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LDPC codes of columnweight of two are constructed fromminimal distance graphs or cages. Distance graphs are used to represent
LDPC code matrices such that graph vertices that represent rows and edges are columns. The conversion of a distance graph into
matrix form produces an adjacency matrix with column weight of two and girth double that of the graph. The number of 1’s in
each row (row weight) is equal to the degree of the corresponding vertex. By constructing graphs with different vertex degrees, we
can vary the rate of corresponding LDPC code matrices. Cage graphs are used as examples of distance graphs to design codes with
different girths and rates. Performance of obtained codes depends on girth and structure of the corresponding distance graphs.
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1. INTRODUCTION

Low-density parity-check (LDPC) codes have been shown
to have very good error correcting capability performing
close to the Shannon limit [1]. It was also shown in [2]
that LDPC codes with column weight j ≥ 3 have a mini-
mum distance that grows linearly with code length, N , for
given j and row-weight k and that minimum distance for
codes with j = 2 grows logarithmically with N . However,
column-weight-two codes have shown potential in partial re-
sponse channels [3, 4]. They also require less computational
complexity compared to codes of higher column weights.
Performance of LDPC codes depends on several factors in-
cluding minimum distance, rate, diameter of graph, code
length, and girth (minimum cycle length). There are several
methods of constructing column-weight-two LDPC codes,
some of which are found in [3–5]. We propose a method
for constructing column-weight-two codes with very large
girths.

In this paper, we show how column-weight-two LDPC
codes can be derived from distance graphs called cages
(graphs with minimum number of vertices given vertex de-
gree and minimum cycle length in graph). Using already
known cage graphs, very high girths codes are obtained com-
pared to previous methods. Cage graphs of varying girths
and valencies (vertex degrees) could be used to construct
LDPC codes over a wide range of girths and rates.

This paper is organized as follows. Section 2 describes
LDPC code representation using a nonbipartite graph or row
connections. The nonbipartite graphs are in the form of dis-
tance graphs. Section 3 presents some examples of distance
graphs found in literature. Bit error rate performances of
some codes were simulated and evaluated. Hardware im-
plementation complexity of these codes is also discussed.
Section 4 has concluding remarks.

2. GRAPH REPRESENTATION OF LDPC CODES

An M × N LDPC code matrix H is usually represented by a
bipartite or Tanner graph on which one set of vertices repre-
sents rows (check nodes) and the other set represent columns
(variable nodes). There is an edge between the vertices repre-
senting check node cx and variable node vy if and only if the
corresponding element of the code matrix hxy is set to 1.

The code matrix could also be represented by a distance
graph in which vertices represent matrix rows and edges rep-
resent columns. In this representation, there will be an edge
joining the vertices representing check nodes cx and cy if and
only if there exists a column z such that hxz = hyz = 1. Thus
a column is represented by a set of edges forming a complete
graph between check node vertices that are connected to the
same variable node. In the case of two rows per column (col-
umn weight of two), a complete graph between two vertices
is a single edge between the vertices. We could therefore use



2 EURASIP Journal on Wireless Communications and Networking

1

2

34

5

Columns

Rows

Distance graph

(a) Distance graph

Matrix form

1 1 1 1 0 0 0 0 0 0

1 0 0 0 1 1 1 0 0 0

0 1 0 0 1 0 0 1 1 0

0 0 1 0 0 1 0 1 0 1

0 0 0 1 0 0 1 0 1 1

(b) Matrix form

Figure 1: LDPC matrix derived from a distance graph.

distance graphs to form LDPC codes of column-weight-two
with each edge representing a column.

Figure 1(a) shows a distance graph of five vertices. Tak-
ing each vertex as a row and each edge as a column, a corre-
sponding matrix is formed as shown in part (b) of the figure.
The matrix is formed by putting a “1” in each of the rows
(vertices) that form a column (edge). Vertices 1 to 5 of the
graph correspond to rows 1 to 5 in the matrix, respectively.
The minimum cycle length in the graph is three. A cycle is
formed by a closed path of edges or vertices. A cycle in the
graph is formed by moving between vertices or edges. In an
LDPC matrix, a cycle is formed by alternatively moving be-
tween rows and columns. The graph form represents half of
a matrix cycle. Hence, a cycle of g in the graph is of length
2g in matrix form. A cycle of three, shown in dotted lines
in Figure 1, between vertices 1, 2, and 3 in the graph corre-
sponds to a cycle of six between rows 1, 2, 3, and columns 1,
2, 5 in matrix form.

