge, researchers and developers must find 
ways to ensure that devices from different vendors can work together seamlessly, ena-
bling efficient and effective cooperation in UAV swarm task offloading systems.

4.5.2 � Fault tolerance

Existing works mainly focus on introducing redundancy or backup replication for basic 
task offloading [168], but achieving fault tolerance through distributed means is chal-
lenging at large scales [42]. Fault tolerance for decentralized UAV swarm also requires 
further study, as resilience to failures has been underexplored topic in the literature. 
Broader fault-tolerant techniques for general computation offloading scenarios in UAV 
swarms are lacking. The heterogeneous reliability of various UAV types has also not been 
well addressed in terms of integrated fault management across diverse swarm resources 
[146]. Faults can increase due to coupling effects in distributed systems, but dependen-
cies and failure propagation models specific to UAV swarms remain less explored. Few 
studies have evaluated the fault tolerance overhead or proposed optimization strategies 
to minimize the performance/energy overheads of redundancy-based approaches [169]. 
There is a need for adaptive, self-healing methodologies to provide resilience under dif-
ferent fault modes and dynamic swarm behaviours.
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4.5.3 � Scalability

A large number of drones in swarm and multi-swarm coordination pose several chal-
lenges that need to be addressed. These challenges are related to the efficient coordi-
nation and control of many drones to ensure smooth and effective operation [55]. 
Scalability is indeed a major challenge in developing distributed coordination algorithms 
for large-scale UAV swarms performing collaborative task offloading under dynamic 
real-world conditions [139]. Most proposed allocation algorithms have high com-
putational costs that increase exponentially or polynomially at the swarm scale [120]. 
Processing demands grow significantly for large swarms. Real swarms will have hetero-
geneous UAVs in terms of capabilities. Scaling algorithms to handle diverse drone types 
adds to this challenge [170]. Additionally, UAV placement, failures, and mobility pat-
terns change rapidly with the large scale of UAVs in a swarm. Consequently, an alloca-
tion must adapt to larger, unpredictable swarm behaviours [171].

4.5.4 � Resource and communication constraints

Although energy and latency are well-studied objectives in the literature, optimiz-
ing communication bandwidth and power for efficient data transfer between UAVs is 
challenging. Wireless connectivity between mobile UAVs is intermittent [71, 152]. Few 
works model unpredictable link/channel qualities or multi-hop coordination well [15]. 
Moreover, task workload demands can be unpredictable, and computation/communica-
tion intensive can be challenging [172]. Furthermore, inter-drone interference effects are 
complex due to near-field flying patterns [173]. Based on the literature reviewed, most 
existing works that address interference mitigation in UAV swarm networks focus on 
mitigating uplink interference between terminal devices or drones and UAV swarms 
or MEC. Techniques such as MIMO (Multi–Input–Multi–Output) [115] and Fre-
quency Division Multiplexing Access (FDMA) [34] are commonly proposed for man-
aging uplink interference during task offloading. However, interference management 
specifically between UAVs in the swarm itself has not been sufficiently addressed or 
mentioned in the literature. Accounting for complex interference phenomena between 
swarming UAVs [71, 121, 133] and time-varying wireless conditions with MEC presents 
ongoing technical challenges that have not been fully addressed. Moreover, temporary 
connectivity and topology changes make bandwidth reservation, and congestion con-
trol challenging without global knowledge. Additionally, latency gains from optimized 
task allocation/migration assume ample bandwidth which is not stable in real scenarios 
[141]. This is often unrealistic under constrained multicasting/broadcasting.

4.5.5 � Dynamic network topology

Most work in the literature has focused on computational offloading in UAV swarms, 
without holistically considering the impacts on other functions such as localization and 
communication that also need dynamic tuning [57, 174]. There is a limit to understand-
ing how dynamically varying channel conditions, and air turbulence impact [175] task 
execution. Most works assume static scenarios or simple mobility models that do not 
reflect real complex dynamics. There are few self-adaptive algorithms that optimize off-
loading in the face of uncertainties and intermittent disconnections [176]. In dynamic 
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environments in UAV swarms, tasks may arrive at any time, requiring immediate off-
loading decisions and resource allocation. However, the arrival rate and characteristics 
of tasks can vary, making it challenging to optimize offloading decisions in real-time 
[177]. Designing dynamic offloading algorithms and protocols that can adapt efficiently 
to such constantly shifting execution environments is challenging. The issues of around 
robust task allocation, load balancing, computation migration, and failure handling 
under highly unpredictable and transient conditions require further research. The devel-
opment of self-organizing mechanisms allowing UAV swarms to collaborate on the fly is 
an important open issue [178]. Table 7 compares the open issues discussed in this SLR.

5 � Conclusions
In conclusion, this systematic literature review (SLR) paper presents an understanding 
of UAV swarm offloading. Publications from 2019 to 2023 were analysed to identify key 
summarizing considerations, classify roles, identify decision-making factors, analyse 
swarm sizes, and highlight open challenges. Overall limitations such as unpredictable 
context and heterogeneous swarm environments suggest opportunities for future work 
incorporating adaptive learning approaches. This review provides insights into the pro-
gress and gaps in UAV swarm offloading research to facilitate future work in this prom-
ising area. Our SLR provides a useful resource for researchers and practitioners working 
in the field of UAV swarm task offloading and highlights areas that require further inves-
tigation. For future directions, and targeted evaluations of particular architectures and 
algorithms, comprehensive assessments of clustering-based, blockchain-based, and fed-
erated learning-based methodologies are recommended. Additionally, it is advisable to 
investigate dynamic pricing mechanisms for multi-vendor UAV swarms and standardize 
the integration of heterogeneous swarms from different providers.
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