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1. INTRODUCTION

In wireless ad hoc networks, the terminals (nodes) commu-
nicate without the aid of any infrastructure. There are many
challenges involved in the design of these networks. One par-
ticular challenge is involved with the routing of data packets.
Typically, the source and destination nodes for a particular
data packet are not within direct communication range. This
leads to a multihop scenario where the packet must be routed
and forwarded through other nodes in the network on the
way to the destination. Many routing algorithms, like those
found in [1–4], have been proposed for ad hoc networks.

In real networks, nodes may join and leave, some (or all)
nodes are highlymobile, and node-to-node channels are sub-
ject to strong fading. In such cases, the problem of finding
new routes and repairing old routes can present significant
difficulties. In particular, there are situations when nodes
have to resort to broadcasting. This causes the effect known
as “broadcasting storm” that has been studied in the liter-
ature [5–9]. A quantitative analysis of the route discovery
process based on broadcasting was given in [10] where the
connection between the route discovery process arrival rate
and the probability of its success was established by analyti-
cal means.

The subject of this paper is the effect of the route dis-
covery process (RDP) on the throughput capacity of ad
hoc networks. Previous results for the network capacity and

throughput, like those found in [11–14] (see also [15–19] for
an analysis of the effect of mobility on throughput), ignore
the route discovery process and focus solely on the data traf-
fic that ad hoc networks can support. On the other hand, un-
der certain conditions (e.g., nodes leaving and joining) the
route discovery process can consume a significant portion
of network resources and become detrimental to overall net-
work performance and stability. For example, if more route
discovery processes are initiated than can be sustained, then
they will likely fail resulting in more retransmissions. In this
scenario, the network can become inundated with route re-
quest (RREQ) packets and the overall network throughput
can significantly decrease.

In the following, we determine the impact of the route
discovery process on network throughput (defined as in
[11]) by determining the asymptotic behavior and scalability
with the number of nodes for a network that has both data
and RDP transmissions. Let W be the number of bits that a
node can successfully transmit per unit time.We characterize
the throughput in terms of two additional basic RDP-related
quantities.

(i) The average time that a route stays intact once estab-
lished: τ(n).

(ii) The function G(·) (defined in the next section) and
characterizing the efficiency of route discovery in the
network.
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(iii) The “correction factor” κ(n) that describes how the de-
pendence between differentRDPs initiated by the same
node affects the expected number of RDPs the node
has to initiate in order to find a route to the destina-
tion.

We show that two qualitatively different situations can be
distinguished.

(1) (τ(n)/κ(n))G(1/n) = o(1/
√
n logn). In this case, the

RDP resource usage is severe enough to become the
throughput bottleneck and change its scaling com-
pared to the case when all routes are known. The
throughput scales as

T (n) = Θ̃
(
W

τ(n)
κ(n)

G
(
1
n

))
, (1)

where the notation Θ̃(·) stands for “soft” asymptotic
behavior which ignores1 powers of logn.

(2) (τ(n)/κ(n))G(1/n) = Ω(
√
logn/n). In this case the

RDP does not affect the throughput significantly (in
the order of magnitude sense) and the main limiting
factor for the throughput is still the interference be-
tween data transmissions

T (n) = Θ

⎛
⎝ W√

n logn

⎞
⎠ . (2)

We apply these general results to some typical examples,
with some specific but reasonable assumed models for τ(n)
andG(1/n), to show that the actual scaling of the throughput
can be changed from the case where routing is ignored. In
fact, for two of these cases we show

T (n) = O
(
W

n

)
(3)

which implies routing can cause even more severe through-
put scaling problems in ad hoc networks. This occurs, for
example, when new nodes join a network for which τ(n) is
independent of n. On the other hand, later examples indicate
that extremely efficient route repair can lessen, and maybe
even eliminate, the just mentioned additional scaling prob-
lems.

The rest of this paper is organized as follows. In Section 2,
we describe the system model, state the assumptions and de-
rive some preliminary results. Section 3 explores the auxil-
iary problem of ad hoc network capacity in the case when
nodes cannot always transmit. In Section 4, we explore the
bounds on ξ(n)—the expected time it takes a node to find
a route. In Section 5, we put the pieces together and present

1 f (n) = Θ̃(g(n)) if and only if there exist constants c1, c2, p1, and p2 as well
as a positive integer n0 such that for all n exceeding n0, c1g(n) log

p1 n ≤
f (n) ≤ c2g(n) log

p2 n.

the main result of the paper—the throughput scaling in the
presence of RDP. Section 6 contains conclusions.

2. SYSTEMMODEL, ASSUMPTIONS, AND
PRELIMINARIES

We consider a wireless ad hoc network with n nodes dis-
tributed uniformly over a unit square area. Half of all nodes
are sources and the other half are destinations. The source-
destination correspondence is one-to-one. Each source node
can be in two states: state D and state N , depending on the
state of knowledge of a route to its destination. In the stateD,
it can transmit data to its destination d(i), and in state N it
cannot transmit due to lack of route knowledge. We charac-
terize the network behavior with respect to the route knowl-
edge by the following quantities.

(i) The length of time during which a node stays in the
stateD has an expected value of τ(n) which is assumed
to be determined exogenously.

(ii) The length of time during which a node stays in the
state N has an expected value of ξ(n) which is to be
determined in the course of analysis.

Nodes can leave and join the network, but they always do
so in pairs. We also assume that if a pair of nodes leaves the
network, another pair joins so that the total node count n is
unchanged. If a pair of nodes joins the network, the nodes
appear at random locations uniformly distributed over the
network area.

When a source node is in the N state, it tries to discover
a route to its new destination. For that purpose, it broad-
casts RREQ packets. Let SRREQ be the size (in bits) of a RREQ
packet. Recall that W is the number of bits that a node can
successfully transmit per unit time. This implies that the
transmission of a RREQ packet can be effected in a time of

δt = SRREQ
W

. (4)

In the following, we assume that all time is slotted with
the slot size equal to δt. In any time slot a node can ei-
ther (re)transmit a data packet of size equal to SRREQ or
(re)broadcast a RREQ packet.

The maximum lifetime of an RDP is assumed to be equal
to l, that is, we assume that a timeout for all RREQ packets is
set to l time slots.

We also assume, without loss of generality, that a half
time slots are devoted to data transmission and in the other
half of the time slots only RDPs take place. During data
slots, we assume that all nodes that are currently in D state
send data to their respective destinations according to some
schedule that allows data transmission at a rate not exceeding
the corresponding interference-limited capacity (much like
in [11]). All nodes are assumed to have an unlimited buffer
where packets can be stored and transmitted when accord-
ing to the schedule. The sources in the N state as well as all
destinations can act as relays.
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Transmission success for any packet time (data or RREQ)
is governed by the Protocol Model2 in which the transmis-
sion from node i to node j within distance of r from i is suc-
cessful if and only if there is no other transmitting node k
within the distance of (1 + Δ)r from j. Here r is the trans-

mission range which cannot be less than
√
logn/πn to ensure

that the network is connected with high probability [21]. We
assume that the transmission range can be different for data
and RREQ packets but is the same for all packets of the same
type.

