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1. INTRODUCTION

In digital communications, the accurate calculation of aver-
age symbol error probability (SEP) for a variety of modu-
lation schemes has been an area of long-time interest (see
[1–12] and references therein). A unified method for deriv-
ing the error probability over fading channels has been pre-
sented by using alternative representation of the Gaussian
and Marcum Q-function [1, 2]. By their alternative represen-
tations, the average error probability can be expressed in the
form of a single finite-range integral whose integrand con-
tains the moment generation function (MGF) of instanta-
neous signal-to-noise ratio (SNR). In particular, closed-form
solutions for average SEP of binary and M-ary modulations
in Nakagami-m fading with positive integer m have been re-
ported in [3]. More generally, the closed-form expressions
for average SEP in Nakagami-m with arbitrary real-valued
m have been derived in [4] and their extensions to single-
input multiple-output (SIMO) diversity have been presented
in [5, 6]. For multiple-input multiple-output (MIMO) di-
versity systems, the exact SEPs of orthogonal space-time
block codes (OSTBCs) [13, 14] have been derived in [10–12]
for Rayleigh, Rayleigh keyhole, Nakagami-m keyhole, and
Rayleigh double-scattering MIMO channels, respectively.

In addition to Nakagami-m and Rayleigh fading, Naka-
gami-q fading, also referred to as Hoyt fading, has been con-

sidered recently in [15–17]. For example, average SEP of
equal-gain combining (EGC) under the Hoyt model has been
approximated in [15]. Also, the second-order statistics of
maximal-ratio combining (MRC) and EGC in Nakagami-
q fading have been studied in [16]. In addition, the level-
crossing rate and the average duration of fades for Nakagami-
q fading channels have been investigated in [17]. More
recently, the performance of M-ary signallings for SISO
Nakagami-q has been derived in [18].

In this paper, using the MGF-based method [1, 2] and
transforming a single integral into the hypergeometric func-
tion [4], we derive the exact SEP expressions for spatial diver-
sity systems in Nakagami-q fading. The final expressions are

given in terms of Lauricella hypergeometric function F(n)
D . It

is further shown that the derived expressions reduce to the
previously known results for Rayleigh fading (q = 1) and
SISO Nakagami-q as special cases.

This paper is organized as follows. In Section 2, the sta-
tistical properties of the channel model are given. We then
derive the exact average SEP for a broad class of binary and
M-ary signals with MRC over SIMO Nakagami-q channels in
Section 3. Section 4 gives the average SEP for OSTBCs over
MIMO Nakagami-q channels. Numerical and simulation re-
sults are presented in Section 5. Finally, we conclude the pa-
per in Section 6.
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2. CHANNELMODEL

The Nakagami-q fading spans from one-sided Gaussian fad-
ing (q = 0) to Rayleigh fading (q = 1), and is used to model
fading environments more severe than Rayleigh fading—
satellite communication links subject to strong ionospheric
scintillation, for example. Assume that the transmitted sig-
nal is received over slowly varying SISO flat-fading channels.
Let γ denote the instantaneous symbol SNR defined by

γ � α2 Es
N0

, (1)

where α is the fading amplitude, Es the energy per symbol,
andN0 the one-sided power spectral density of additive white
Gaussian noise (AWGN).

For Nakagami-q fading, the probability density function
(pdf) of α with mean-square value Ω � E{α2} is given by
[1, 2]

pα(α) =
(
1 + q2

)
α

qΩ
exp

(
−
(
1 + q2

)2
α2

4q2Ω

)

× I0

((
1− q4

)
α2

4q2Ω

)
, α ≥ 0,

(2)

where q ∈ [0, 1] is the fading severity parameter and I0(·) is
the zeroth-order modified Bessel function of the first kind.
The pdf and MGF of γ are then given by [1, 2]

pγ(γ) =
(
1 + q2

)

2qγ
exp

(
−
(
1 + q2

)2
γ

4q2γ

)

× I0

((
1− q4

)
γ

4q2γ

)
, γ ≥ 0,

φγ(s) � E
{
e−sγ

} =
[(

1 +
2sγ

1 + q2

)(
1 +

2sγq2

1 + q2

)]−1/2

,

(3)

where γ = ΩEs/N0 is the average SNR per symbol.

