
Hindawi Publishing Corporation
EURASIP Journal on Wireless Communications and Networking
Volume 2007, Article ID 52492, 16 pages
doi:10.1155/2007/52492

Research Article
TCP Traffic Control Evaluation and Reduction over Wireless
Networks Using Parallel Sequential DecodingMechanism

Khalid Darabkh1 and Ramazan Aygün2

1 Electrical and Computer Engineering Department, University of Alabama in Huntsville, Huntsville, AL 35899, USA
2Computer Science Department, University of Alabama in Huntsville, Huntsville, AL 35899, USA

Received 12 April 2007; Accepted 9 October 2007

Recommended by Sayandev Mukherjee

The assumption of TCP-based protocols that packet error (lost or damaged) is due to network congestion is not true for wireless
networks. For wireless networks, it is important to reduce the number of retransmissions to improve the effectiveness of TCP-based
protocols. In this paper, we consider improvement at the data link layer for systems that use stop-and-wait ARQ as in IEEE 802.11
standard. We show that increasing the buffer size will not solve the actual problem and moreover it is likely to degrade the quality
of delivery (QoD). We firstly study a wireless router system model with a sequential convolutional decoder for error detection and
correction in order to investigate QoD of flow and error control. To overcome the problems along with high packet error rate, we
propose a wireless router system with parallel sequential decoders. We simulate our systems and provide performance in terms
of average buffer occupancy, blocking probability, probability of decoding failure, system throughput, and channel throughput.
We have studied these performance metrics for different channel conditions, packet arrival rates, decoding time-out limits, system
capacities, and the number of sequential decoders. Our results show that parallel sequential decoders have great impact on the
system performance and increase QoD significantly.

Copyright © 2007 K. Darabkh and R. Aygün. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

1. INTRODUCTION

One of the major advantages of wireless networks over wired
networks is the ability to collect data from locations where
it is very costly or almost impossible to set up a wired net-
work. Some applications of remote data collection have re-
search interests in wild life monitoring, ecology, astronomy,
geophysics, meteorology, oceanography, and structural engi-
neering. In these systems, the data are usually collected by
wireless end points (WEPs) having sensors. As the technol-
ogy improves, WEPs maintain new types of data collection
through new sensors. However, the capacity of the wireless
system may fail to satisfy the transmission rate from these
WEPs. Moreover, the transmission rate is not stable for WEPs
in case of interesting events when multiple sensors are ac-
tivated and the size of data to be transmitted increases sig-
nificantly. Increasing the transmission rate may aggravate
the system and channel throughput because of the signifi-
cant number of retransmissions due to the high number of
packets having errors and getting lost. The traditional TCP-
based protocols cannot deal with the bandwidth errors since
TCP assumes that packet loss occurs due to network conges-

tion [1]. Whenever a packet is lost, TCP systems decrease
the sending rate to half [1, 2] worsening the quality of de-
livery (QoD). Moreover, the use of stop-and-wait ARQ in
IEEE 802.11 [3] standard reduces the throughput for TCP-
based protocols. Stop-and-wait ARQ is preferred because of
the high error rate and low bandwidth in wireless channels.
The TCP is usually improved in two ways, that is, by split-
ting or end-to-end improvement [1]. In splitting, the hop
that connects the wireless network to the wired network es-
tablishes TCP from sender to itself and from itself to the re-
ceiver. However, this type of splitting is against the semantics
of end-to-end TCP [1]. In the alternate end-to-end adjust-
ment, the sender adjusts its sending rate based on error rates
and network congestion by probing the network or receiving
messages from the receiver.

1.1. Quality of delivery

It is obvious that numerous retransmissions in wireless chan-
nels aggravate the performance of TCP significantly. Our ma-
jor target in this paper is to reduce the number of retransmis-
sions at the data link layer so that the performance of TCP



2 EURASIP Journal on Wireless Communications and Networking

is improved. The complete delivery of email messages, docu-
ment files, or any arbitrary file with no errors and as fast as
possible is a challenging objective of QoD that needs to be
achieved. We define the QoD as the best effort strategy to in-
crease the integrity of service using available bandwidth by
customizing data link layer without promising or preallocat-
ing resources for the sender (i.e., traffic contract) as in qual-
ity of service (QoS). The major goal in QoD is to maximize
the quality under given specific resources without any ded-
ication for the sender. Therefore, our strategies enhance the
quality of service (or quality of data) obtained at the receiver.
When looking into the network architecture or delivery path
(source, intermediate hops, channels, and destination), the
intermediate hops (like routers) play critical role in achieving
the best optimistic QoD. In general, the intermediate hops
mainly consist of (a) a queue or buffer to store packets that
arrive from the channel and (b) a server to process the ar-
riving packets and deliver them to the next hop. TCP/IP is
a connection-oriented suite that consists of communication
protocols [4] that offer end-to-endreliability, in-order deliv-
ery, and traffic control. Consequently, the in-time delivery is
not an accomplished goal. Thus, delivery with very low num-
ber of retransmissions is so important to overcome in-time de-
livery problem. It becomes one of the major targets for good
QoD. Therefore, the traffic control by reducing the number
of retransmissions should be achieved in a way to accomplish
the necessary QoD.

1.2. TCP traffic control

Flow, congestion, and error controls [5] are the parts of the
traffic control. It is known that flow control protects the re-
cipient from being overwhelmed, while congestion control
protects the network from being overwhelmed. Flow control
and network congestion affect each other. High system flow
may lead to possible network congestion. Consequently, net-
work congestion causes longer delivery time. The automatic
repeat request (ARQ) [6] refers to error control that utilizes
error detection techniques (e.g., parity bits or cyclic redun-
dancy check (CRC) code), acknowledgments, timers, and re-
transmissions. In this paper, we focus on stop-and-wait ARQ
since it is employed in IEEE 802.11 protocol. This method
needs lower system requirements than other protocols (like
sliding window) since there is just one packet coming at a
time from the transmitter side (i.e., it needs less system ca-
pacity since less data need to be retransmitted in case of error
as no packets are transmitted until ACK has been received).
Actually, the major purpose of using stop-and-wait ARQ is
to prevent possible network congestion since multiple simul-
taneous packets sending (like sliding window approach) over
noisy channels may clearly cause network congestion. To re-
duce the number of retransmissions, error correction is a
necessary step to be accomplished at the data link layer espe-
cially in wireless networks. Convolutional decoding [7] us-
ing sequential decoding [8, 9] algorithms is an error detec-
tion and correction technique. In fact, it is widely used in
telecommunication environments. Sequential decoding has
variable decoding time and is highly adaptive to the channel
parameters such as channel signal-to-noise ratio (SNR). This

is so important in wireless environments since the packet er-
ror rate (PER) is a function of weather conditions, urban ob-
stacles, multipath interference, mobility of end stations, and
large moving objects [1]. It is very powerful decoding mech-
anism since it is able to detect and correct errors extensively.
Furthermore, it has a great impact on the router system flow
and network congestion since it is able to increase the de-
livery time by decreasing the unnecessary router system flow
and network congestion accordingly.

The finite buffer of router system buffer (system capac-
ity) is used to absorb the variable decoding rate. The size
of that finite buffer has an impact on the system through-
put and clearly it cannot be chosen arbitrarily. When the size
is too small, the probability of dropping (discarding) pack-
ets increases. Therefore, the incoming flow increases due to
retransmission of lost packets. Consequently, the congestion
over the network increases. When the buffer size is not sat-
isfactory, a quick (but ephemeral) remedy is to increase the
buffer size. However, large buffer sizes promote the delay for
getting service (waiting time) since more packets are in the
queue to be served. This may also increase the flow rate and
congestion over the network because of the unnecessary re-
transmissions due to the time-out of sender. Increasing the
buffer size may not correspond to more than paying more for
worse QoD. Therefore, the buffer size has a significant impact
on the flow and congestion controls. The expected advan-
tage of using sliding window approach is its higher system
throughput and faster delivery. Unfortunately, it may signifi-
cantly increase the network congestion and decrease the QoD
accordingly if it is employed with sequential decoding. Ac-
tually, our results show that we cannot get a high system
throughput even for stop-and-wait ARQ when the network
is congested. In wireless networks, the damage (packet error
rate (PER)) is much larger than in wired networks. There-
fore, the decoding time is much larger. Consequently, the sys-
tem buffer is utilized too fast and early.

1.3. Our approach

To resolve these issues, we propose a router system that ef-
fectively works for stop-and-wait ARQ at the link layer while
decreasing number of retransmissions using sequential de-
coding. We propose that if this router system is used as wire-
less router, access point, or even end point, the number of
retransmissions can be reduced significantly, thus increasing
the effectiveness of TCP protocols. Our system targets the low
bandwidth and high error rate for wireless channels. In this
sense, our system is hop-to-hop rather than end-to-end. We
claim that the data transmitted from the WEPs should be cor-
rected as early as possible.