We introduce the following notation for the quantities
related to the RDP processes.

(i) nt(t)—the number of nodes transmitting (or retrans-
mitting) an RREQ packet in a given time slot t.

(ii) nnt(t) and nrt(t)—the numbers of nodes transmitting
a new RREQ packet and retransmitting (relaying) an
RREQ packet, respectively, in time slot t. Note that
nnt(t) + nrt(t) = nt(t).

(iii) nr(t)—the number of nodes that successfully receive
an RREQ packet in time slot t for the first time, that is,
the receptions of RREQ packets that the same node has
received at an earlier time do not count toward nr(t).

(iv) λ—the total rate of RDP processes arrival for the whole
network, that is, the rate of new RREQ packet genera-
tion in the network. Note that, in the notation intro-
duced above, λ = E(nnt).

(v) ν—the rate at which a node generates RREQ packets
once it needs to (re)discover a route, that is, is in the
N state. In order to make things more concrete, we as-
sume that a node initiates RDPs at fixed time intervals
equal to 1/ν until it finds the destination.

(vi) Q—an unconditional probability that an RDP is suc-
cessful at discovering a route.

(vii) fk—a fraction of all other nodes (except for the source)
reached by an RDP k. That is if a total of rk nodes
received the corresponding RREQ packet, then fk =
rk/(n− 1).

In order to make analytical derivations possible, we make
the following regularity and stationarity assumptions.

(i) The processes nr(t), nt(t), nnt(t) and nrt(t) are (weak-
ly) stationary with finite autocorrelation length. In
particular, the corresponding expectations and vari-
ances exist and independent of time t. The co-
variances vanish for lags exceeding h, for example,
Cov(nr(t),nr(s)) = 0 for |t − s| > h.

(ii) For a given node, the process of switching states be-
tween states D and N is a stationary renewal process.
Specifically, if we denote the duration of periods when
the node was in the D state be ui and the duration of
periods when the node was in the N state be vi for

2 Note that we could easily generalize this model to take into account the
effects of fading and shadowing by introducing random direction depen-
dent interference regions (in terminology of [20]) instead of circular in-
terference regions considered in this paper. The main results would not
change. We do not consider the more general case explicitly in order to
keep the presentation technically simpler.

i = 1, 2, . . . , then ui is independent of u1,u2, . . . ,ui−1
and v1, v2, . . . , vi−1; and vi is independent of u1,u2,
. . . ,ui and v1, v2, . . . , vi−1 (by our convention ui comes
before vi). The expectations and variances of random
variables ui and vi exist and are independent of the
index i. We will write simply E(u), E(v), Var(u) and
Var(v). Note that E(u) = τ(n) and E(v) = ξ(n).

(iii) The fraction fk of all nodes reached by theRDP process
k has expectation and variance that do not depend on
the RDP process k. Also the random variables fk and
fm are independent provided the RDP k and m never
run concurrently. More precisely, if the RDP’s k andm
run in the time intervals [tk, sk] and [tm, sm], respec-
tively, then the random variables fk and fm are inde-
pendent provided either sk < tm or sm < tk.

2.1. Preliminary results

Consider a time horizon of T time slots. Let NRDP(T) be the
number of RDP processes initiated during this time. Clearly,

NRDP(T) =
n/2∑

i=1
Ni(T), (5)

where Ni(T) is the number of RDP processes initiated by the
source node i, and the sum is over all n/2 source nodes. In its
own turn, the quantity Ni(T) can be written as

Ni(T) =
NDN ,i(T)∑

j=1
Ns,i j , (6)

whereNDN ,i(T) is the number ofD toN states changes (route
losses) that the node i has during these T time slots, and Ns,i j

is the number of times the node i has to initiate an RDP pro-
cess after route loss j until it finds a valid route to the desti-
nation. The first auxiliary lemma establishes the asymptotic
behavior of the variance of Ni(T).

Lemma 1.

lim
T→∞

Var
(
Ni(T)

)

T
= α, (7)

where α is a constant independent of T .

Proof. Since the random variables Ns,i j for different values of
j are i.i.d., we can use (6) to find the variance of Ni(T),

Var
(
Ni(T)

) = NDN ,i(T)Var
(
Ns
)
. (8)

On the other hand, since the process of switching states from
D toN and back is a renewal process, we can use the result in
[22, Chapter XIII] stating that

lim
T→∞

Var
(
NDN ,i

)

T
= Var(u) + Var(v)(

E(u) + E(v)
)3 . (9)

The expectation of NDN ,i can also be found using the results
in [22, Chapter XIII],

lim
T→∞

E
(
NDN ,i

) = α′T + β, (10)
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where α′ = 1/(E(u)+E(v)) and β is a constant independent of
T . Now, using the Chebyshev inequality together with (10),
we obtain

Pr
(∣∣NDN (T)− α′T − β

∣∣ ≥ z
) ≤ Var

(
NDN ,i

)

z2
. (11)

Setting z = T3/4 and dividing by T , we have

Pr
(∣∣∣∣

NDN (T)
T

− α′ − β

T

∣∣∣∣ ≥ T−1/4
)
≤ Var

(
NDN ,i

)

T3/2
. (12)

Finally, using (9), (8) and taking the limit T → ∞, we obtain
the statement of the lemma with α = α′Var(Ns).

The next lemma establishes fact that the actual value of
NRDP(T) (as opposed to the expected value) is well behaved
for large values of the time horizon T .

Lemma 2.

lim
T→∞

NRDP(T)
T

= λ, (13)

with probability 1.

Proof. Since NRDP(T) =
∑n/2

i=1Ni(T) we can write

Var
(
NRDP(T)

) ≤
(
n

2

)2
Var

(
Ni(T)

)
. (14)

On the other hand, since limT→∞ E(NRDP(T)) = λT , we
can apply the Chebyshev inequality to obtain that, for large
enough T ,

Pr
(∣∣NRDP(T)− λT

∣∣ ≥ z
) ≤ Var

(
NRDP(T)

)

z2
. (15)

Setting z = (λT)3/4 and dividing by λT , we arrive at

Pr
(∣∣∣∣

NRDP(T)
(λT)

− 1
∣∣∣∣ ≥ (λT)−1/4

)
≤ (n/2)2α√

λT
, (16)

for large enough T . Finally, taking the limit T → ∞, we ob-
tain the statement of the lemma.

The following lemma expresses the overall RDP arrival
rate λ via ν, ξ(n) and τ(n).

Lemma 3.

λ = (n/2)νξ(n)
τ(n) + ξ(n)

. (17)

Proof. Consider a time horizon of T time slots. For a given
source node i, the expected number of RDP processes initi-
ated by this node during T time slots can be computed using
(6) as

E
(
Ni(T)

) = E
(
NDN ,i(T)

)
E
(
Ns
)
. (18)

Using the renewal property of the process of node state
change we can find (see [22, Chapter 8]) that

E
(
NDN ,i(T)

) = T

E(u) + E(v)
+ C + εT , (19)

where C is a constant independent of T and limT→∞ εT =
0. Since E(Ns) = νE(v) = νξ(n), and E(NRDP(T)) =
(n/2)E(Ni(T)), we can write

λ = lim
T→∞

E
(
NRDP(T)

)

T

=
(
n

2

)
E
(
Ns
)

E(u) + E(v)
=
(
n

2

)
νξ(n)

τ(n) + ξ(n)
.