3. AVERAGE SEP FOR SIMOMRC

Assume that the transmitted signal is received over L-branch
independent SIMO flat-fading channels. Then instantaneous
SNR at the MRC output is given by

γMRC =
L∑

i=1
α2
i
Es
N0

, (4)

where αi, i = 1, 2, . . . ,L is the fading amplitude of the ith
branch Nakagami-q fading channel with fading severity pa-
rameter qi and mean-square value Ωi = E{α2

i }.
Let γi � α2

i Es/N0 denote the instantaneous SNR of the ith
diversity branch. Then from statistical independence of αi’s,
the MGF of MRC output SNR γMRC is given by

φγMRC
(s) =

L∏

i=1

φγi
(s)

=
L∏

i=1

[(
1 +

2sγi
1 + q2

i

)(
1 +

2sγiq
2
i

1 + q2
i

)]−1/2

,

(5)

where γi = ΩiEs/N0 denotes the average symbol SNR of the
ith diversity branch. From the MGF of γMRC, we can evaluate
the average SEP for a broad class of binary and M-ary sig-
nals over SIMO Nakagami-q channels by using a well-known
MGF-based approach [1, 2].

3.1. M-ary phase-shift keying (M-PSK)

For coherent M-PSK, the average SEP can be written as [1–4]

PMRC
e,MPSK =

1
π

∫ π/2

0
φγMRC

(
g1

sin2θ

)
dθ

︸ ︷︷ ︸
�I1,MPSK

+
1
π

∫ π−π/M

π/2
φγMRC

(
g1

sin2θ

)
dθ

︸ ︷︷ ︸
�I2,MPSK

,

(6)

where

g1 = sin2
(
π

M

)
. (7)

By making the change of the variable t = cos2θ for I1,MPSK

and t = cos2θ/cos2(π/M) for I2,MPSK [4], we have

I1,MPSK =
φγMRC

(
g1
)

2π

∫ 1

0
t−1/2(1− t)L−1/2

×
L∏

i=1

(
1− tη(i)

g1

)−1/2(
1− tζ (i)

g1

)−1/2
dt,

I2,MPSK =
√
g2φγMRC

(
g1
)

2π

∫ 1

0
t−1/2(1− tg2

)L−1/2

×
L∏

i=1

(
1− tg2η

(i)
g1

)−1/2(
1− tg2ζ

(i)
g1

)−1/2
dt,

(8)

where

g2 = cos2
(
π

M

)
,

η(i)
g =

(
1 +

2gγi
1 + q2

i

)−1

,

ζ (i)
g =

(
1 +

2gγiq
2
i

1 + q2
i

)−1

.

(9)

Note that the integrals in (8) can be expressed in terms of

Lauricella multivariate hypergeometric function F(n)
D whose

Euler integral representation is given by [19, equation
(2.3.6)]

F(n)
D

(
a,
{
bi
}n
i=1; c;

{
xi
}n
i=1

)

= Γ(c)
Γ(a)Γ(c − a)

∫ 1

0
ta−1(1− t)c−a−1

n∏

i=1

(
1− xit

)−bidt,

max
{∣∣x1

∣
∣,
∣
∣x2

∣
∣, . . . ,

∣
∣xn

∣
∣} < 1, Re(c) > Re(a) > 0,

(10)

where Γ(·) is Euler gamma function. Note that F(1)
D and F(2)

D

reduce to the Gauss hypergeometric function 2F1(a, b; c; z)
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[20, equation 2.12(1)] and the Appell hypergeometric func-
tion F1(a, b, b′; c; x, y) [20, equation 5.8(5)], respectively.
Evaluating (8) in terms of Lauricella hypergeometric func-

tions F(2L)
D and F(2L+1)

D , we obtain the average SEP for M-
PSK signals over Nakagami-q fading channels with L-branch
MRC as