To investigate the problem of undesired retransmissions,
we study and simulate a router system with sequential con-
volutional decoding algorithms. We firstly study (single) se-
quential decoding system with a (very large) finite buffer.
We simulate this system using MATLAB and measure the
performance in terms of average buffer occupancy, block-
ing probability, channel throughout, system throughput, and
probability of decoding failure. We then design and sim-
ulate a router system having parallel sequential decoding



K. Darabkh and R. Aygün 3

environment. Our system can be considered as type-I hybrid
ARQ with sequential decoding. Type-I hybrid ARQ is widely
implemented with forward error correction (FEC) [10–13].
Our experiments show that our router system with parallel
sequential decoders reacts better to noisy channels and high
system flow. Our router system with parallel sequential de-
coders has yielded low packet waiting time, low loss proba-
bility, low network congestion, low packet error rate (PER),
and high system throughput. Our simulator for router sys-
tem having parallel sequential decoders is implemented us-
ing Pthreads API package under a symmetric multiproces-
sors (SMPs) system with 8 processors. Our both simula-
tors are based on stochastic modeling by using discrete-time
Markov chain.

The contributions of this paper are as follows:

(1) introduction of a novel wireless router system with
parallel sequential decoding mechanism that works ef-
ficiently with

(i) finite reasonable system capacity;
(ii) hop-to-hop system;

(iii) stop-and-wait ARQ;
(iv) especially wireless environments;

(2) simulation for (singular) sequential decoding algo-
rithms for finite buffer systems;

(3) evaluating the average buffer occupancy, blocking
probability, system throughput, probability of failure
decoding, and channel throughput that represent the
major impacts on the number of retransmissions and
complete delivery time;

(4) showing the problems caused by large buffer size when
operating a sequential decoder;

(5) simulation of novel parallel sequential decoding sys-
tem for finite buffer systems;

(6) mitigating the congestion and increasing the QoD with
high system and channel throughputs using parallel se-
quential decoding system.

This paper is organized as follows. The following section
describes the background on channel coding. Section 3 de-
scribes the system for a sequential decoder with a finite buffer
system. The simulation results for a sequential decoder are
discussed in Section 4. Section 5 explains the parallel sequen-
tial decoder system and simulation results. The last section
concludes our paper.

2. CHANNEL CODING

Channel coding [14, 15] is a process to add redundant bits
to the original data bits to immune the system against noise.
The most common coding techniques that are used in chan-
nel coding are linear block code, CRC codes, and convolu-
tional codes. Figure 1 shows the block diagram of coding.
In linear block code, the data stream is divided into several
blocks of fixed length k, where each block is encoded into a
code word of length n > k. This method presents very high
code rates, k/n (the overall data rate is Roverall = (n/k)Rsource),
usually above 0.95. This leads to high information content in
code words. It has a limitation on error correction capabil-

Source
coding

Channel
coding

Source

Compressor

Encoder

Destination

Decompressor

Decoder

Noisy
channel

Figure 1: Block diagram of coding.

C1

Code word = C1C2C3· · ·CN

K-bit N-bit
S1 S2 S3 · · · SL

C2

C3

Figure 2: Encoder block (shift register) using convolutional codes.

ities. It is useful for channels with low raw error rate prob-
abilities and less bandwidth. CRC code is one of the most
common coding schemes used in digital communications. It
is very easy to be implemented in electronic hardware and ef-
ficient encoding and decoding schemes, but it supports only
error detection. Therefore, it must be concatenated with an-
other code for error correction capabilities.

2.1. Convolutional code

Convolutional code [16] is an advanced coding technique
that is designed to mitigate the probability of erroneous
transmission over noisy channel. In this method, the entire
data stream is encoded into one code word. It presents code
rates usually below 0.90, but with very powerful error correc-
tion capabilities. It is useful for channels with high raw error
rate probabilities, but it needs more bandwidth to achieve
similar transmission rate.

A convolutional coder consists of an L-stage shift regis-
ter and n code word blocks’ (see Figure 2) modulo-2 adders
(XOR gates). Therefore, it has a constraint length L. Figure 2
shows the encoder side using convolutional codes. The shift
register is a finite state machine (FSM). The importance of
the FSM is that it can be described by a state diagram (op-
erational map of the machine at each instance of time). The
number of state transitions is 2L−1 states. Any transition for
the coder produces an output depending on a certain input.



4 EURASIP Journal on Wireless Communications and Networking

2.2. Maximum likelihood decoding
and sequential decoding

There are two important decoding algorithms for convolu-
tional codes: the maximum likelihood decoding (Viterbi’s al-
gorithm) and sequential decoding. Viterbi decoding [17, 18]
was developed by Andrew J. Viterbi, a founder of Qualcomm
Corporation. It has a fixed decoding time. It is well suited to
hardware decoder implementations. Its computational and
storage requirements grow exponentially as a function (2L)
of the constraint length, and they are very attractive for con-
straint length L < 10. To achieve very low error probabili-
ties, longer constraint lengths are required. Thus, Viterbi de-
coding becomes infeasible for high constraint lengths (there-
fore, sequential decoding becomes more attractive). Con-
volutional coding with Viterbi decoding has been the pre-
dominant forward error correction (FEC) technique used in
space communications, particularly in satellite communica-
tion networks such as very small aperture terminal (VSAT)
networks.

Sequential decoding was first introduced by Wozencraft
for the decoding of convolutional codes [16, 19–21]. There-
after, Fano developed the sequential decoding algorithm with
a milestone improvement in decoding efficiency [7, 22, 23].
The sequential decoding complexity increases linearly rather
than exponentially. It has a variable decoding time. A sequen-
tial decoder acts much like a driver who occasionally makes a
wrong choice at a fork of a road then quickly discovers the er-
ror (because of the road signs), goes back, and tries the other
path. In contrast to the limitation of the Viterbi algorithm,
sequential decoding [24–26] is well known for its computa-
tional complexity being independent of the code constraint
length. Sequential decoding can achieve a desired bit er-
ror probability when a sufficiently large constraint length is
taken for the convolutional code. The decoding complexity
of a sequential decoder becomes dependent on the noise level
[14, 23]. These specific characteristics make the sequential
decoding very useful.

The sequential decoder receives a possible code word.
According to its state diagram, it compares the received se-
quence with the possible code word allowed by the decoder.
Each sequence consists of groups and each group consists of
n digits. It chooses the path whose sequence is at the shortest
Hamming distance (HD) from the first n received digits (first
group), then it goes to the second group of the n received dig-
its and chooses the path whose sequence is the closest to these
received digits. It progresses this way. If it is unlucky enough
to have a large number of (cumulative) errors in a certain re-
ceived group of n digits, it means that it took the wrong way.
It goes back and tries another path.

3. DISCRETE-TIMEMARKOV CHAINMODEL

We simulate the router system with sequential decoding as
a service mechanism using discrete-time Markov model. In
this model, the time axis is portioned into slots of equal
length. This slot time is precisely the time to transmit a
packet over the channel (i.e., propagation time plus trans-
mission time). We assume that all incoming packets have the

same size. This is the case if we send Internet packets (typi-
cally of size 1 KB) over a wireless link (where packets have the
size of around 300 bytes) or over the so-called ATM networks
(in which cells have the size of 52 bytes). Thus, the router sys-
tem can receive at most one new packet during a slot. In this
paper, we use practical assumption that the buffer is of finite
length to be close to real environment. Hence, any packet loss
happens during transmission due to lack of buffer space; a
packet retransmission will occur from the sender side if time-
out occurs or negative ACK arrives. This retransmission is
based on stop-and-wait ARQ. However, the new packets ar-
rive at the decoder from the channel according to Bernoulli
process. A slot carries an arriving packet with probability λ
and it is idle (no transmission) with probability 1− λ.