(20)

2.2. RDP success probability

The key measure of the effectiveness of a route discovery pro-
cess is the probability that it succeeds in finding a route. So
we have to be able to characterize the probability of success
of an RDP in the given environment. We will do it using the
following definition.

Definition 1. Let G(·) be a monotonically increasing func-
tion on the interval [0, 1] such that G(0) = 0 and G(1) = 1.

With this definition, we have that if f is the fraction of
nodes that an RDP process has reached, the probability of a
successful route discovery by the process conditioned on the
fraction f (and not on anything else) is Qf = G( f ). The
unconditional probability of a successful route discovery can
be found as Q = Ef [G( f )] =

∫
p( f )G( f )df , where p( f ) is

the probability density function for the fraction f .
Next, we give several examples of possible shapes of the

function G( f ).

Examples

(1) The “totally random” (TR) model. In this model, the
probability of a success of a given RDP is given simply by
the fraction of nodes reached by this process

Qf = f . (21)

This scenario can be realized, for example, in the situation
where new nodes join the network and attempt to find routes
to other newly joined nodes. Indeed, in this case, assuming
that both source and destination locations are random, any
node out of f (n − 1) nodes reached by the RDP initiated by
the source has an equal probability of being the destination.

(2) The “semirandom” (SR) model. Suppose a node i is
attempting to find a destination d(i) that is already present
in the network. If the nodes use the multihop transmis-
sion with the hops mostly between nearest neighbors (e.g.,
for throughput maximization), then it is straightforward to
show (see, e.g., [11]) that the number of other routes pass-
ing through a given node already present in the network

is Θ(
√
n/ logn). This implies that finding a route to d(i) is

equivalent to finding any of the nodes in the setA(d(i)) that
have their routes passing through d(i). It is clear that the

number of such nodes will be Θ(
√
n/ logn) as well

∣∣A(d(i))
∣∣ = Θ

(√
n

logn

)
. (22)
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If we assume that the nodes in the set A(d(i)) are randomly
distributed in the network, then it is easy to see that the prob-
ability of success of RDP will behave as follows:

Qf = G( f ) = Θ

(
f

√
n

logn

)
if f = O

(√
logn
n

)
,

Qf = G( f ) = Θ(1) if f = Ω

(√
logn
n

)
.

(23)

A specific example of such a function is

G( f ) = 1− e−c
√

n/ logn f , (24)

where c is a constant independent of n.
(3) The “completely local” (CL) model. In this model an

RDP only needs to reach a fixed (independent of n) num-
ber of nodes so that the probability of success can approach
1. This model is appropriate for the case of “perfect” route
repair algorithms in which a route between two nodes is re-
paired as soon as it is broken, and the effectiveness of the re-
pair does not depend on the number of nodes in the network,
that is,

Qf = G( f ) = Θ(1) for f = Ω
(
1
n

)
. (25)

An example of such function is

G( f ) = 1− e−c1n f , (26)

where c1 is a constant independent of n. This case can be
looked upon as “the best” case, an idealization which can be
realized under some rather restricted conditions whose anal-
ysis we postpone to future publications.

When thinking of possible shapes of the function G(·),
it is reasonable to assume that the RDP processes are “totally
random” (model TC) in the worst case. In other words, it is
reasonable to exclude cases in which the probability of a node
finding its destination is lower than the fraction of all nodes
reached by the corresponding RDP process. The latter situa-
tion is in principle possible. For example, consider the situ-
ation in which the new nodes join the network in locations
that are correlated with the locations of the corresponding
destinations. If the correlation is such that the average dis-
tance between the source and destination exceeds the aver-
age distance in the network, it is possible to have G( f ) < f
for 0 < f < 1. However it is fairly clear that such a situa-
tion is “unnatural” and we assume that nothing like this ac-
tually happens. With this assumption, we have the following
assumption.

Assumption 1. G( f ) ≥ f for 0 ≤ f ≤ 1.

Since, clearly,G(0) = 0 andG(1) = 1, it is also reasonable
to assume that the function G( f ) is concave.

Assumption 2. The function G( f ) is concave on [0, 1].

We would like to relate the unconditional probability or
route discovery success Q to the function G(·) and the ex-
pected number of first-time RREQ packet receptions E[nr].
First, let us introduce some useful notation.

The following auxiliary lemma relates the expected num-
ber of first-time receptions in a time slot E(nt) and the ex-
pected fraction of nodes reached by an RDP process E( f ).

Lemma 4.

E[ f ] = E
[
nr
]

λ(n− 1)
. (27)

Proof. Consider a time horizon of T time slots. Let Nr(T) =∑T
t=1 nt(t) be the total number of first-time RREQ receptions

during these T time slots. On the other hand, let NRDP(T) be
the total number of RDP processes initiated in the network
during these T time slots, and let N ′

r (T) be the total number
of nodes reached by these RDP processes. Since the longest
lifetime of an RDP process is equal to l, it is easy to see that

∣∣Nr(T)−N ′
r (T)

∣∣ ≤ 2
(
n

2

)
l = nl. (28)

Let us denote by nr and f , the sample means of the quantities
nt(t) and fk, respectively,

nr = 1
T
Nr(T),

f = 1
NRDP(T)

NRDP(T)∑

k=1
fk = N ′

r (T)
NRDP(T)(n− 1)

.
(29)

We can bound the variance of nr as follows:

Var
(
nr
)= 1

T2

( T∑

t=1
Var

(
nr(t)

)
+ 2

T∑

t=1

T∑

s=t+1
Cov

(
nr(t),nr(s)

))

≤ 1
T2

(
T Var

(
nr
)
+ ThVar

(
nr
)) = 1 + 2h

T
Var

(
nr
)
,

(30)

where we have used the finite covariance length assumption
Cov(nr(t),nr(s)) for |s − t| > h. In the same way, we can
upper bound the variance of f ,

Var( f )

= 1
NRDP(T)2

( NRDP(T)∑

k=1
Var

(
fk
)
+ 2

NRDP(T)∑

k=1

NRDP(T)∑

m=k+1
Cov

(
fk, fm

))

≤ 1
NRDP(T)2

(
NRDP(T)Var( f ) + 2NRDP(T) · 2 lnVar( f )

)

= 1 + 4 ln
NRDP(T)

Var( f ).