PMRC
e,MPSK

= Γ(L + 1/2)
2
√
πΓ(L + 1)

φγMRC

(
g1
)

× F(2L)
D

(
1
2

,
1
2

, . . . ,
1
2︸ ︷︷ ︸

2L

;L + 1;

{
η(i)
g1

}L

i=1
,
{
ζ (i)
g1

}L

i=1

)
+
√
g2

π
φγMRC

(
g1
)

× F(2L+1)
D

(
1
2

,
1
2

, . . . ,
1
2︸ ︷︷ ︸

2L

,−L +
1
2

;
3
2

;

{
g2η

(i)
g1

}L

i=1
,
{
g2ζ

(i)
g1

}L

i=1
, g2

)
.

(11)

For M = 2 (binary PSK), I2,MPSK (or equivalently the second
term of (11)) is equal to zero. Hence, the average bit error
probability (BEP) for binary PSK with MRC in Nakagami-q
fading becomes the first term of (11) with g1 = 1.

Special cases

(i) Independent and identically distributed (i.i.d.) SIMO
Nakagami-q fading channel (qi = q and Ωi = Ω,
i = 1, 2, . . . ,L): with the help of the reduction formula
(A.1) in the appendix, (11) reduces to

PMRC
e,MPSK =

Γ(L + 1/2)φγMRC

(
g1
)

2
√
πΓ(L + 1)

× F1

(
1
2

,
L

2
,
L

2
;L + 1;η�g1

, ζ�g1

)
+

√
g2φγMRC

(
g1
)

π

× F(3)
D

(
1
2

,
L

2
,
L

2
,−L +

1
2

;
3
2

; g2η
�
g1

, g2ζ
�
g1

, g2

)
,

(12)

where

η�g =
(

1 +
2gγ

1 + q2

)−1

, ζ�g =
(

1 +
2gγq2

1 + q2

)−1

. (13)

(ii) SISO Nakagami-q fading channel (L = 1): substitut-

ing L = 1 into (12) and noting that for n = 2, F(n)
D (·)

reduces to F1(·), we obtain the same result as in [18,
equation (18)].

(iii) Rayleigh fading channel with L-branch MRC (qi = 1):
substituting q = 1 into (12), we have η�g1

= ζ�g1
, leading

to the same result as in [5, equation (7)] for Rayleigh
fading (m = 1) with again the help of (A.1).

(iv) SISO Rayleigh fading channel (L = 1 and q = 1): sub-
stituting q = 1 and L = 1 into (12), we obtain the

same result as in [4, equation (10)] for Rayleigh fad-
ing (m = 1), which further reduces to [2, equation
(8.112)] in terms of elementary functions (see [4] for
details).

3.2. M-ary quadrature amplitudemodulation
(M-QAM)

For coherent square M-QAM, the average SEP is given by
[1–4]

PMRC
e,MQAM =

4g4

π

∫ π/2

0
φγMRC

(
g3

sin2θ

)
dθ

︸ ︷︷ ︸
�I1,MQAM

− 4g2
4

π

∫ π/4

0
φγMRC

(
g3

sin2θ

)
dθ

︸ ︷︷ ︸
�I2,MQAM

,

(14)

where

g3 = 3
2(M − 1)

, g4 = 1− 1√
M

. (15)

Considering the similarity of I1,MQAM to I1,MPSK and mak-
ing the change of variable t = 1 − tan2θ in I2,MQAM (af-
ter some manipulations) [4], we obtain the average SEP for
M-QAM signals over Nakagami-q fading channels with L-
branch MRC as

PMRC
e,MQAM =

2g4Γ(L + 1/2)√
πΓ(L + 1)

φγMRC

(
g3
)

× F(2L)
D

(
1
2

,
1
2

, . . . ,
1
2︸ ︷︷ ︸

2L

;L + 1;
{
η(i)
g3

}L

i=1
,
{
ζ (i)
g3

}L

i=1

)

− 2g2
4

π(1 + 2L)
φγMRC

(
2g3

)

× F(2L+1)
D

(

1,
1
2

, . . . ,
1
2︸ ︷︷ ︸

2L

, 1;L +
3
2

;

{
η(i)

2g3

η(i)
g3

}L

i=1

,

{
ζ (i)

2g3

ζ (i)
g3

}L

i=1

,
1
2

)

.