SNR increases as the signal power gets larger than noise
power. This indicates that the channel is getting better (not
noisy). Thus, low decoding time may suffice. On the other
side, if SNR decreases, this represents that the noise power
gets larger than signal power. Therefore, the channel is get-
ting worse (noisy). Consequently, larger decoding time is re-
quired. To demonstrate that variable decoding time, we need
a distribution with a dominant parameter to represent SNR
of the channel such that when it gets higher and higher, the
probability density function of that distribution goes to zero
earlier and earlier accordingly. On the other hand, when it
gets lower and lower, the chance of going to zero is lower and
lower. In fact, it can also go to infinity. Thus, there should
be a limit employed to prevent that case. Moreover, we need
a parameter that determines the minimum value that a ran-
dom variable can take to represent the minimum decoding
time. Actually, the Pareto (heavy-tailed) distribution [27, 28]
is the best fit to demonstrate this variable decoding time.
Thus, the decoding time follows the Pareto distribution with
a parameter β, which is a function of SNR. The buffer size is
assumed to be at least one. We make another assumption that
the decoding time of a packet is in chunks of equal length to
the slot size. That is, the decoder can start and stop decod-
ing only at the end of a slot. This assumption replaces the
continuous distribution function of the decoding time by a
staircase function that is a pessimistic approximation of the
decoding time. This approximation yields an upper bound
on the number of packets in the queue [27, 29, 30]. In or-
der to make this protocol consistent with our assumptions,
we assume that each slot corresponds to exactly the time to
transmit a packet over the channel (propagation time plus
transmission time).

It is very important to realize that we cannot let the de-
coder perform decoding for infinite time. Thus, a decoding
time-out limit (T) should be operated with the system. We
use similar assumptions as in [27, 30–33]. If a packet requires
j slots for decoding ( j ≤ T), it leaves the system at the end
of the jth slot after the beginning of its decoding, and the
decoding of a new packet starts (if there is a new packet in
the decoder’s buffer) at the beginning of the following slot.
If a packet’s decoding needs more than T slots, the decoder
stops that packet’s decoding after T slots. This packet can-
not be decoded and thus a decoding failure results. There-
fore, the decoder signals a decoding failure to the transmitter
of the packet. The retransmission is based on stop-and-wait



K. Darabkh and R. Aygün 5

(1− λ)μ1 (1− λ)μ1 (1− λ)μ1 (1− λ)μ1

(1− λ) λμ1 λμ1 λμ1 λμ1

P0,0 P1,0 P2,0 P3,0 · · · PN ,0

P1,1 P2,1 P3,1 · · · PN ,1

P1,2
P2,2 P3,2 · · · PN ,2

P0,0,1 P1,T−1 P2,T−1 P3,T−1 · · · PN ,T−1

P1,0,1 P2,0,1 P3,0,1 · · ·
PN ,0,1

λ

λμ
2

(1
−
λ)

(1
−
μ

1
)

(1
−
λ)

(1
−
μ

1
)

λμ
2

(1
−
λ)

(1
−
μ

1
)

λμ
2

(1
−
μ

1
)

λμ
2

(1
−
λ)

(1
−
μ

2
)

(1
−
λ)

(1
−
μ

2
)

λμ
3

(1
−
λ)

(1
−
μ

2
)

λμ
3

(1
−
μ

2
)

λμ
3

(1−
λ)μ

3

(1
)

(μ
1

)

λμT
λμT

(1− λ)(1− μT )

λ(
1
−
μ
T

)

(μ
1

)

λ(
1
−
μ
T

)

λ(
1
−
μ
T

)

λ(
1
−
μ
T

)

(1
)

(1−
λ)μ

2

(1−
λ)μ

3(1−
λ)μ

T

(1−
μ1 )λ

(1−
λ)μ2

(1−
λ)μ

3

(1−
μ2 )λ

(1−
λ)μ

T

λμ3

(1−
μ

3 )λ

(1
− μ

1
)

(1−
λ)(1

− μT
)

(μ
1
)(1
−
μ 1

)

(1
− λ

)(1
− μT

)

(1−
μ

3 )λ

(1−
λ)μ

T λμT

λμT

(1
− μ

1
)

(1−
λ)μ

2(1−
μ1 )λ

(1−
μ2 )λ

(1−
λ)μ

2

(1−
μ

1 )λ

(1−
λ)μ

3

(1−
μ

2 )λ
(1−

λ)μ
T

(1−
μ
T−

1 )λ

(1
− λ

)(1
− μ

T
)

...
...

...
...

Figure 3: Probability state transitions of the router system with a buffer and a sequential decoder.

ARQ. Therefore, if a decoding failure occurs, the packet is
retransmitted at the following slot, while the decoder starts
at that slot decoding another packet if there is any in the
buffer. Therefore, the channel carries a retransmitted packet
during the slot that follows decoding failures. Consequently,
new packets cannot arrive in those slots but can be transmit-
ted during all the other slots.

The state of the system with just a sequential decoder can
be represented [27, 30] by (n, t,w), where n is the number of
packets in the buffer including the packet being decoded, t
is the number of slots the decoder has already spent on the
packet that is currently being decoded, and w is the number
of packets to be retransmitted. Since the system has a finite
system capacity, the value of n must be limited between 0 and
the maximum permitted system capacity (0 ≤ n ≤ N). If the
decoder needs more than t slots to be completely decoded,
then decoding failure occurs. Therefore, it has to be retrans-
mitted. Figure 3 shows the probability state transitions of the
router system with a buffer and a sequential decoder. Pn,t,w

is the probability that the decoder’s buffer contains n pack-
ets including the one being decoded, the decoder is in the tth
slot of decoding, and there are w packets that need to be re-
transmitted. The summation of all the outgoing links (prob-
abilities) from each state must be equal to one.

We use the notations that are mentioned in prior re-
searches [29, 30, 32, 34]. ck denotes the probability of de-
coding being completed in exactly k slots, and μk denotes the
conditional probability that decoding is completed in k slots

given that the decoding is longer than k − 1 slots. Then, the
conditional probability μk is given by

μj =
cj

1− Fj−1
, (1)

where Fj =
∑ j

i=1ci is the cumulative distribution function
(CDF) of the decoding time. It can be shown that

j∏

i=1

(
1− μi

) = 1− Fj . (2)

The decoding time of sequential decoders has the Pareto dis-
tribution

PF(τ) = Pr{t > τ} =
(
τ

τ0

)−β
, (3)

where τ0 is the decoding time for which the probability is
1, that is, the minimum time the decoder takes to decode a
packet, and β is called the Pareto parameter and it is a func-
tion of the SNR of the channel.

4. SIMULATION OF A ROUTER SYSTEMWITH
A SEQUENTIAL DECODER

This section illustrates a lot of important requirements for
the simulation. It contains two subsections. Section 4.1 in-
cludes the simulation setup. Section 4.2 includes and ex-
plains the simulation results.



6 EURASIP Journal on Wireless Communications and Networking

C
h

an
n

el
Decoder

buffer

Sequential
decoder

Decoding
failure

Packet is
completely

decoded

No

Yes
Packet is

partially decoded

Packet’s retransmission
for the succeeding slot

Signal to
transmitter

Figure 4: A router system with a sequential decoder using stop-
and-wait ARQ.

10−1

100

101

102

103

A
ve

ra
ge

bu
ff

er
oc

cu
pa

n
cy

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Packet arriving probability (λ)

β = 1.5, T = 100

β = 1.5, T = 10

Figure 5: Average buffer size versus packet arriving probability (β =
1.5).

4.1. Simulation setup

The simulation of the sequential decoding system is done in
MATLAB. The goal of this simulation is to measure the av-
erage buffer size, channel throughput, system throughput,
blocking probability, and decoding failure probability. The
sequential decoding system is simulated using stop-and-wait
ARQ model. Therefore, the time axis is portioned into slots
of equal length where each slot corresponds to exactly the
time to transmit a packet over the channel (i.e., propaga-
tion time plus transmission time). Figure 4 shows the typical
structure of a router system that works on the data link layer
(specifically in the logical link control sublayer) since we are
working hop-to-hop not end-to-end. We assume that all the
incoming packets have equal lengths (e.g., ATM networks or
wireless links). Accordingly, the decoder can receive at most
one new packet during a slot.

The primary steps in our simulation are as follows. A ran-
dom number generator for Bernoulli distribution is invoked
at the beginning of every time slot to demonstrate the arrival
of packets. A random number generator for Pareto distribu-
tion is invoked at the beginning of any time slot as long as
there are packets in the queue waiting for service to demon-
strate the heavy tailed service times. The minimum service

10−1

100

101

102

103

A
ve

ra
ge

bu
ff

er
oc

cu
pa

n
cy

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Packet arriving probability (λ)

β = 1, T = 100

β = 1, T = 10

Figure 6: Average buffer size versus packet arriving probability (β =
1.0).

time is assumed to be one. The decoding time-out slots (T)
and system capacity are taken as inputs of the simulation.

4.2. Simulation results

Figure 5 shows the average buffer size versus packet arriving
probability (λ) for fixed channel condition (β = 1.5), sys-
tem capacity of 900, and different decoding time-out slots
(10 and 100). The simulation time is 4 × 105 slots. For fixed
decoding time-out slots T and β, the average buffer size in-
creases as packet arriving probability increases and it reaches
the system capacity accordingly. This is expected since in-
creasing λ means increasing the probability of arriving pack-
ets to the router system. For fixed λ and β, it is also seen that
the average buffer size increases as the decoding time-out
slots (T) increase. This is expected since increasing the de-
coding time-out limit means getting low probability to serve
more packets and high probability for the buffer to be filled
up early accordingly.