(31)

Now, an application of the Chebyshev inequality yields for
nr :

Pr
(∣∣nr − E

(
nr
)∣∣ ≥ z

) ≤ Var
(
nr
)

z2
≤ (1 + 2h)Var

(
nr
)

Tz2
,

(32)

where we have used the bound (30). Setting z = T−1/4, we
obtain

Pr
(∣∣nr − E

(
nr
)∣∣ ≥ T−1/4

) ≤ (1 + 2h)Var
(
nr
)

√
T

. (33)
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In the same way, an application of the Chebyshev inequality
and the use of (31) yields

Pr
(∣∣ f − E( f )

∣∣ ≥ z
) ≤ Var( f )

z2
≤ (1 + 4 ln)Var( f )

NRDP(T)z2
,

(34)

and, setting z = NRDP(T)−1/4, we obtain

Pr
(∣∣ f − E( f )

∣∣ ≥ NRDP(T)−1/4
) ≤ (1 + 4 ln)Var( f )√

NRDP(T)
.

(35)

We can rewrite (28) as
∣∣∣∣nr −

NRDP

λT
λ(n− 1) f

∣∣∣∣ ≤
nl

T
. (36)

Now, combining Lemma 2 with (33) and (35), using (36)
and the union bound and taking the limit T →∞, we see that
the relation

E
(
nr
) = λ(n− 1)E( f ) (37)

has to hold with probability 1, which proves the lemma.

Now we can use Lemma 4 to establish a relationship be-
tween the unconditional probability Q of route discovery
success and the function G(·).

Lemma 5. If route discovery is described by the function G( f ),
then the unconditional route discovery success probability Q
can be upper bounded as

Q ≤ G
(

nr
λ(n− 1)

)
. (38)

Proof. Since Q = Ef [G( f )], we can use the concavity of G(·)
to see that Q ≤ G(E[ f ]). Then, using Lemma 4, we obtain
the statement of the present lemma.

Note that, for the TR model, we can obtain a simple
expression for the unconditional probability of success as a
corollary to the above lemma.

Corollary 1. The unconditional success probability of an RDP
for the TR model is given by

Q = E
[
nr
]

λ(n− 1)
. (39)

Proof. Since in this case G( f ) is simply f , we obtain

Q = E[ f ], (40)

and using Lemma 4, the corollary follows.

3. NETWORK CAPACITYWHENNODES CANNOT
ALWAYS TRANSMIT

In this section, we find upper and lower bounds on the
throughput capacity of a networks where nodes spend a frac-
tion of their time in the N state in which they cannot trans-
mit data packets to their destinations.

3.1. Upper bounds

First, let us consider the case when, for large n, the average
length of active periods (when nodes are in the D state) is
not much smaller than that of period of “dormancy” (when
nodes are in the N state). In the asymptotic notation, this
means that

τ(n) = Ω
(
ξ(n)

)
. (41)

In this case, it is easy to see that the results on capacity re-
ported in [11] are valid.

Next, consider the case when the average length of active
periods becomes negligible compared to the “dormant” ones
as the network size n increases, that is,

τ(n) = o
(
ξ(n)

)
(42)

in the asymptotic notation. For this case, we have a different
upper bound on the per node throughput of the network. To
find it, we need an auxiliary result stated as a lemma. Let us
consider M state changes by a source node from state D to
N and back. Let us denote by FM the ratio of time the node
spent if the state D during theseM “full cycles”

FM =
∑M

i=1 ui∑M
i=1 ui + vi

. (43)

Let us denote by F the limit (if it exists) of the ratio FM as
M → ∞. We can show that, under the assumptions made
in Section 2, the limit indeed exists and determined by in a
simple way by the expectations τ(n) and ξ(n).

Lemma 6. The limit F(n) = limM→∞ FM exists and

F(n) = τ(n)
τ(n) + ξ(n)

(44)

with probability 1.

Proof. Using the renewal assumption, we can determine the

variance of the sums S(u)M = ∑M
i=1 ui and S(u,v)M = ∑M

i=1 ui + vi
as

Var
(
S(u)M

) =MVar(u),

Var
(
S(u,v)M

) =M
(
Var(u) + Var(v)

)
.

(45)

The use of the Chebyshev inequality and the above variances
yields

Pr
(∣∣S(u)M −ME(u)

∣∣ ≥ z
) ≤ MVar(u)

z2
,

Pr
(∣∣S(u,v)M −M

(
E(u) + E(v)

)∣∣ ≥ z
) ≤ M

(
Var(u) + Var(v)

)

z2
.

(46)

Setting z =M3/4 in (46), and dividing byM, we obtain

Pr
(∣∣∣∣

S(u)M

M
− E(u)

∣∣∣∣ ≥M−1/4
)
≤ Var(u)√

M
,

Pr
(∣∣∣∣

S(u,v)M

M
−(E(u) + E(v)

)∣∣≥M−1/4
)
≤ Var(u) + Var(v)√

M
.

(47)
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Since FM = (S(u)M /M)/(S(u,v)M /M), we can write

lim
M→∞

FM = lim
M→∞

S(u)M /M

S(u,v)M /M
= E(u)

E(u) + E(v)
, (48)

with probability 1, where we have used the inequalities (47).

With the above lemma, we can obtain a “dormancy in-
duced” upper bound on the throughput.

Theorem 1. If every node alternates between states D and N
spending an average of τ(n) time slots in stateD and an average
of ξ(n) time slots in state N then the per node throughput is

T (n) = O
(
Wτ(n)
ξ(n)

)
. (49)

Proof. Consider a long time T (measured in RDP time
slots). According to Lemma 6, only T(τ(n)/(τ(n) + ξ(n)))
of these time slots can be used by any node for data trans-
mission. During these time slots a node can send at most
T(τ(n)/(τ(n)+ξ(n)))SRREQ bits to its destinations. So the in-
equality

T (n)Tδt ≤ T
τ(n)

τ(n) + ξ(n)
SRREQ (50)

has to hold. Since δt = SRREQ/W , we obtain from (50) that

T (n) ≤ Wτ(n)
τ(n) + ξ(n)

≤ Wτ(n)
ξ(n)

, (51)

which proves the theorem.

On the other hand, regardless of states of nodes, we have
the following upper bound on the throughput induced by
interference between simultaneous data transmissions.

Theorem 2. The per node throughput T (n) is upper bounded
as

T (n) = O

⎛
⎝ W√

n logn

⎞
⎠ . (52)

Proof. The proof can be found, for example, in [11].

Combining Theorems 1 and 2, and choosing the tighter
bound depending on the behavior of the ratio τ(n)/ξ(n), we
obtain the following corollary.

Corollary 2. The per node throughput T (n) is upper bounded
as

T (n) = O
(
Wτ(n)
ξ(n)

)
(53)

if τ(n)/ξ(n) = o(1/
√
n logn) and it is upper bounded as

T (n) = O

⎛
⎝ W√

n logn

⎞
⎠ (54)

if τ(n)/ξ(n) = Ω(1/
√
n logn).

3.2. Lower bounds

In order to show that the bounds of Corollary 2 are achiev-
able up to a constant we will demonstrate that there exists
a feasible transmission schedule that allows us to obtain the
required per node throughput. To achieve that goal, we need
to perform a few auxiliary steps which we do below.