(16)

Special cases

(i) I.I.D. SIMO Nakagami-q fading channel (qi = q and
Ωi = Ω, i = 1, 2, . . . ,L): with the help of (A.1), (16)
reduces to

PMRC
e,MQAM =

2g4Γ(L + 1/2)φγMRC

(
g3
)

√
πΓ(L + 1)

× F1

(
1
2

,
L

2
,
L

2
;L + 1;η�g3

, ζ�g3

)

−
2g2

4φγMRC

(
2g3

)

π(1 + 2L)

× F(3)
D

(
1,
L

2
,
L

2
, 1;L +

3
2

;
η�2g3

η�g3

,
ζ�2g3

ζ�g3

,
1
2

)
.

(17)



4 EURASIP Journal on Wireless Communications and Networking

(ii) SISO Nakagami-q fading channel (L = 1): substituting
L = 1 into (17), we obtain the same result as in [18,
equation (21)].

(iii) Rayleigh fading channel with L-branch MRC (qi = 1):
substituting q = 1 into (17), we have η�g3

= ζ�g3
and

η�2g3
= ζ�2g3

, leading to the same result as in [5, equation
(12)] for Rayleigh fading (m = 1) with again the help
of (A.1).

(iv) SISO Rayleigh fading channel (L = 1 and q = 1): sub-
stituting q = 1 and L = 1 into (17), we obtain the
same result as in [4, equation (12)] for Rayleigh fad-
ing (m = 1), which further reduces to [2, equation
(8.106)] in terms of elementary functions (see [4] for
details).

3.3. M-ary differential PSK (M-DPSK)

The average SEP for differentially coherent detection of M-
DPSK signals is given by [1–4]

PMRC
e,MDPSK =

1
π

∫ π−π/M

0
φγMRC

(
g1

1 +√g2 + cos θ

)
dθ. (18)

Letting

g5 = 2sin2
(

π

2M

)
, g6 = cos2

(
π

2M

)
, (19)

and making the change of the variable [4]

t = sin2θ

sin2(π/2− π/2M)
, (20)

equation (18) can be evaluated (after some algebra) as

PMRC
e,MDPSK =

2√g6

π
φγMRC

(
g5
)
F(2L+2)
D

× F(2L+2)
D

(
1
2

,
1
2

, . . . ,
1
2︸ ︷︷ ︸

2L

,−L,
1
2

;
3
2

;

{√
g2η

(i)
g5

}L

i=1
,
{√

g2ζ
(i)
g5

}L

i=1
,
√
g2, g6

)

.

(21)

Special cases

(i) I.I.D. SIMO Nakagami-q fading channel (qi = q and
Ωi = Ω, i = 1, 2, . . . ,L): with the help of (A.1), (21)
reduces to

PMRC
e,MDPSK =

2√g6φγMRC

(
g5
)

π

× F(4)
D

(
1
2

,
L

2
,
L

2
,−L,

1
2

;
3
2

;
√
g2η

�
g5

,
√
g2ζ

�
g5

,
√
g2, g6

)
.

(22)

(ii) SISO Nakagami-q fading channel (L = 1): substituting
L = 1 into (22), we obtain the same result as in [18,
equation (10)] for SISO Nakagami-q fading with again
the help of (A.1).

(iii) Rayleigh fading channel with L-branch MRC (qi = 1):
substituting q = 1 into (22), we have η�g5

= ζ�g5
, leading

to the same result as in [5, equation (14)] for Rayleigh
fading (m = 1) with again the help of (A.1).

(iv) SISO Rayleigh fading channel (L = 1 and q = 1): sub-
stituting q = 1 and L = 1 into (22), we obtain the
same result as in [4, equation (14)] for Rayleigh fading
(m = 1), which further reduces to [9, equation (8)] in
terms of elementary functions (see [4] for details).