Figure 6 represents the average buffer size versus λ for
β = 1.0. The simulation time is 4× 105 slots, system capacity
is 900, and decoding time-out slots are 10 and 100. From Fig-
ures 5 and 6, it is noticed that the average buffer size increases
as channel condition β decreases of course for fixed T and λ.
This is expected since decreasing β means that the channel
gets worse (i.e., noisy). Thus, high decoding slots are gener-
ated from Pareto random number generator. Consequently,
the buffer in Figure 6 is filled up earlier than that in Figure 5.
It is also interesting to see that the buffer is filled up too
early in terms of packet arriving probability. For example,
for β = 1.0, the system reaches its capacity around packet
arriving probabilities λ = 0.35 and λ = 0.25 for T = 10 and
T = 100, respectively. While in Figure 5, for β = 1.5, the sys-
tem reaches its capacity around packet arriving probabilities
λ = 0.52 and λ = 0.44 for T = 10 and T = 100, respectively.

Figure 7 shows the blocking probability of incoming
packets versus incoming packet probability. The results are
shown for different decoding time-out limits (T) and chan-
nel conditions (β). The blocking probability increases as



K. Darabkh and R. Aygün 7

0.4

0.5

0.6

0.7

0.8

0.9

1

B
lo

ck
in

g
pr

ob
ab

ili
ty

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Incoming packet probability (λ)

β = 0.8, T = 100

β = 1, T = 100

β = 1, T = 10

Figure 7: Blocking probability versus incoming packet probability
(β = 0.8, 1.0).

0.1

0.15

0.2

0.25

0.3

0.35

Sy
st

em
th

ro
u

gh
pu

t

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Incoming packet probability (λ)

β = 1, T = 10

β = 1, T = 100

Figure 8: System throughput versus incoming packet probability
(β = 1.0).

incoming packet probability increases. This is expected since
there is higher flow rate. For fixed channel condition and
incoming packet probability, the blocking probability in-
creases as decoding time-out limit increases. This is also ex-
pected since increasing T means getting low probability for
the buffer to have available space. For fixed incoming packet
probability and decoding time-out limit, the blocking prob-
ability increases as channel condition decreases. When the
channel condition decreases, the SNR decreases leading to
a high noise power (i.e., there is high distortion). Conse-
quently, large T is generated from Pareto random number
generators trying to detect and correct the errors in currently
noisy served packet.

Figure 8 illustrates the system throughput versus packet
arriving probability given the channel condition β = 1.0. The
system throughput can be explained as the average number
of packets that get served (decoded) per time slot. One im-
portant observation we can notice from this figure is that
the system throughput goes firstly linear and then the sys-
tem cannot respond to increasing incoming packet proba-
bility leading to a nonincreasing system throughput. Thus,

we have two trends of system throughput. It is so interesting
to see that when system throughput is linear, the slope be-
comes equal to the incoming packet probability (λ). In fact,
this indicates that all the incoming packets are being served
without any packet loss. The other trend is when the system
throughput does not respond to the increase in the incoming
packet probability. Actually, there are two interesting expla-
nations for this drastic change. The first one is that change
is due to starting discarding (dropping) packets. Therefore,
the system throughput is getting lower than the incoming
packet probability. Why does the system throughput almost
get constant although there is noticed increasing in the in-
coming packet probability? It is because the blocking prob-
ability is not constant when the incoming packet probabil-
ity is increasing, but instead it is increasing. Figure 7 veri-
fies this explanation. Therefore, it is true that as the packet
arrival rate increases, the total number of discarded packets
also increases. Thus, the system throughput almost reacts in
the same way and does not change significantly. Actually, this
is a very good indication that the congestion over the net-
work is obvious since there is not that much gain in the sys-
tem throughput while increasing the incoming packet prob-
ability. The effect of increasing the decoding time-out limit
for fixed channel condition and packet arriving probability
is shown in Figure 8. In fact, increasing the decoding time-
out limit leads to increasing the blocking probability and de-
creasing the system throughput.

Figure 9 illustrates the system throughput versus packet
arriving probability for a different channel condition (β =
1.5). Figures 8 and 9 show the effects of employing differ-
ent values of channel condition. Therefore, for a fixed value
of packet arriving probability and decoding time-out limit,
the system throughput increases as the channel condition in-
creases. This is expected since increasing the channel condi-
tion means that the channel gets better (i.e., flipping of the
transmitted bits of packets is being reduced).

5. WIRELESS ROUTER SYSTEMWITH
PARALLEL SEQUENTIAL DECODERS

This section provides a study over a wireless router that man-
ages all the traffic coming from wireless networks. Our study
is applicable for those applications that cannot tolerate any
damage or loss packets and need quickness in delivery as
much as possible. We reduce the traffic intelligently by miti-
gating the number of retransmissions since it has significant
impact on the QoD in terms of delivery time. In fact, these
retransmissions can be a result of lost or damaged packets.
The packets can be lost if they arrive to a full buffer. This
study includes proposing a wireless router system based on
the implementation of hybrid ARQ with parallel sequential
decoding. The organization of this section is as follows. It
contains five subsections. Section 5.1 explains our stochas-
tic simulation details and flowcharts. Section 5.2 explains the
structures, constants, declarations, and initializations that
are used in our simulator. Section 5.3 illustrates the system
behavior of our simulator, and Section 5.4 includes our par-
allel simulation results.



8 EURASIP Journal on Wireless Communications and Networking

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Sy
st

em
th

ro
u

gh
pu

t

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Incoming packet probability (λ)

β = 1.5, T = 10

β = 1.5, T = 100

Figure 9: System throughput versus packet arriving probability
(β = 1.5).

5.1. Stochastic simulation details and flowcharts

This program (simulator) is designed to simulate a router
system with more than one sequential decoder with a shared
buffer. Figure 10 shows this system. It is seen that all the se-
quential decoders share the same finite buffer. In fact, we
manage the traffic over the router system by using sequen-
tial decoding to reduce the packet error rate (PER) and this
clearly refers to a type of error control. Moreover, we add
parallel sequential decoders to mitigate the congestion over
the router system due to having finite available buffer space.
We see in Section 4 that the average buffer occupancy reaches
the system capacity too early leading to an increase in the
blocking probability as the incoming packet probability in-
creases when using a sequential decoder with a system ca-
pacity of 900 (which is practically very large). In fact, this
may be the major drawback of using the sequential decod-
ing. However, we can overcome this drawback and further-
more reduce a clearly possible congestion over the network
by implementing parallel sequential decoding environments.
There is also one more interesting improvement with this
simulator. In fact, it is the ability to extend (increase) the de-
coding time-out limit in case of noisy channels. We are so
worried in a router system model with just a sequential de-
coder about this limit since it is affecting the buffer badly (as
seen in Section 4). This simulator has been performed using
Pthreads API that is defined in the ANSI/IEEE POSIX 1003.1,
which is a standard defined only for the C language. This pro-
gram has been executed on a Sun E4500 SMPs (symmetric
multiprocessors) system with eight processors. In this sys-
tem, all the processors have access to a pool of shared mem-
ory. Actually, this system is known as uniform memory access
(UMA) since each processor has uniform access to memory
(i.e., single address space).

The main problem of SMP is synchronization [35, 36].
Actually, synchronization is very important in SMP and
needs to be accomplished since all processors share the same
memory structure. It can be achieved by using mutual exclu-
sion, which permits at most one processor to execute the crit-
ical section at any point. It is known that the enforcement of

mutual exclusion may create deadlock and starvation control
problems. Thus, the programmer/developer must be careful
when designing and implementing the environment. There
are a lot of methods for controlling access to critical regions.
For example, there are lock variables, semaphores (binary or
general semaphores), and monitors. Pthreads API uses mu-
texes; mutex is a class of functions that deal with synchro-
nization. Mutex is an abbreviation for “mutual exclusion.”
Mutex functions provide creation, destruction, locking, and
unlocking mutexes. Mutex variables are one of the primary
means of implementing thread synchronization and protect-
ing shared data when multiple writes occur.

5.2. Structures, constants, declarations,
and initializations

The key structures and entities that are required for the sim-
ulation are buffer status structures, threads structure, tar-
get structure, corrupted packets structure, Bernoulli random
number generator (BRNG) structure, constants entity, and
POSIX critical sections entity.