3.2.1. Tessellation

The tessellation (which we will call U1) of the square region
that turns out to be convenient for our goals is the regular
one: we divide it into identical smaller squares with side g
each. Anticipating the transmission strategy to be employed
below, we choose the parameter g in such a way that every
cell can always directly communicate with 4 of its neigh-
bors using the smallest common range of communication
that in turn is chosen in a way to ensure connectivity with
high probability (i.e, the probability that approaches 1 when
n→∞). As mentioned in Section 2, for connectivity, we have
to employ the range

r(n) =
√

c′ logn
n

, (55)

where c′ > 1/π. We chose c′ = 10 for simplicity. Then, to
ensure that each cell can directly communicate with 4 neigh-
bors, one needs to set the cell size to be

g(n) = r(n)√
5
=
√

2 logn
n

. (56)

3.2.2. Upper bound on the transmission schedule length

We call two cells interfering neighbors if there is a point in
one cell within a distance of (2 + Δ)r(n) from a point in the
other cell. It is easy to see that only transmissions from the
cells that are interfering neighbors can interfere with each
other. The following lemma is by now standard in the lit-
erature on ad hoc network capacity (see, e.g., [11]).

Lemma 7. There exists a transmission schedule in which each
cell can transmit in one of every c̃+1 time slots, where c̃ depends
only on the parameter Δ.

3.2.3. Number of nodes in a cell

To make the transmission schedule presented below feasible,
we need to ensure that every cell contains at least one node
with high probability. Given the square geometry we have
chosen, this is easy to do. Indeed, let us compute the prob-
ability that a given cell does not have any nodes in it. If a
single node is placed in the system, the probability that a cell
does not contain that node is the ratio of area outside the cell
over the total area. For n nodes, this ratio is raised to the n
power. Since the area of a cell is g(n)2,

P(no node is in a cell) =
(
1− 2 logn

n

)n
. (57)
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Also,
(
1− 2 logn

n

)n
≤ e−2 logn = n−2, (58)

so

P(no node is in a cell) ≤ n−2. (59)

We need to find the probability that there is at least one
node in every cell whp, or equivalently, the probability there
is no node in some cell is zero whp. Since there are no more
than 1/g2 cells in the network, by an application of the union
of event bound we obtain the following statement.

Lemma 8. The probability that there is a cell that does not con-
tain a single node is upper bounded by

1
2n logn

. (60)

In other words, all cells contain at least one node with high
probability.

3.2.4. Routes of packets between nodes

We organize transmission in the following way. The entire
system is tessellated into square cells of area g(n)2 .

The routing of packet between nodes proceeds as follows.
To route a packet between two nodes, we employ at most two
straight lines: one vertical and one horizontal.3 Each time a
packet is transmitted from a node in a cell to some node in
an adjacent cell. The direction of both the vertical and the
horizontal part of the route is chosen randomly (recall that
the network lives on a torus). In the final hop, the packet is
transmitted to the destination from a node in a cell adjacent
to the cell containing the destination.

Now, let us consider a given cell Ci and count the number
of routes passing through it. Let us denote this number byNi.
The following lemma demonstrates that the maximum pos-
sible value ofNi can be upper bounded with high probability.

Lemma 9. The asymptotic relation

max
i

Ni = O
(√

n logn
)

(61)

holds with high probability.

Proof. Consider vertical components of the packet routes
passing through cell Ci. Let us denote their number by Vi.
Because of the random choice of the routes’ directions the ex-
pected value of Vi will be equal to half of the expected value
of the number of nodes in the vertical strip formed by the
“column” of cells above and below the cell Ci. The area of
this strip is equal to g(n). So for the expected value of Vi we
obtain

E
(
Vi
) = 1

2
ng(n) =

√
n logn

2
. (62)

3 It is possible that only one straight line is needed.

The use of the Chernoff bound yields

Pr
(
Vi > (1 + ε)E

(
Vi
))

< e−ε
2E(Vi)/4. (63)

Setting ε = 1 and using (62), we obtain

Pr
(
Vi >

√
2n logn

)
< e−

√
n logn/4

√
2. (64)

Exactly the same logic leads to the analogous bound for the
number Hi of horizontal route components passing through
the cell Ci,

Pr
(
Hi >

√
2n logn

)
< e−

√
n logn/4

√
2. (65)

Since Ni = Vi +Hi, we can use the union bound to arrive at

Pr
(
Ni > 2

√
2n logn

)
< 2e−

√
n logn/4

√
2. (66)

To bound the quantity maxi Ni, we can use (66), the fact that
there are 1/g(n)2 cells in the network and the union bound.
The result is

Pr
(
maxNi > 2

√
2n logn

)
<

n

logn
e−
√

n logn/4
√
2, (67)

which proves the lemma.

On the other hand, we can show that the number of
routes passing through every cell can be lower bounded. This
is done in the next lemma.

Lemma 10. The asymptotic relation

min
i

Ni = Ω
(√

n logn
)

(68)

holds with high probability.

Proof. We use the notation introduced in Lemma 9. As was
shown in that lemma,

E
(
Vi
) = 1

2
ng(n) =

√
n logn

2
. (69)

We can now use the Chernoff bound to obtain

Pr
(
Vi < (1− ε)E(Vi

))
< e−ε

2E(Vi)/2. (70)

Setting ε = 1/2 and using (69), we obtain

Pr
(
Vi <

1
2
√
2

√
n logn

)
< e−

√
n logn/8

√
2. (71)

In the same way, we obtain

Pr
(
Hi <

1
2
√
2

√
n logn

)
< e−

√
n logn/8

√
2. (72)

It is obvious that the same inequality will hold for the sum
Ni = Vi +Hi,

Pr
(
Ni <

1
2
√
2

√
n logn

)
< e−

√
n logn/8

√
2. (73)

Since there are 1/g(n)2 cells in the network, we can use the
union bound and (73) to obtain the following bound on
mini Ni,

Pr
(
min

i
Ni <

1
2
√
2

√
n logn

)
<

n

2 logn
e−
√

n logn/8
√
2. (74)

This completes the proof of the lemma.
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3.2.5. Achievable throughput

We can now find the achievable per node throughput. This is
the subject of the next two theorems.

Theorem 3. If

τ(n)
ξ(n)

= o

⎛
⎝ 1√

n logn

⎞
⎠ , (75)

then the per node throughput

T (n) = Ω
(
Wτ(n)
ξ(n)

)
(76)

is achievable with high probability.

Proof. Consider a long time T . Since each source can gener-
ate data only in the D state, using Lemmas 6 and 9, we see
that the number of packets NT ,i that has to be served by the
cell Ci can be upper bounded as

NT ,i ≤ max
i

Ni
τ(n)
ξ(n)

T = c
√
n logn

τ(n)
ξ(n)

T (77)

with high probability. Since τ(n)/ξ(n) = o(1/
√
n logn), we

have that, with high probability,

NT ,i = o(T), (78)

which is less than the number of time slots T/c̃ that, as shown
in Lemma 7 each cell can be active in. This implies that the
per node throughput of

(
τ(n)/ξ(n)

)
SRREQT

Tδt
= τ(n)

ξ(n)
W (79)

is achievable with high probability, which proves the theo-
rem.