The main objective of this paper is to use known distance
graphs to construct column-weight-two LDPC codes. Dis-
tance graphs of varying vertex degrees and girths produce
column-weight-two LDPC codes of different girths and rates.
For a graph of size n, vertex degree of k, and girth of g, the
corresponding LDPC code matrix is of size n × nk/2, rate
1− (2/k), and girth of 2g.

3. CAGES

A (k, g)-cage is a k-regular graph of girth g with the fewest
possible number of vertices. The lower bound (Moore
bound) on the number of vertices for a given k and n de-
pends on whether g is odd or even [6, 7].

If g is odd then

n(k, g) = 1 + k + k(k − 1) + · · · + k(k − 1)(g−3)/2 (1)

and if g is even, then

n(k, g) = 1 + k + k(k − 1) + · · · + k(k − 1)g/2 − 2

+ (k − 1)g/2 − 1.
(2)

Table 1: Sizes of some known cubic cages.

(k, g) n(k, g) Code size
(
n× nk

2

)
Girth (2g)

(3, 8) 30 30× 45 16

(3, 9) 58 58× 87 18

(3, 10) 70 70× 105 20

(3, 11) 112 112× 168 22

(3, 12) 126 126× 189 24

(3, 13) 272 272× 408 26

(3, 14) 384 384× 576 28

(3, 15) 620 620× 930 30

(3, 16) 960 960× 1440 32

(3, 17) 2176 2176× 3264 34

(3, 18) 2640 2640× 3960 36

(3, 19) 4324 4324× 6486 38

(3, 20) 6048 6048× 9072 40

(3, 21) 16028 16028× 24042 42

(3, 22) 16206 16206× 24309 44

However, these bounds are met very infrequently [8].
Though there is no uniform approach to constructing arbi-
trary cages, there are many cages constructed for some vertex
degrees and girths. The mathematics behind the construc-
tion of cages is beyond the scope of this paper. Examples
of cage graphs and construction methods could be found in
cited references in this paper. In [9], some methods of gener-
ating regular graphs and cages are described. There is also an
associated software by the same author at [10] that generates
cages.

3.1. Cubic cages

Cages with vertex degree of three are called cubic cages.
Table 1 shows the number of vertices for some of the known
cubic cages obtained from [11]. Cubic cages construction
methods could be found in [6, 7, 11, 12]. These graphs pro-
duce an adjacency matrix with girth twice the corresponding
graph girth, column weight of two and rate 1/3.

3.2. Cages of higher vertex degrees

Cages of higher degrees are harder to construct [8]. However,
there are many examples of these cages in literature and some
construction algorithms [9, 13]. Table 2 shows the number
of vertices for some of the known high vertex degree cages
[11, 13]. Corresponding code matrices have girths of 2g and
have higher rates but smaller girths compared to cubic cages.
Higher vertex degrees increase data transmission rate with
some degradation in decoding performance.
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Table 2: Some of known cages’ graphs with vertex degree higher
than three.

(k, g) n(k, g) Code size
(
n× nk

2

)
Girth (2g)

(4, 9) 275 275× 550 18

(4, 10) 384 384× 768 20

(5, 7) 152 152× 380 14

(5, 8) 170 170× 425 16

(6, 7) 294 294× 882 14

(6, 8) 312 312× 936 16

(7, 5) 50 50× 175 10

(7, 6) 90 90× 315 12

(8, 8) 800 800× 3200 16

(9, 8) 1170 1170× 5265 16

(10, 8) 1640 1640× 8200 16

(12, 8) 2928 2928× 17568 16

(14, 8) 4760 4760× 33320 16

3.3. Related studies

Cyclic column-weight-two codes of girth 12 were con-
structed in [4]. The size of the code is given by n = k(k2−k+
1) where k is the row weight and k− 1 is a prime. In [5], two
codes with girth 16 and 20 of rates 1/2 and 1/3, respectively,
are constructed form graphical models. Both codes have size
over 4000. From cage graphs with sizes shown in Tables 1 and
2, LDPC codes with much high girths could be constructed.
The graphs would also produce codes of higher rates. We
noted that codes constructed in [4] have the same size as
that of (k, 6)-cage graphs. However, using known cages, more
codes could be constructed even when k − 1 is not prime.