3.4. Noncoherent correlated binary signals and
π/4-differential quaternary PSK (DQPSK)

The average BEP for equal energy, equiprobable, correlated
binary signals with noncoherent detection is given by [1–4]

PMRC
b,NCB =

1
2π

∫ π

0
φγMRC

( (
v2 − u2

)2

2(u + v)2 − 4uv cos θ

)
dθ (23)

with

u =
(

1−
√

1− |ρ|2
2

)1/2

, v =
(

1 +
√

1− |ρ|2
2

)1/2

,

(24)

where |ρ| ∈ [0, 1] is the magnitude of cross correlation co-
efficient between two signals. Note that the special case of
ρ = 0 (i.e., u = 0 and v = 1) corresponds to noncoherent
orthogonal binary frequency-shift keying (FSK).

Letting

g7 = (v − u)2

2
, g8 = 4uv

(u + v)2 , (25)

and making the change of the variable t = cos2θ [4], (23) can
be evaluated (after some algebra) as

PMRC
b,NCB =

1
2
φγMRC

(
g7
)
F(2L+1)
D

(
1
2

,
1
2

, . . . ,
1
2︸ ︷︷ ︸

2L

,−L; 1;

{
g8η

(i)
g7

}L

i=1
,
{
g8ζ

(i)
g7

}L

i=1
, g8

)

.

(26)

Since u =
√

2−√2 and v =
√

2 +
√

2 correspond to π/4-
DQPSK with Gray coding [1–4], we can obtain the average
SEP for π/4-DQPSK directly from (26) with these particular
values of u and v (or equivalently g7 = 2 − √2 and g8 =
2
√

2/(2 +
√

2)).

Special cases

(i) I.I.D. SIMO Nakagami-q fading channel (qi = q and
Ωi = Ω, i = 1, 2, . . . ,L): with the help of (A.1), (26)
reduces to

PMRC
b,NCB =

φγMRC

(
g7
)

2

× F(3)
D

(
1
2

,
L

2
,
L

2
,−L; 1; g8η

�
g7

, g8ζ
�
g7

, g8

)
.

(27)
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In particular, (27) for L = 1 (SISO Nakagami-q fading)
reduces (with the help of the reduction formula (A.2)
in the appendix) to

Pb,NCB =
φγ

(
g7
)

2
F1

(
1
2

,
1
2

,
1
2

; 1; g8η
�
g7

, g8ζ
�
g7

)

−
g8φγ

(
g7
)

4
F1

(
3
2

,
1
2

,
1
2

; 2; g8η
�
g7

, g8ζ
�
g7

)
,

(28)

which agrees with [18, equation (15)].
(ii) Rayleigh fading channel with L-branch MRC (qi = 1):

substituting q = 1 into (27), we have η�g7
= ζ�g7

, leading
to the same result as in [5, equation (16)] for Rayleigh
fading (m = 1) with again the help of (A.1).

(iii) SISO Rayleigh fading channel (L = 1 and q = 1): sub-
stituting q = 1 and L = 1 into (27), we obtain the
same result as in [4, equation (7)] for Rayleigh fading
(m = 1), which further reduces to [3, equation (22)] in
terms of elementary functions (with the aid of identity
[4, equation (19)]).

4. AVERAGE SEP FOR OSTBC

In this section, we extend the analysis to MIMO diversity
systems employing an OSTBC for multiple transmit anten-
nas [13, 14]. We consider a slowly varying, frequency-flat,
Nakagami-q fading MIMO channel with nt transmit and nr
receive antennas.

Let H be the nr × nt channel matrix whose (i, j)th en-
tries hi j , i = 1, 2, . . . ,nr , j = 1, 2, . . . ,nt, are statistically in-
dependent complex propagation coefficients between the jth
transmit and the ith receive antennas. The fading amplitude
|hi j| of the (i, j)th link is a Nakagami-q variable with fading
severity parameter qi j and E{|hi j|2} = Ωi j .