The meaning of the next theorem is that, if the ratio
τ(n)/ξ(n) is large enough, the throughput limited by the in-
terference between data transmissions can be achieved.

Theorem 4. If

τ(n)
ξ(n)

= Ω

⎛
⎝ 1√

n logn

⎞
⎠ , (80)

then the per node throughput

T (n) = Ω

⎛
⎝ W√

n logn

⎞
⎠ (81)

is achievable with high probability.

Proof. Consider a long time T . Since each source can gener-
ate data only in the D state, using Lemmas 6 and 10 we see

that the number of packetsNT ,i to be served by the cell Ci can
be lower bounded as

NT ,i ≥ min
i

Ni
τ(n)
ξ(n)

T = c2
√
n logn

τ(n)
ξ(n)

T (82)

with high probability. Since τ(n)/ξ(n) = Ω(1/
√
n logn), we

have that, with high probability,

NT ,i = Ω(T), (83)

which implies that there is enough data so that the cell can
serve a packet in each slot it can become active (and the num-
ber of such slots is T/c̃). Therefore the per node throughput
of

Ω
(
1
/√

n logn
)
SRREQT

Tδt
= Ω

⎛
⎝ W√

n logn

⎞
⎠ (84)

is achievable with high probability.

4. SCALING OF ξ(N)

A node that needs to find a route will initiate an RDP. Since
it may not be successful, the node might have to initiate it
several times. We assume that the node initiates RDPs with
frequency of ν until the route is found. The next lemma com-
putes a lower bound on the expected number of RDPs that a
node will need to initiate in order to find the route.

Lemma 11. The expected number of RREQ transmissions,
E(Ns), which is required by a node for a successful route dis-
covery is lower bounded as

E
(
Ns
) ≥ 1

Q
= 1

Ef
[
G( f )

] . (85)

Proof. Let fi be the fraction of nodes reached the by ith RDP
initiated by the source in question. Also, let Qj( f j) be the
conditional probability of the jth RDP finding the destina-
tion provided that all the previous ones failed to do so. Then
the expected number of attempts conditioned on f1, f2, . . .
can be written as

E
(
Ns | f

) = Qf1 + 2
(
1−Qf1

)
Q2
(
f2
)

+ 3
(
1−Qf1

)(
1−Q2

(
f2
))
Q3
(
f3
)
+ · · · .

(86)

Taking an expectation with respect to f and using mutual in-
dependence4 of the components of the random vector f =
( f1, f2, . . .), we obtain

E
(
Ns
) = Q + 2(1−Q)Q2 + 3(1−Q)

(
1−Q2

)
Q3 + · · · ,

(87)

4 Here, we assume that the RDP’s initiated by the same node do not run
concurrently which can be ensured, for example, by demanding that
lν < 1.
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where Q is the unconditional probability of route discovery
success, and Qi for i = 2, 3, . . . is the probability of route dis-
covery success by ith consecutive RDP provided all the previ-
ous ones have failed.

Now note that since an RREQ packet is more likely to
reach the destination that is physically closer to the source,
we will assume that the following inequalities5 hold:

Q ≥ Q2 ≥ Q3 ≥ · · · , (88)

that is, a failure to reach the destination by the previous
RREQ will not increase the probability of success for the next
RREQ. Therefore, we have the following inequality

E
(
Ns
) ≥ Q + 2(1−Q)Q + 3(1−Q)2Q + · · · = 1

Q
. (89)

In order to obtain a more precise characterization of
E(Ns), more details of the protocol used as well as physical
layer characteristics of the environment such as fading and
shadowing are needed. This is an important task that falls
beyond the scope of the present paper. Here, we will simply
state that

E
(
Ns
) = κ(n)

Q
, (90)

where κ(n) ≥ 1 is the “correction” factor due to dependence
between RREQ belonging to the same RDP.

We leave the dependence of κ(n) on n undetermined al-
though it is easy to see by comparing (88) with (90) that
κ(n) ≥ 1.

The expected duration of the time period during which
a node stays in the N state searching for a route can be com-
puted as

ξ(n) = E
(
Ns
) · 1

ν
= κ(n)

νQ
. (91)

We can use Lemma 3 and (91) to obtain the expression
for the total RDP arrival rate λ:

λ = (n/2)ν
ντ(n)Q/κ(n) + 1

. (92)

4.1. Lower bound on ξ(n)

We would like to demonstrate that the average length ξ(n)
of a node “inactivity” period is bounded from below and the
bound depends on the shape of the route discovery success
function G(·).

Theorem 5. The expected length of the time interval during
which a node stays in the N state is

ξ(n) = Ω
(

κ(n)
G(1/n)

)
. (93)

5 It may be possible to prove (88) starting from some assumptions on the
RDP protocol and nodes mobility.

Proof. From Lemma 5 and the simple fact that E(nr) ≤ n−1,
we have

Q ≤ G

(
E
(
nr
)

λ(n− 1)

)
≤ G

(
1
λ

)
. (94)

From Lemma 3, we have

λ = (n/2)ν
ντ(n)Q/κ(n) + 1

≥ (n/2)ν
τ(n)ν + 1

. (95)

Now let us consider the cases τ(n)ν ≤ 1 and τ(n)ν > 1.

Case 1. τ(n)ν ≤ 1.

From (95), we can obtain

λ ≥ (n/2)ν
τ(n)ν + 1

≥ (n/2)ν
1 + 1

= nν

4
. (96)

Thus,

Q ≤ G
(
4
nν

)
, (97)

and, therefore,

ξ(n) = κ(n)
νQ

≥ κ(n)
νG(4/nν)

≥ κ(n)
G(4/n)

≥ κ(n)
4G(1/n)

, (98)

where we have used the fact that ν ≤ 1 and concavity of the
function G(·).

Case 2. τ(n)ν ≥ 1.

From (95), we obtain

λ ≥ (n/2)ν
τ(n)ν + 1

≥ (n/2)ν
τ(n)ν + τ(n)ν

= n

4τ(n)
. (99)

Thus,

Q ≤ G
(
4τ(n)
n

)
, (100)

ξ(n) ≥ κ(n)
νG
(
4τ(n)/n

) ≥ κ(n)
G
(
4τ(n)/n

) , (101)

since ν ≤ 1.
Since τ(n) ≥ 1/4, (101) implies that

ξ(n) ≥ κ(n)
4τ(n)G(1/n)

, (102)

and the theorem follows since τ(n) = O(1).

4.2. Upper bound on ξ(n)

Next, we would like to find an upper bound on the average
length of “data inactivity” period ξ(n). Note that, in order to
find a lower bound, it was sufficient to assume that all net-
work resources were devoted to route discovery with no data
transmission taking place. For an upper bound, we need to
present a constructive network resource division scheme be-
tween RDP and data transmission.
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We make the following assumption about the probability
distribution of the fraction of nodes reached by an RDP.

Regularity condition 1

The probability distribution of the fraction of nodes reached
by an RDP is such thatmf ≥ γE( f ), wheremf is the median
of the distribution, and γ > 0 is a constant independent of n.