Buffer status is represented with five attributes: current
slot (the current slot of the simulation), Sys curr state (the
number of available packets in the system), arrival lost
packet (the accumulative number of the packets being lost
due to full buffer), total arriving packets (the total number
of arriving packets to the router system), and time history
(history or record of the total number of the packets in the
system for every slot time). Threadsstructure refers to se-
quential decoder (leader or slave decoder). It has two im-
portant attributes: leader thread (set when it is in decod-
ing process) and threads counter (the number of jobs wait-
ing for a slave decoder). The threads and mutex are ini-
tialized inside main thread initialization. In our simula-
tions, there is one leader sequential decoder, and the rest
are considered as slave sequential decoders. Target struc-
ture is used for simulator statistics and has two impor-
tant attributes: mean buffer size (the average buffer occu-
pancy at stationary conditions) and blocking prob (the prob-
ability of packets being dropped (discarded) due to lim-
ited system capacity). Corrupted packetsstructure has two at-
tributes used for the management of corrupted packet pool:
packet failure (the number of packets facing decoding fail-
ure) and corrupted pcts counter (the number of packets that
cannot be decoded even with retransmission). Bernoulli ran-
dom number generator (BRNG) represents the probability of
arrival packets for a certain slot time. Constants entitymain-
tains the six input attributes: num threads (the maximum
number of threads in the simulation), sim time (the simula-
tion time), system cap (the maximum buffer size), beta (the
channel condition), min serv slots (the minimum decoding
time in terms of time slots), and T (the maximum time-out
decoding slots limit). POSIX critical sections entity declares
the mutex for three necessary critical sections (shown in Fig-
ures 11–14) for synchronization.

5.3. System behavior

Figure 10 explains the system architecture of our approach in
a wireless router. This subsection addresses the major duties



K. Darabkh and R. Aygün 9

C
h

an
n

el

Decoder
buffer

B
u

ff
er

co
n

tr
ol

le
r

Sequential
decoder (1)

Sequential
decoder (2)

Sequential
decoder (3)

Sequential
decoder (n)

Success!

...

Uncorrupted packet
(completely decoded)

Packet’s retransmission
for the succeeding slot Signal to

transmitter

Corrupted packet
(partially decoded)

C
or

ru
pt

ed
/u

n
co

rr
u

pt
ed

pa
ck

et
po

ol

Pa
ck

et
’s

fi
lt

er

Figure 10: Router system with parallel sequential environment and single address space structure.

Starting of Leader decoder
Thread termination and

deletion (killing)

No Yes

thread par.leader thread = 0; // ON

Ending of
Leader decoder

buff par.current slot
<= sim time Call Pareto RNG for decoding:

(Decoding time slots)
Yes

pct corr.corrupted pcts counter
>=1No Yes

Call Bernoulli RNG:
Packet arr

pthread mutex lock (&count mutex2);
buff par.current slot +=1; // next slot
buff par.total arriving packets += num arr1;
buff par.Sys curr state += num arr1;

Packet arr= 1

No Yes
buff par.Sys curr state-system cap> 0

max = 0;
max =buff par.Sys curr state -system cap;
buff par.Sys curr state=system cap;

For loop
For i = 1 to Decoding time slots

No Yes
i > T

No

bu
ff

pa
r.

cu
rr

en
t

sl
ot

<
=

si
m

ti
m

e
&
i
>
=

2

pthread mutex lock (&count mutex1);
pct corr.Packet failure +=1;
pct corr.corrupted pcts counter +=1;
pthread mutex unlock (&count mutex1);

buff par.arrival lost packet +=max;
buff par. time history [buff par.current slot] = buff par.Sys curr state;
pthread mutex unlock(&count mutex2);

Exit from the loop Loop expired

thread par.leader thread =1; // one means off

Ending of Leader decoder Thread termination and
deletion (killing)

Figure 11: Major duties of the leader thread.



10 EURASIP Journal on Wireless Communications and Networking

Main thread simulation

fin par.Mean buffer size[ j]= sum

/ buff par.current slot;

fin par.Blocking prob[ j]=
buff par.arrival lost packet /

buff par.total arriving packets;

fin par.Decoding failure prob[ j]=
pct corr.Packet failure /

buff par.total arriving packets;

pct corr.Packet failure = 0;

pct corr.corrupted pcts counter = 0;

buff par.current slot = 1;

buff par.Sys curr state = 0;

buff par.arrival lost packet = 0;

buff par.total arriving packets = 0;

berno in.prob = berno in.prob + 0.02;

j = j + 1; // for next probability

Call Bernoulli RNG: Packet arr

ALL done

Initialized sum by zero

Thread
termination
and deletion

Loop done

(For loop)
From i = 1 to

buff par.current slot

Sum=sum +
buff par.time history[i];

buff par.Sys curr state
<1 && thread par.leader thread

==1 (OFF)

Yes

Yes

Yes

Yes

No

No

No

No
pct corr.corrupted pcts counter

> 0

Call Bernoulli RNG: Packet arr

buff par.Sys curr state = Packet arr
+ buff par.Sys curr state;

buff par.time history [buff par.current slot] =
buff par.Sys curr state;

buff par.Sys curr state
>= 1 &&

pct corr.corrupted pcts counter
>= 1

Packet arr = 1

Corrupted
packets block

buff par.total arriving packets = Packet arr
+ buff par.total arriving packets
buff par.Sys curr state = Packet arr
+ buff par.Sys curr state;
buff par.time history [buff par.current slot] =
buff par.Sys curr state;

While loop
berno in.prob <= 1

Loop done While loop
buff par.current slot

<= sim time

tempcheck = buff par.current slot;

buff par.Sys curr state >=1 &&
pct corr.corrupted pcts counter

==0

Uncorrupted

packets block

pthread mutex lock (&count mutex1);
pct corr.corrupted pcts counter=
pct corr.corrupted pcts counter −1;
pthread mutex unlock (&count mutex1);

buff par.current slot = buff par.current slot+1;

buff par.total arriving packets = Packet arr
+ buff par.total arriving packets

Figure 12: Major decoding steps for main thread.

and responsibilities of these components in our simulator. In
this section, we use the terms thread, processor, and decoder
interchangeably.

In our simulation environment, each thread represents
a sequential decoder except the main thread (processor). We
assume that there is just one packet that may arrive for any
arbitrary slot time to be fully compatible with stop-and-wait
handshaking mechanism. All the attributes of the buffer sta-
tus structure are required to be updated accordingly. Dur-
ing the decoding slots, there may be arrivals to the system.
We need to use sequential decoders to demonstrate the ar-
riving process during decoding slots. Unfortunately, we can-
not attach the arriving process to every decoder since one
packet may arrive during any decoding slot. Therefore, we
have defined (classified) two types of decoders: leader and
slave. There is only one leader decoder but there might be
many slave decoders. In our model, the main thread gives
the highest priority for decoding for the leader decoder. But,
in other cases, we cannot attach the arriving process to those
slaves (since there are many) when the leader processor is not
busy (decoding). Thus, in our model, this arriving process at
such cases is handled by the main thread especially the first
slot of our simulation. Furthermore, the leader and slave de-
coders have common responsibilities that are packet decod-
ing and management of corrupted packet pool.

Before the leader processor starts decoding, it modifies
the leader thread attribute of threads structure to 0 indicat-
ing that it is currently busy and then it starts decoding. Af-
ter finishing its decoding, it increments this attribute to 1
indicating that it is currently free waiting to serve another
packet. On the other hand, slave processors start decoding af-
ter decrementing the threads counter attribute of the threads
structure. In fact, this attribute represents the level of utiliz-
ing the slave decoders. Whenever they finish decoding, they
increment this attribute. Since all slave processors may access
this attribute at the same time, it is synchronized by the third
critical section inside the POSIX critical sections entity. Each
decoder before decoding calls Pareto random number gen-
erator (PRNG) to get the number of decoding slots needed
for that packet. The inputs for that PRNG are min serv slots
and beta. Figure 11 shows the flowchart that shows the du-
ties of the leader decoder. The leader and slave processors are
responsible for corrupted packet pool. Whenever a packet de-
coding exceeds the given decoding time-out limit, a partial
decoding occurs and the corrupted packet pool is updated.
In our simulation, this process can be managed through the
corrupted packets structure. These attributes are shared (i.e.,
all parallel decoders may need to use these simultaneously).