4.1. MGF of output SNR

During a K-symbol interval, the K × nt OSTBC Gnt consist-
ing of N symbols (M-PSK or M-QAM) x1, x2, . . . , xN is trans-
mitted with the rate R = N/K , where the average energy of
symbol transmitted from each antenna is normalized to be
Es/nt . A general construction of complex OSTBCs with mini-
mal delay and maximal achievable rate was presented in [21].
This construction of OSTBCs for nt transmit antennas gives
the maximal achievable rate [21, Theorem 1]

R =
⌈
log 2nt

⌉
+ 1

2� log 2nt� , (29)

where �x� denotes the smallest integer greater than or equal
to x. For example, one-rate Alamouti OSTBC G2 for two
transmit antennas [13] and 3/4-rate OSTBC G4 for four
transmit antennas [21] are given by

G2 =
[

x1 x2

−x∗2 x∗1

]

, G4 =

⎡

⎢
⎢
⎢
⎣

x1 x2 x3 0
−x∗2 x∗1 0 −x3

−x∗3 0 x∗1 x2

0 x∗3 −x∗2 x1

⎤

⎥
⎥
⎥
⎦

,

(30)
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Figure 1: Symbol error probability of 8-PSK and 16-QAM versus
Es/N0 for L-branch MRC in SIMO Nakagami-q fading channels. q =
0.5, L = 2 and 4.
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Figure 2: Symbol error probability of 8-PSK G2 and 16-QAM G4

OSTBCs (3 bits/s/Hz) versus Es/N0 in MIMO Nakagami-q fading
channels. q = 0.3 and nr = 2.

where the superscript (·)∗ stands for the complex conjugate.
It is well known that due to the unitary property of OST-
BCs, the orthogonal space-time block encoding and decod-
ing transform a MIMO channel into N equivalent SISO sub-
channels with a path gain of the Frobenius norm of H, yield-
ing instantaneous output symbol SNR for each of SISO sub-
channels [10, 11]

γSTBC =
1

ntR

nr∑

i=1

nt∑

j=1

∣
∣hi j

∣
∣2 Es

N0
. (31)
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Since all the hi j ’s are independent, the MGF of γSTBC can be
easily written as

φγSTBC
(s)

=
nr∏

i=1

nt∏

j=1

[(
1 +

2sγi j /ntR

1 + q2
i j

)(
1 +

2sγi jq
2
i j /ntR

1 + q2
i j

)]−1/2

,

(32)

where γi j = Ωi jEs/N0.

4.2. M-PSK andM-QAM

From analogy of the MGF of γSTBC in (32) to (5), we can ob-
tain the average SEPs for OSTBC with M-PSK and M-QAM
immediately from (11) and (16) as follows:

PSTBC
e,MPSK =

Γ
(
ntnr + 1/2

)

2
√
πΓ(ntnr + 1)
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(
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)
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D
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1
2
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1
2
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1
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ğ1

}
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{
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}
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)
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g2

π
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(
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ğ3

}

1≤i≤nr
1≤ j≤nt

,

{
ζ

(i j)
2ğ3
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(33)

where ğ1 = g1/(ntR) and ğ3 = g3/(ntR).

Special cases

(i) I.I.D. MIMO Nakagami-q fading channel (qi j = q and
Ωi j = Ω, i = 1, 2, . . . ,nr , j = 1, 2, . . . ,nt): with the help

of (A.1), (33) reduce to
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, ζ�ğ1
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(34)

respectively.
(ii) I.I.D. MIMO Rayleigh fading channel (qi j = 1): sub-

stituting q = 1 into (34), we have η�ğ1
= ζ�ğ1

, η�ğ3
= ζ�ğ3

,

and η�2ğ3
= ζ�2ğ3

, leading to the same results as in [10,
equations (23) and (24)] for Rayleigh fading (m = 1)
with again the help of (A.1), which further reduce to
[10, equations (26) and (27)] in terms of elementary
functions.