Note that the goal of making this assumption is to rule
out “pathological” distributions of the fraction of nodes
reached by an RDP. Thus it is not restrictive in that any dis-
tribution that can be realized in practice should satisfy it for
an appropriate value of γ.

Lemma 12. If regularity condition 1 holds, then Q ≥ (1/
2)G(γE(nr)/λ(n− 1)).

Proof. Since Q = Ef [G( f )], by definition of a median, we
have

Q =Ef
[
G( f )

] ≥ 1
2
G
(
mf
) ≥ 1

2
G
(
γE( f )

)= 1
2
G

(
γE
(
nr
)

λ(n− 1)

)
,

(103)

which proves the lemma.

Let us now demonstrate that it is in principle possible to
organize transmissions in the network such that the expected
number of first-time RDP receptions E(nr) can be equal to a
fixed (albeit possibly small) fraction of n. The main idea is to
make sure that the nodes do not transmit “too many” RDP
packets so that the network gets overwhelmed with them.

To this end, let us construct a transmission and relaying
strategy that has the desired property. Let all the nodes trans-
mit only data packets in even time slots and onlyRDP packets
in odd time slots. If a node receives an RDP, it will retransmit
it in the next odd time slot during which it is not busy ini-
tiating its own RDP process, with probability p. We call this
“strategy A.” We can also assume, without loss of generality
that τ(n) < ξ(n) since if it were not so, we would immedi-
ately come back to the situation where RDP does not have
a significant effect on capacity. First, we prove an auxiliary
lemma.

Lemma 13. In the strategy A, in any odd time slot, nrt ≤ 2pn
and (1/8)nν ≤ nnt ≤ (3/4)nν with high probability.

Proof. Since nodes generate RDP packets independently of
each other, the distribution of the number of new RDP will
be Poisson with parameter λ. So, according to the Chebyshev
inequality,

Pr
(∣∣nnt − λ

∣∣ ≥ 1
2
λ
)
≤ 4

λ
. (104)

On the other hand, since τ(n) < ξ(n) it is easy to see from
Lemma 3 that nν/4 ≤ λ ≤ nν/2. Combining this with (104),
we obtain that

Pr
(
1
8
nν ≤ nnt ≤ 3

4
nν
)
≤ 16

nν
. (105)

As to the number of RDP retransmissions in the same
time slot, obviously, E(nrt) < np. If it were the case that
E(nrt) = np, we would be able to use the Chernoff ’s bound
to obtain

Pr
(
nrt > (1 + ε)E

(
nrt
))

< e−ε
2E(nrt)/4, (106)

or, setting ε = 1,

Pr
(
nrt > 2E

(
nrt
))

< e−E(nrt)/4 = e−np/4. (107)

But since, in fact, E(nrt) < np, the inequality (107) will hold
as well.

Finally, combining (105) and (107), and using the union
bound we obtain the statement of the lemma.

We can now state the following proposition.

Proposition 1. If strategy A is followed for a sufficiently long
time T then, for this period,

E
(
nr
)

n
≥ ĉ, (108)

where ĉ is a constant independent of n.

Proof. Let k = �√5(1 + Δ)	. Let us introduce a second, more
coarse, tessellation U2 such that one cell of the tessellation
U2 consists of 16k2 cells of the tessellation U1 described be-
fore (so that one cell of U2 is a 4k × 4k array of cells of U1).
We see that the number of cells in tessellation U2 is equal to
n/32k2 logn.

Now, let us set ν = c̃1/ logn where c̃1 is a constant inde-
pendent of n. Then, according to Lemma 13, the expected
number of nodes transmitting a new RDP packet is equal
to nc1/ logn w.h.p. (where (1/4)c̃1 ≤ c1 ≤ (3/2)c̃1 is an-
other constant independent of n). Since the locations of these
nodes are mutually independent, for sufficiently large n, the
distribution of number of such nodes in any cell of tessella-
tion U2 is close to Poisson with parameter c2 = 32k2c1, and
the probability that there is exactly one such node in a cell
of tessellation W2 is close to c2e−c2 and is, therefore, at least
0 < c̃2 < c2e−c2 which is also independent of n.

In the same way, using Lemma 13, we can set p =
c̃3/ logn and convince ourselves that the probability that
there are no nodes retransmitting an RDP packet in a given
cell of tessellation U2 is at least c3 which is also independent
of n. Therefore the probability that there is exactly one node
transmitting a new RDP packet and there are no nodes re-
transmitting an RDP packet, in a given cell of tessellation U2,
is at least c̃2c3 = c4, which is also independent of n.

Let us now, inside each cell of tessellation U2, highlight a
square consisting of 4k2 small cells (those of tessellation U1)
in the center so that there is a “guard zone” of width k small
cell sizes around it. If a given big cell contains exactly one
node transmitting a new RDP packet (and no nodes retrans-
mitting RDP packets), then the probability that this single
transmitting node lies in the highlighted square is equal to
4k2/16k2 = 1/4. Now, consider a long time T . During this
time there will be T/2 slots during which only RDP packets
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are transmitted. During these T/2 slots, there will be a total of
at leastNT = (T/2)·(n/32k2 logn)·c4·(1/4) = (c5·Tn)/ logn
transmissions of a new RDP packet by node located in high-
lighted 2k × 2k square so that there are no other simul-
taneous transmissions in the same big cell of U2 tessella-
tion. Now, note that the presence of the guard zone ensures
that no transmission from other big cells interferes with re-
ceptions in the highlighted square. Therefore, all nodes in
at least 2 small cells in the highlighted square will success-
fully receive that transmission of a new RDP packet. The ex-
pected number of such nodes will therefore be no less than
NT · 2 · 2 logn = 4c5Tn. Dividing this number by the total
time (number of time slots) T , we obtain that the expected
number of successful first-time RDP packet receptions per
time slot will be no less than 4c5n where c5 is independent of
n. This proves the proposition.

We can find an upper bound on ξ(n).

Theorem 6. Under scheme A,

ξ(n) = O
(
κ(n) logn
G(1/n)

)
. (109)

Proof. We have

ξ(n) = κ(n)
νQ

. (110)

By Lemma 12,

Q ≥ 1
2
G

(
γE
(
nr
)

λ(n− 1)

)
. (111)

Therefore,

ξ(n) ≤ 2κ(n)
νG
(
γE
(
nr
)
/λ(n− 1)

) . (112)

We know, from the proof of Proposition 1, that if we set ν =
c̃1/ logn, (so that c̃1n/2 logn ≤ λ ≤ c̃1n/ logn) then E(nr) ≥
ĉn. We can now use (112) to obtain

ξ(n) ≤ 2κ(n) logn
c̃1G(γĉ/λ)

≤ 2κ(n) logn
c̃1G

(
γĉ logn/c̃1n

) ≤ 2κ(n) logn
c̃1G

(
γĉ/c̃1n

) .
(113)

Note that if γĉ/c̃1 ≥ 1, we have G(γĉ/c̃1n) ≥ G(1/n) and
hence

ξ(n) ≤ 2κ(n) logn
G(1/n)

. (114)

If γĉ/c̃1 < 1, then the concavity of G(·) implies that G(γĉ/
c̃1n) ≥ (γĉ/c̃1)G(1/n) and, therefore

ξ(n) ≤ 2c̃1κ(n) logn
γĉG(1/n)

, (115)

which completes the proof of the theorem.