The arriving process is handled by calling BRNG. If the
probability of arriving packets is one, this means that every



K. Darabkh and R. Aygün 11

buff par.Sys curr state ==1
&& thread par.leader thread==0 &&

thread par.threads counter>= 1

NO Yes

Enter the critical section (2):
pthread mutex lock (&count mutex2);

buff par.Sys curr state = buff par.Sys curr state
−1;
buff par.time history [buff par.current slot] =
buff par.Sys curr state;

Exit the critical section (2):
pthread mutex unlock (&count mutex2);

A slave processor

creation

No Yesbuff par.Sys curr state>=
NUM THREADS

Block continues (next figure)

BLOCK O/P

No Yes
buff par.current slot >

tempcheck

No Yesbuff par.Sys curr state ==1
&& thread par.leader thread ==1

Enter the critical section (2):
pthread mutex lock (&count mutex2);

buff par.Sys curr state = buff par.Sys curr state
- thread par.leader thread;
buff par.time history [buff par.current slot] =
buff par.Sys curr state;

Exit the critical section (2):
pthread mutex unlock (&count mutex2);

Leader processor

creation

BLOCK O/P

Uncorrupted

packets block

BLOCK I/P

thread par.leader thread
==1

Call Bernoulli RNG: Packet arr

Enter the critical section (2)
pthread mutex lock (&count mutex2);

buff par.current slot = buff par.current slot +1

buff par.total arriving packets = Packet arr
+ buff par.total arriving packets
buff par.Sys curr state = Packet arr
+ buff par.Sys curr state;

No Yesbuff par.Sys curr state
- system cap > 0

max =buff par.Sys curr state - system cap;

buff par.Sys curr state=system cap;
max = 0;

buff par.arrival lost packet = buff par.arrival lost packet + max;

buff par. time history [buff par.current slot] = buff par.Sys curr state;

No Yes

Exit the critical section (2):
pthread mutex unlock (&count mutex2);

Figure 13: Major simulation steps for uncorrupted packets block shown in Figure 12.

slot has an arriving packet. The buffer status structure is
required to be updated. Furthermore, the sys curr state at-
tribute is required to be checked every slot time in order to
ensure that it will not exceed the system capacity. Therefore,
if a loss occurs, the arrival lost packet attribute must be im-
mediately updated. The system current state must be main-
tained to be equal to the system capacity accordingly. More-
over, the total arriving packets attribute must be incremented
if there is an arrival regardless of whether loss happens or
not. In our approach, controlling the arriving process is done
once either by the buffer controller or by the leader decoder.
For every slot time, the system current state becomes less
than one and leader decoder is not busy; the buffer controller
calls BRNG if corrupted pcts counter attribute (defined in
corrupted packets structure) is zero. Otherwise, there is a re-
transmitted packet. The corrupted pcts counter attribute is
required to be decremented accordingly. It is possible that
in those cases the slave decoders are performing decoding.
Therefore, they may update this attribute simultaneously
with the buffer controller.

The buffer controller is responsible for dispatching decod-
ing for a packet if there is any in the buffer waiting for ser-
vice and there are available (not busy) sequential decoders.

It may dispatch decoding for every slot time except the first
slot since we started from that slot (i.e., system current state is
zero at that slot). Whenever it dispatches decoding, it updates
the system current state by decrementing a number referring
to the total number of dispatched decoders. It also updates
the time history vector of the buffer status structure with
current number of waiting packets. Actually, the dispatch-
ing process depends on sys curr state attribute, leader pro-
cessor, and slave processors. For example, if the sys curr state
is zero, the buffer controller cannot dispatch decoding. If the
sys curr state is equal to one, the buffer controller dispatches
the decoding for the leader decoder if the leader decoder is
not busy. Otherwise, the buffer controller dispatches the de-
coding for any free slave decoder. Moreover, it has to have
a strong connection with the total number of available de-
coders, the attributes of sequential decoding threads structure
(i.e., leader thread and threads counter), and sys curr state in
order to maintain system validity through judging and know-
ing to whom it will dispatch, how many it should dispatch,
what is left and then update the required attributes accord-
ingly. As we mentioned earlier, the buffer controller keeps
monitoring for every slot time to see whether a packet comes
and/or decoders finish. How are the system current state and



12 EURASIP Journal on Wireless Communications and Networking

Yes NO
buff par.Sys curr state <=

thread par.threads counter &&
thread par.leader thread ==0

Enter the critical section (2):

buff par.Sys curr state= buff par.Sys curr state
- thread par.threads counter

buff par.time history[buff par.current slot]
= buff par.Sys curr state

Exit of the critical section (2):

Slaves threads
creation

Uncorrupted packets block (continuous)

No Yes
buff par.Sys curr state <=

thread par.threads counter &&
thread par.leader thread ==1

temp = buff par.Sys curr state-1

Enter the critical section (2):

buff par.Sys curr state =buff par.Sys curr state
-temp

buff par.Sys curr state =buff par.Sys curr state
- thread par.leader thread

buff par.time history[buff par.current slot] =
buff par.Sys curr state

Exit of the critical section (2):
Loop done

BLOCK O/P

(For loops)
From 1 to

thread par.leader thread
From 1 to temp

buff par.Sys curr state >=
NUM THREADS

Enter the critical section (2):

buff par.Sys curr state =
buff par.Sys curr state-thread par.threads counter;
buff par.Sys curr state =
buff par.Sys curr state- thread par.leader thread;
buff par.time history [buff par.current slot] =
buff par.Sys curr state;

(For loops)
From 1 to

thread par.leader thread
From 1 to

thread par.threads counter

Exit of the critical
section (2):

Loops done Processors creation

BLOCK O/P

Loops done

Threads (processors)

creation

No Yes

(For loop)
From 1 to

thread par.threads counter

Figure 14: Major steps of uncorrupted packets block simulation (extension for Figure 13).

time history attributes handled at the times when arriving
process is handled by the leader decoder? Basically, the buffer
controller may access system current state and time history
attributes simultaneously with the leader decoder in case of
decoding dispatch.

Main thread (processor) manages buffer controller,
packet’s filter, and simulator statistics. The buffer controller
keeps monitoring (or tracking) on every slot time until the
end of the simulation time since every slot time may have an
arriving packet and completion of packet decoding. There-
fore, it checks for every slot time the status of every sequen-
tial decoder so that it dispatches decoding for any sequential
decoder to become free and available for decoding. The main
processor isolates the management of corrupted and uncor-
rupted packets. Figure 12 illustrates the steps implemented in
the main thread through the flowchart. The simulation goes
for corrupted packets block when the corrupted pcts counter
is equal to or greater than one. In fact, this block is very sim-
ilar to uncorrupted packets block explained in Figures 13 and
14 that show the major simulation steps. There are two major
differences. The first one is that there is no need to call BRNG
since the probability at this slot is one. The other one is that
corrupted pcts counter attribute is decremented once enter-
ing the execution of that block. Definitely, a lock is required
to decrement this attribute since the decoders may update it

simultaneously. In our simulation, the mean buffer size per-
formance metric in target structure is estimated by adding
up all the numbers at the time history array attribute (in
the buffer status structure) and dividing them by the sim-
ulation time. The blocking prob is measured by dividing
the arrival lost packet attribute by total arriving packets at-
tribute.

5.4. Parallel simulation results

Our major goal when using parallel sequential decoding is to
reduce the average buffer occupancy and blocking probabil-
ity and to increase the system throughput. We see in our sim-
ulator in Section 4 (from Figures 5 and 6) that at those values
of incoming probability like from 0.5 to 1, the average buffer
occupancy gets constant by reaching the maximum system
capacity of 900. We see in Section 4 (from Figure 7) that the
blocking probability is very high at these values of incoming
packet probability. Moreover, we see (from Figures 8 and 9)
that the system throughput gets constant at these probability
values. Hence, we have simulated our wireless router system
with parallel sequential decoding using the same values of in-
coming packet probability to see the reaction of these paral-
lel sequential decoders over just one sequential decoder. Fur-
thermore, we employ the same values of channel conditions



K. Darabkh and R. Aygün 13

0

20

40

60

80

100

120

A
ve

ra
ge

bu
ff

er
oc

cu
pa

n
cy

0.5 0.6 0.7 0.8 0.9 1

Incoming packet probability

T = 10
T = 100

Figure 15: Average buffer occupancy versus incoming packet prob-
ability (T = 10, 100).

0

0.002

0.004

0.006

0.008

0.01

0.012

B
lo

ck
in

g
pr

ob
ab

ili
ty

0.5 0.6 0.7 0.8 0.9 1

Incoming packet probability

T = 10
T = 100

Figure 16: Blocking probability versus incoming packet probability
(T = 10, 100).

and even values lower than those which are employed with
just one decoder to see the behavior of our wireless router
system using parallel sequential decoding even under noisier
channel conditions.

Table 1 shows the results of ABO, BP, and ST for different
incoming packet probabilities. It also contains the simulation
inputs. The increase in the average buffer occupancy as the
incoming packet probability increases is noticed.