5. NUMERICAL AND SIMULATION RESULTS

To validate our analysis, we perform Monte Carlo simula-
tions and compare them with analytical results. For the sim-
ulation of Nakagami-q (Hoyt) fading model, the approxima-
tion of the Hoyt model by a properly chosen Nakagami-m
model has been presented in [15]. In our examples, we ob-
tain the Nakagami-q fading by taking account of the phys-
ical model of the λ-μ distribution [22]: μ = 0.5 and λ =
(1−q2)/(1 +q2). In such a case, the in-phase and quadrature
components of the Nakagami-q fading envelope are modeled
as the sum of several zero-mean correlated Gaussian random
variables with a correlation coefficient (1 − q2)/(1 + q2). In
all examples (for brevity of simulations), we set qi = q and
Ωi = 1, i = 1, 2, . . . ,L for SIMO Nakagami-q fading, and
qi j = q and Ωi j = 1, i = 1, 2, . . . ,nr , j = 1, 2, . . . ,nt for
MIMO Nakagami-q fading. Hence, the average symbol SNR
per receive antenna is equal to Es/N0.

Figure 1 shows the average SEP of 8-PSK and 16-QAM
versus Es/N0 for L-branch MRC in SIMO Nakagami-q fading
channels when q = 0.5, L = 2 and 4. Figure 2 shows the SEP
of 8-PSK G2 and 16-QAM G4 OSTBCs versus Es/N0 in MIMO
Nakagami-q fading channels when q = 0.3 and nr = 2. For
8-PSK G2 and 16-QAM G4, the transmission rate is equal to
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Figure 3: Symbol error probability of 8-PSK with L-branch
MRC in SIMO Nakagami-q fading channels as a function of the
Nakagami-q parameter. L = 2, 3, 4, 5 and Es/N0 = 20 dB.
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Figure 4: Symbol error probability of 8-PSK G4 in MIMO
Nakagami-q fading channels as a function of the Nakagami-q pa-
rameter. nr = 2, 3, 4, 5 and Es/N0 = 10 dB.

3 bits/s/Hz. From these two figures, we see that the analytical
results match exactly with the simulation ones.

The effect of fading severity on the average SEP is illus-
trated in Figures 3 and 4 where the Nakagami-q parameter
varies from 0 to 1. Figure 3 shows the average SEP of 8-PSK
with L-branch MRC in SIMO Nakagami-q fading channels as
a function of the Nakagami-q parameter when L = 2, 3, 4, 5
and Es/N0 = 20 dB. Similarly, Figure 3 shows the average
SEP of 8-PSK G4 in MIMO Nakagami-q fading channels
as a function of the q parameter when nr = 2, 3, 4, 5 and
Es/N0 = 10 dB. As the fading parameter q decreases—from
the best case of Rayleigh fading (q = 1) to the worst case of
one-sided Gaussian fading (q = 0)—we can clearly observe
the increase in SEP due to more severe fading.

6. CONCLUSIONS

In this paper, we have derived the exact average SEP for a
variety of binary and M-ary signals over SIMO and MIMO
Nakagami-q fading channels with MRC and orthogonal
space-time block coding, respectively. The final SEP expres-
sions have been given generally in terms of Lauricella hyper-
geometric functions. Furthermore, it has been shown that
the well-known results for Rayleigh fading are special cases
of our final expressions.

APPENDIX

A. REDUCTION FORMULAS FOR F(N)
D

Using Euler integral form of Lauricella hypergeometric func-
tion in (10), we can easily obtain two reduction formulas for

F(n)
D , which are useful in the paper, as follows.

(i) When x1 = x2 = · · · = xm = x�, m ≤ n,

F(n)
D

(
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{
bi
}n
i=1; c;

{
xi
}n
i=1

)

= F(n−m+1)
D

(

a,
m∑

i=1

bi,
{
bi
}n
i=m+1; c; x�,

{
xi
}n
i=m+1

)

.

(A.1)

(ii) When bn = −1,
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D

(
a,
{
bi
}n
i=1; c;

{
xi
}n
i=1

)

= F(n−1)
D

(
a,
{
bi
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{
xi
}n−1
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− cxn
a
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D

(
a + 1,

{
bi
}n−1
i=1 ; c + 1;

{
xi
}n−1
i=1

)
.

(A.2)
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