Putting together the results of Theorems 5 and 6, we ob-
tain a semitight (up to logn) asymptotic characterization of
the quantity ξ(n) which we state as a corollary.

Corollary 3.

ξ(n) = Θ̃
(

κ(n)
G(1/n)

)
. (116)

5. RDP LIMITED THROUGHPUT

In this section, we collect the pieces to obtain the main result
of this paper: the scaling of the RDP limited throughput of
a random ad hoc network. The next theorem covers the case
where the RDP plays the role of the throughput bottleneck.

Theorem 7. If (τ(n)/κ(n))G(1/n) = o(1/
√
n logn), then

T (n) = Θ̃
(
W

τ(n)
κ(n)

G
(
1
n

))
, (117)

or, more precisely,

T (n) = O
(
W

τ(n)
κ(n)

G
(
1
n

))
,

T (n) = Ω
(
Wτ(n)G(1/n)
κ(n) logn

)
.

(118)

Proof. If (τ(n)/κ(n))G(1/n) = o(1/
√
n logn), then, according

to Theorem 5,

τ(n)
ξ(n)

= o

⎛
⎝ 1√

n logn

⎞
⎠ . (119)

On the other hand, combining the results of Theorems 1

and 3, we obtain that if τ(n)/ξ(n) = o(1/
√
n logn), then

T (n) = Θ
(
W

τ(n)
ξ(n)

)
(120)

and therefore (Theorem 5)

T (n) = O
(
W

τ(n)
κ(n)

G
(
1
n

))
(121)

and (Theorem 6),

T (n) = Ω
(
W
(
τ(n)/κ(n)

)
G(1/n)

logn

)
, (122)

which proves the theorem.

The next theorem shows that when the expression
(τ(n)/κ(n))G(1/n) is asymptotically large enough, the main
limiting factor for the throughput is the interference between
simultaneous data transmissions and we are back to the case
described in [11].

Theorem 8. If (τ(n)/κ(n))G(1/n) = Ω(
√
logn/n), then

T (n) = Θ

⎛
⎝ W√

n logn

⎞
⎠ . (123)
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Proof. If (τ(n)/κ(n))G(1/n) = Ω(
√
logn/n), then, according

to Theorem 6,

τ(n)
ξ(n)

= Ω

⎛
⎝ 1√

n logn

⎞
⎠ . (124)

Now, combining the results of Theorems 2 and 4, we see

that if τ(n)/ξ(n) = Ω
(
1/
√
n logn), then

T (n) = Θ

⎛
⎝ W√

n logn

⎞
⎠ , (125)

which proves the theorem.

Now that the general asymptotic behavior of the RDP-
limited throughput is given, let us consider several simple
examples and obtain the throughput scaling.

Examples

(1) The need of route discovery due to changing node mem-
bership. In this model, a new pair of nodes i and j join the
network and need to discover a route to each other. They stay
connected during a time period of τi j after which the con-
nection is terminated and the nodes leave the network (turn
themselves off). This process of pairs joining the network and
leaving continues is such a way that the network is in an equi-
librium in the sense of the number of nodes participating in
it at any given time. Let us assume that E(τi j) = τ for any i
and j. In this case it is reasonable to assume that τ does not
depend on n, as it depends only on the behavior pattern of
individual nodes. Since both nodes that just have joined the
network are “new” to it, the TR model of success probability
has to be used. This implies that

G
(
1
n

)
= Θ

(
1
n

)
, (126)

and therefore,

τ(n)
κ(n)

G
(
1
n

)
= O

(
1
n

)
= o

⎛
⎝ 1√

n logn

⎞
⎠ . (127)

Then it follows from Theorem 7 that the RDP limited
throughput scales as

T (n) = Θ
(

W

κ(n)n

)
= O

(
W

n

)
. (128)

(2) The node membership in the network is constant but
the loss of routes is due to severe fading or excessive node
mobility. In this case, it would be reasonable to assume that
a route from a node i to d(i) is lost and has to be rediscov-
ered whenever a link is broken. The number of links between
i and d(i) is Θ(

√
n/ logn), and the rate at which a link brakes

depends only on fading environment and the mobility char-
acteristics and therefore is independent of n. Therefore, as-
suming that the links brake independently, we obtain that

the rate at which the nodes i and d(i) lose their route will be
Θ(
√
n/ logn). Hence, the average length of time during which

the route stays intact is

τ(n) = Θ

(√
logn
n

)
. (129)

On the other hand, assume that for the success of route dis-
covery the SR model has to be used. Indeed, since both the
source and the destination are still present in the network,

they are “known” to Θ(
√
n/ logn) other nodes which is the

assumption under which the SR model is obtained. There-
fore,

G
(
1
n

)
= Θ

⎛
⎝ 1√

n logn

⎞
⎠ , (130)

and hence (Theorem 7),

T (n) = Θ
(

W

nκ(n)

)
= O

(
W

n

)
. (131)

(3) The situation is just as above, with the exception of
the route discovery probability. Assume that the route repair
algorithm is so good that it is able to repair the broken link
immediately so that the CL model is appropriate. Then

τ(n) = Θ

⎛
⎝
√

logn
n

⎞
⎠ , (132)

as above, but

G
(
1
n

)
= Θ(1), (133)

and, therefore

τ(n)
κ(n)

G
(
1
n

)
= Θ

(
1

κ(n)

√
logn
n

)
. (134)

So, in case κ(n) = Θ(1), Theorem 8 gives

T (n) = Θ

⎛
⎝ W√

n logn

⎞
⎠ . (135)

In other words, the scaling is the same as in the case with
no route discovery meaning that under such conditions the
main limitation is still data transmission.

6. CONCLUSION

In this paper, we have explored the problem of the through-
put of ad hoc networks in the presence of route discovery
processes. Specifically, we assumed that nodes in a network
do not always have the knowledge of routes to the corre-
sponding destinations and have to find them. We consider
the effect of RDP on the throughput explicitly, and obtain
results that generalize the previously known scaling behav-
ior of the throughput of random ad hoc networks. We find
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that, under certain conditions on the network environment
and the algorithms used for route discovery or repair, the ef-
fect of RDP on the throughput starts dominating that of data
transmission and the scaling of the throughput changes. We
obtain both the conditions for the change and the scaling of
the RDP limited throughput.

Note that we made an assumption of the function G( f )
being concave on the interval [0, 1]. This assumption seems
a natural one to make and it makes some of the proofs of the
paper easier. However, it is not critical to the results. In fact, if
the assumption of concavity of G( f ) did not hold, the results
that rely on it (e.g., Lemma 5) would still hold if we made
an assumption on the distribution of f similar to regularity
condition 1, (guarding against “pathological” distributions
and therefore not restrictive).
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