It is interesting to see the drastic difference between the
average buffer occupancies when considering three proces-
sors and just one processor as in Figure 6. Also notice the
big difference between blocking probabilities when employ-
ing three processors and just one processor as in Figure 7 for
the same inputs. Moreover, notice the impressive linear trend
of system throughput with λ using parallel sequential decod-
ing over a constant trend in Figure 8. In fact, when employing
a decoder (processor), the system may not be stable since it
can reach the system capacity too early at a relative low packet
arrival rate. Thus, high traffic, low system throughput, and

0

0.2

0.4

0.6

0.8

1

1.2

Sy
st

em
th

ro
u

gh
pu

t

0.5 0.6 0.7 0.8 0.9 1

Incoming packet probability

T = 10
T = 100

Figure 17: System throughput versus incoming packet probability
(T = 10, 100).

0

50

100

150

200

250

A
ve

ra
ge

bu
ff

er
oc

cu
pa

n
cy

0.6 0.7 0.8 0.9 1

Incoming packet probability

(3) decoders
(5) decoders

Figure 18: Average buffer occupancy versus incoming packet prob-
ability for different number of sequential decoders.

worse QoD are obtained. On the other hand, employing par-
allel decoding environment leads to stable system, low traffic,
and good QoD. Briefly, through parallel sequential decoding,
we have adaptive decoding of the channel condition instead
of fixed one that is used typically nowadays. We reduce the
system flow due to low blocking probability. Consequently,
we reduce the congestion over the network. Therefore, we
have high system throughput. Thus, better QoD is attainable.

Table 2 shows the average buffer occupancy and block-
ing probability for different decoding time-out limit (T =
100). The blocking probability increases as the packet arriv-
ing probability increases. It is seen that the average buffer
occupancy increases as packet arriving probability increases.
From the comparison between Table 2 and Table 1, it is no-
ticed that the average buffer occupancy and blocking proba-
bility increase as the decoding time-out limit increases.

Furthermore, we make plots for the average buffer oc-
cupancy, blocking probability, and system throughput in
Figures 15, 16, and 17, respectively, when employing three



14 EURASIP Journal on Wireless Communications and Networking

Table 1: ABO, blocking probability, and system throughput (β = 1.0,T = 10).

Inputs

Channel condition β = 1 Number of threads = 3

System capacity N = 900 Decoding time-out limit = 10

Outputs

Incoming packet probability (λ) Average buffer occupancy (ABO) Blocking probability (BP) System throughput (ST)

0.5 6.984940 0 0.50000

0.6 8.000000 0 0.60000

0.7 9.481100 0 0.70000

0.8 10.96340 0 0.80000

0.9 12.71200 0 0.90000

1 15.58585 0 1

Table 2: Average buffer occupancy, blocking probability, and system throughput (β = 1.0,T = 100).

Inputs

Channel condition β = 1 Number of threads = 3

System capacity N = 900 Decoding time-out limit = 100

Outputs

Incoming packet probability (λ) Average buffer occupancy (ABO) Blocking probability (BP) System throughput (ST)

0.5 8.50511000 0 0.5000000

0.6 17.9068175 0 0.6000000

0.7 24.3839000 0.00022021 0.6998458

0.8 41.9367775 0.00676657 0.7945867

0.9 73.2118150 0.00742776 0.8933150

1 97.3598000 0.00990248 0.9900975

sequential decoders to be compared with ABO, BP, and ST
in Figures 6, 7, and 8, respectively, when operating just one
sequential decoder.

One important observation which can be noticed from
Figure 17 is that the system throughput is almost the same
when using 10 and 100 for different values of T . Further-
more, the system throughput value is equal to the slope
that represents the incoming packet probability. In fact, this
indicates that every packet arrival is served. On the other
side, consider the behavior of system throughput in Figure 8.
Firstly, the system throughput for T = 10 is much larger than
in T = 100 for single sequential decoder. Secondly, the val-
ues of the system throughout are almost constant regardless
of significant increase in the incoming packet probability for
single sequential decoder. This fixed value is about 0.325 for
the case of T = 10 and about 0.185 for the case of T = 100.

One more interesting observation which can be extracted
from both Figures 16 and 17 is that choosing larger value of
T may not accordingly affect the blocking probability and
system that much as in the case of one sequential decoder.
Basically, this is a wonderful gain that leads to better QoD.
Actually, in the case of a single decoder, we are so worried
about employing large value of T (although it is important
to do that in case of noisy channels) since it affects the block-
ing probability (see Figure 7) and system throughput (see
Figure 8) negatively. Consequently, we get a worse QoD.

Table 3 shows the average buffer occupancy, blocking
probability, and system throughput for a different channel
condition (0.4). It is shown that the average buffer occupancy
and blocking probability increase as the packet arriving prob-
ability increases. From the comparison between Table 3 and
Table 2, it is seen that the average occupancy and blocking
probability increase as the channel condition decreases. It is
also interesting to see that even for the worst conditions (like
β = 0.4), the router system with parallel sequential decoder
is stable and reacts much better than that with a sequential
decoder having higher values of channel conditions (better
conditions); for comparison, see Figures 5, 6, 7, and 8.

Figure 18 illustrates the average buffer occupancy versus
incoming packet probability when employing different num-
ber of sequential decoders (3 and 5). The inputs for this fig-
ure are the system capacity of 900, decoding time-out limit
of 100, and channel condition β = 0.6. It is obvious that the
average buffer occupancy decreases as the number of sequen-
tial decoders increases. Also the average buffer occupancy in-
creases as incoming packet probability increases.

Figure 19 presents the blocking probability versus incom-
ing packet probability. The simulation inputs are the same as
in Figure 18. In fact, as shown, the blocking probability in-
creases as the number of sequential decoders decreases. It is
seen also that the blocking probability increases as the in-
coming packet probability increases.



K. Darabkh and R. Aygün 15

Table 3: ABO, blocking probability, and system throughput (β = 0.4,T = 100).

Inputs

Channel condition β = 0.4 Number of threads = 3

System capacity N = 900 Decoding time-out limit = 100

Outputs

Incoming packet probability (λ) Average buffer occupancy (ABO) Blocking probability (BP) System throughput (ST)

0.5 72.8308000 0.0030000 0.4985000

0.6 127.053160 0.0142560 0.5914464

0.7 177.936585 0.0518800 0.6636840

0.8 245.082800 0.0530000 0.7576000

0.9 357.098457 0.0848193 0.8236086

1 512.467600 0.1065770 0.8934230

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

B
lo

ck
in

g
pr

ob
ab

ili
ty

0.6 0.7 0.8 0.9 1

Incoming packet probability

(3) decoders
(5) decoders

Figure 19: Blocking probability versus incoming packet probability
for different number of sequential decoders.

We use different value of channel condition (β = 0.6)
for further parallel system validation. Therefore, it is seen
from Figures 18 and 19 and Table 3 that the average buffer
occupancy and blocking probability decrease as channel con-
dition increases for fixed number of sequential decoders and
decoding time-out limit. On the other hand, from Figures
15, 16, 18, and 19, the average buffer occupancy and block-
ing probability increase for fixed decoding time-out limit and
number of sequential decoders when the channel condition
decreases.

6. CONCLUSION

In this paper, we use different discrete time Markov simu-
lation environments to study the QoD of a router system
with a finite buffer for wireless network systems that employ
stop-and-wait ARQ. The packet errors depend on the chan-
nel condition. In other words, if packet error rate is high, this
means that the channel is noisy. To make a packet decoding
adaptive with a channel condition instead of affording fixed
decoding, we use sequential decoding. Since we have finite
buffer size, it is clearly noticed that choosing it too small or
too large leads to high system flow and congestion over the

network. Thus, worse QoD is inevitable. We make our first
simulation with just one sequential decoder with very large
buffer. Our results show the instability in the router system
with bad QoD. Consequently, we have designed a parallel
sequential decoding system to mitigate the traffic, and thus
getting better QoD. The parallel sequential decoding system
has significant improvements on blocking probability, aver-
age buffer occupancy, decoding failure probability, system
throughput, and channel throughput. We explain extensively
through detailed flowchart both simulation environments.
We can conclude that increasing buffer size, when the buffer
gets full, is just a temporary solution and it is likely to yield
severe problems on the network congestion. Rather than in-
vesting money on buffers to get worse QoD, the use of par-
allel sequential decoding systems provides more stable and
reliable environment for network congestion.

REFERENCES

[1] Y. Tian, K. Xu, and N. Ansari, “TCP in wireless environ-
ments: problems and solutions,” IEEE Communications Maga-
zine, vol. 43, no. 3, pp. S27–S32, 2005.

[2] K. Fall and S. Floyd, “Simulation-based comparisons of Tahoe,
Reno, and SACK TCP,” Computer Communication Review,
vol. 26, no. 3, pp. 5–21, 1996.

[3] M. S. Gast, 802.11 Wireless Networks: The Definitive Guide,
O’Reilly Media, Sebastopol, Calif, USA, 2nd edition, 2005.