3.4. Performance simulations

Some cage graphs result in too small codes for practical use.
An expansion method is therefore needed to get larger codes.
We suggest the expansion method used in [14]. The code ob-
tained from a cage graph can be used as a base matrix. Each
“0” entry in the matrix is replaced by a p × p zero subma-
trix and each “1” entry is replaced by a shifted p× p identity
submatrix. The expanded code is larger than the base matrix
by a factor of p and has girth at least that of the base ma-
trix. Using shifted identity submatrices simplifies addressing
in hardware implementation. Obtained codes were expanded
using the described method in our experiments. The expan-
sion factors (p) are shown in brackets in the performance
graphs.

Decoding performances of obtained codes was measured
using bit-error rate (BER) simulations on AWGN channel
with BPSKmodulation. Obtained codes show good BER per-
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Figure 2: BER performances of high girth LDPC codes from dis-
tance graphs (25 iterations).

formances approaching BER of 10−6 between 5 and 6dB for
some codes. Figure 2 shows performance curves for codes de-
rived from (3, 17), (4, 9), and (4, 10) cage graphs. The codes
from (4, 9) and (4, 10) cages are expanded by 8 and 4, re-
spectively. The codes perform better than a random code free
of four cycles. The (3, 17)-cage LDPC code has the best per-
formance which could be attributed to its large girth of 34.
Figure 3 shows performances of codes with higher rates de-
rived from a family of (k, 5) cages. Both codes are expanded
by a factor of 2. The code from the (12, 5) cage performs bet-
ter than that from the (11, 5) cage and a random code of
about the same size free of four cycles. Though the (11, 5)
cage code has lower rate and same girth as the (12, 5)-cage, its
performance is the worst. Performance differences between
(12, 5) and (11, 5) cages may be attributed to structural dif-
ferences of the graphs.

3.5. Hardware implementation

Codes obtained from cage graphs have low implementation
complexity in that they are structured and have only two
entries per column. However, not all structured codes are
easily implementable. It is therefore important to study the
structure of each graph to best exploit it for implementation.
Cage graphs differ in construction methods and structure.
Figure 4 shows a (6, 4) cage graph from which we derive a
(36, 2, 6) LDPC code with girth of eight, where (N = 36, j =
2, k = 6). An odd vertex is connected to all even vertices and
an even vertex to all odd vertices. In fact, all (k, 4) cage graphs
are formed this way with n = 2k. The columns of the code
matrix could be arranged as shown in Figure 5. In this ma-
trix, connections are arranged cyclically such that the matrix
comprises of 6 × 6 or k × k shifted identity submatrices. We
could thus group the matrix rows in two groups of six (or k)
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Figure 3: BER performances of (k, 5) cage codes (25 iterations).
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Figure 4: A (6, 4) cage graph.

and columns into six (or k) groups of six (or k). The group-
ing reduces the interconnect complexity between processing
nodes. There are fewer groups than individual columns or
rows. The number of interconnections and destinations is re-
duced. Addressing within a group is also simplified.With one
known row-column connection in submatrix, the rest of the
submatrix connections could be deduced.

Column-weight-two codes also have reduced number of
elements in the code matrix. This results in less computa-
tions and memory requirements. The variable node (col-
umn) computation involves the summation of the incoming
messages and the channel estimate of the information bit.
With two incoming messages, the computation is reduced to
exchanging incomingmessages and adding them to the chan-
nel estimation before sending them as outgoing messages.

100000 100000 100000 100000 100000 100000
010000 010000 010000 010000 010000 010000
001000 001000 001000 001000 001000 001000
000100 000100 000100 000100 000100 000100
000010 000010 000010 000010 000010 000010
000001 000001 000001 000001 000001 000001

100000 000001 000010 000100 001000 010000
010000 100000 000001 000010 000100 001000
001000 010000 100000 000001 000010 000100
000100 001000 010000 100000 000001 000010
000010 000100 001000 010000 100000 000001
000001 000010 000100 001000 010000 100000

Figure 5: Matrix representation of a (6, 4) cage graph.

4. CONCLUSIONS

An approach for constructing LDPC codes with column
weight of two has been described. Cage graphs are used
to represent the code matrix, where vertices are rows and
edges are columns. From known cage graphs, codes with very
high girths and rates could be constructed. Some derived
codes have good bit error rates compared to random codes.
However, performance of each code depends on the structure
of individual cage graphs from which the codes are derived.
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