[4] L. L. Peterson and B. S. Davie, Computer Networks: A Sys-
tems Approach, Morgan Kaufmann, San Francisco, Calif, USA,
3rd edition, 2003.

[5] W. Stallings, High Speed Networks and Internets: Performance
and Quality of Service, Prentice-Hall, Upper Saddle River, NJ,
USA, 2nd edition, 2001.

[6] N. Olifer and V. Olifer, Computer Networks: Principles, Tech-
nologies and Protocols for Network Design, John Wiley & Sons,
New York, NY, USA, 2006.

[7] S. Lin and D. J. Costello Jr., Error Control Coding: Funda-
mentals and Applications, Prentice-Hall, Englewood Cliffs, NJ,
USA, 2nd edition, 2004.

[8] R. Sundaresan and S. Verdú, “Sequential decoding for the ex-
ponential server timing channel,” IEEE Transactions on Infor-
mation Theory, vol. 46, no. 2, pp. 705–709, 2000.

[9] R. O. Ozdag and P. A. Beerel, “A channel based asynchronous
low power high performance standard-cell based sequential



16 EURASIP Journal on Wireless Communications and Networking

decoder implemented with QDI templates,” in Proceedings of
the 10th International Symposium on Asynchronous Circuits
and Systems (ASYNC ’04), pp. 187–197, Crete, Greece, April
2004.

[10] D. G. Sachs, I. Kozintsev, M. Yeung, and D. L. Jones, “Hybrid
ARQ for robust video streaming over wireless LANs,” in Pro-
ceedings of the International Conference on Information Tech-
nology: Coding and Computing (ITCC ’01), pp. 317–321, Las
Vegas, Nev, USA, April 2001.

[11] S. Y. Chang, A. Anastasopoulos, and W. E. Stark, “Energy and
delay analysis of wireless networks with ARQ,” in Proceedings
of the 61st IEEE Vehicular Technology Conference (VTC ’05),
vol. 4, pp. 2601–2605, Stockholm, Sweden, May-June 2005.

[12] L.-J. Chen, T. Sun, and Y.-C. Chen, “Improving bluetooth EDR
data throughput using FEC and interleaving,” in Proceedings of
the 2nd International Conference on Mobile Ad-hoc and Sensor
Networks (MSN ’06), vol. 4325 of Lecture Notes in Computer
Science, pp. 724–735, Hong Kong, December 2006.

[13] E. Ferro and F. Potorti, “Bluetooth and Wi-Fi wireless proto-
cols: a survey and a comparison,” IEEE Wireless Communica-
tions, vol. 12, no. 1, pp. 12–26, 2005.

[14] G. Kabatiansky, E. Krouk, and S. Semenov, Error Correcting
Coding and Security for Data Networks: Analysis of the Super-
channel Concept, John Wiley & Sons, New York, NY, USA,
2005.

[15] R. Togneri and C. J. S. deSilva, Fundamentals of Informa-
tion Theory and Coding Design, Discrete Mathematics and Its
Applications, Chapman & Hall/CRC, Boca Raton, Fla, USA,
2003.

[16] R. Johannesson and K. Sh. Zigangirov, Fundamentals of Con-
volutional Coding, Wiley-IEEE, Piscataway, NJ, USA, 1999.

[17] Y. S. Han, P.-N. Chen, and H.-B. Wu, “A maximum-likelihood
soft-decision sequential decoding algorithm for binary convo-
lutional codes,” IEEE Transactions on Communications, vol. 50,
no. 2, pp. 173–178, 2002.

[18] J. B. Anderson and S. Mohan, “Sequential coding algorithms:
a survey and cost analysis,” IEEE Transactions on Communica-
tions, vol. 32, no. 2, pp. 169–176, 1984.

[19] S. Kallel and D. Haccoun, “Sequential decoding with an effi-
cient partial retransmission ARQ strategy,” IEEE Transactions
on Communications, vol. 39, no. 2, pp. 208–213, 1991.

[20] S. Kallel and D. Haccoun, “Sequential decoding with ARQ
and code combining: a robust hybrid FEC/ARQ system,” IEEE
Transactions on Communications, vol. 36, no. 7, pp. 773–780,
1988.

[21] P. Orten and A. Svensson, “Sequential decoding in future mo-
bile communications,” in Proceedings of the 8th IEEE Interna-
tional Symposium on Personal, Indoor and Mobile Radio Com-
munications (PIMRC ’97), vol. 3, pp. 1186–1190, Helsinki,
Finland, September 1997.

[22] W. D. Pan and A. Ortega, “Buffer control for variable complex-
ity Fano decoders,” in Proceedings of the IEEE Global Telecom-
munications Conference (GLOBECOM ’01), vol. 1, pp. 176–
180, San Antonio, Tex, USA, November 2001.

[23] Y. S. Han and P.-N. Chen, “Sequential decoding of convo-
lutional codes,” in Encyclopedia of Telecommunications, pp.
2140–2146, John Wiley & Sons, New York, NY, USA, 2002,
Book chapter.

[24] P. Y. Pau and D. Haccoun, “An analysis of sequential decoding
with retransmission procedures,” Tech. Rep. EMP/RT-85-19,
Ecole Polytechnique of Montreal, PQ, Canada, 1985.

[25] A. Drukarev and D. J. Costello Jr., “Hybrid ARQ error control
using sequential decoding,” IEEE Transactions on Information
Theory, vol. 29, no. 4, pp. 521–535, 1983.

[26] J. C. Moreira and P. G. Farrell, Essentials of Error-Control Cod-
ing, John Wiley & Sons, New York, NY, USA, 2006.

[27] K. Darabkh and R. Aygün, “Quality of delivery evaluation of
error control for TCP/IP-based systems in packet switching
ATM networks,” in Proceedings of the International Conference
on Internet Computing (ICOMP ’06), Las Vegas, Nev, USA,
June 2006.

[28] T. Hashimoto, “Bounds on a probability for the heavy tailed
distribution and the probability of deficient decoding in se-
quential decoding,” IEEE Transactions on Information Theory,
vol. 51, no. 3, pp. 990–1002, 2005.

[29] W. D. Pan, “Queuing analysis of sequential decoders with
buffers,” in Proceedings of the Huntsville Simulation Conference
(HSC ’04), Huntsville, Ala, USA, November 2004.

[30] N. Shacham, “ARQ with sequential decoding of packetized
data: queueing analysis,” IEEE Transactions on Communica-
tions, vol. 32, no. 10, pp. 1118–1127, 1984.

[31] K. Darabkh and R. Aygün, “Performance evaluation of se-
quential decoding system for UDP-based systems for wireless
multimedia networks,” in Proceedings of the International Con-
ference onWireless Networks (ICWN ’06), Las Vegas, Nev, USA,
June 2006.

[32] K. Darabkh and W. D. Pan, “Stationary queue-size distribu-
tion for variable complexity sequential decoders with large
timeout,” in Proceedings of the 44th Annual Southeast Regional
Conference (ACMSE ’06), pp. 331–336, Melbourne, Fla, USA,
March 2006.

[33] K. Darabkh and R. Aygün, “Simulation of performance eval-
uation of error control for packet-to-packet acknowledg-
ment based systems in ATM networks,” in Proceedings of
SCS International Conference on Modeling and Simulation—
Methodology, Tools, Software Applications (M&S-MTSA ’06),
Calgary, Canada, July-August 2006.

[34] K. Darabkh and W. D. Pan, “Queue-size distribution for Fano
decoders,” in Proceedings of the Huntsville Simulation Confer-
ence (HSC ’05), Huntsville, Ala, USA, November 2005.

[35] A. Grama, A. Gupta, G. Karypis, and V. Kumar, Introduction
to Parallel Computing, Addison-Wesley, Reading, Mass, USA,
2003.

[36] B. Wilkinson and M. Allen, Parallel Programming: Techniques
and Applications Using Networked Workstations and Paral-
lel Computers, Prentice Hall, Upper Saddle River, NJ, USA,
2nd edition, 2004.


	INTRODUCTION
	Quality of delivery
	TCP traffic control
	Our approach

	CHANNEL CODING
	Convolutional code
	Maximum likelihood decoding and sequential decoding

	DISCRETE-TIME MARKOV CHAIN MODEL
	SIMULATION OF A ROUTER SYSTEM WITH A SEQUENTIAL DECODER
	Simulation setup
	Simulation results

	WIRELESS ROUTER SYSTEM WITH PARALLEL SEQUENTIAL DECODERS
	Stochastic simulation details and flowcharts
	Structures, constants, declarations,and initializations
	System behavior
	Parallel simulation results

	CONCLUSION
	REFERENCES

