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1. INTRODUCTION

Latest advances in wireless sensing technologies have consid-
erably expanded their applications including military, home-
land and border security, roadway safety and traffic surveil-
lance, habitat monitoring, and wildlife and environment
protection [1-3]. In most of these applications, a network of
individual wireless sensors is used to collect state-describing
data from a given field. This data is then transmitted through
the network to one or more predefined sink nodes for pro-
cessing. Clearly, the performance of a wireless sensor net-
work (WSN) would largely depend on the characteristics and
deployment scheme of individual sensors used to construct
this network. Sensors could be characterized by their lifes-
pan, power-saving capabilities, mobile capabilities, reliabil-
ity, coverage range, and communication range. Using sen-
sors with superior sensing capabilities together with accurate
placement of these sensors in the field’s hotspots would result
in more effective surveillance. In this context, WSNs could
generally be classified into (a) homogeneous versus hetero-
geneous and (b) ad hoc versus fully accessible [4, 5]. Ho-
mogeneous WSNs use identical set of sensors, while hetero-
geneous WSNs consider sensors that differ in one or more
of the above characteristics. In ad hoc WSNs, sensors are
randomly placed mainly due to limited access to the moni-

tored field. Conversely, in fully accessible WSNs, full access
to the monitored field is granted, and hence the deployment
scheme of each sensor over the monitoring horizon is prede-
fined before the actual placement of the sensors.

This paper studies fully accessible and heterogeneous
WSNs. A modeling framework for the problem of deploy-
ing a set of heterogeneous sensors in a field with time-
varying differential surveillance requirements is presented.
In this framework, the problem is formulated as mixed in-
teger mathematical program with the objective to maximize
coverage of a given field. A set of constraints is defined for
this mathematical program to guarantee that each zone in
the monitored field achieves its required surveillance require-
ments. Constraints are also defined to ensure that no sensor
is used beyond its capacity. The solution of this mathemati-
cal program yields the deployment scheme for each used sen-
sor. Two metaheuristics are also used to solve this problem.
The first heuristic adopts a genetic algorithm (GA) approach
while the second heuristic implements a simulated anneal-
ing (SA) algorithm. A set of experiments is used to illus-
trate the capabilities of the developed models and to compare
their performance. The experiments investigate the effect
of parameters related to the size of the sensor deployment
problem including number of deployed sensors, size of the
monitored field, and length of the monitoring horizon. They
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also examine endogenous parameters related to the devel-
oped GA and SA algorithms.

The contribution of this research work is fourfold. First,
the modeling framework considers the deployment of het-
erogeneous set of sensors. Most existing sensor deployment
algorithms assume the deployment of identical sensors (e.g.,
see [1, 6, 7]). Thus, a more general framework is needed
for large-scale surveillance operations in which multiple sets
of heterogeneous sensors are integrated in one deployment
plan. Second, main characteristics of the sensors such as
lifespan, power saving and mobile capabilities, and reliabil-
ity are explicitly considered. Third, the framework consid-
ers monitored fields with time-varying differential surveil-
lance requirements. In other words, the framework devel-
ops a deployment scheme that is responsive to the temporal-
spatial variation in the criticality of the different zones of the
monitored field. Finally, developed algorithms in this frame-
work generate near-optimal solution for large-size deploy-
ment problems in reasonable running time, which enables
the use of these algorithms in applications that require real-
time sensor deployment.

Early contribution to the problem of surveillance device
deployment returns to Chvatal [8] who introduced the art
gallery problem. In this problem, the goal is to determine
the minimum number of observers required to secure an
art gallery with a nonuniform geometry. Different versions
of this problem have been studied to include mobile guard
and guards with limited visibility (e.g., see [9]). Nonethe-
less, research in the area of sensing devices deployment has
rapidly advanced with the emergence of wireless sensors net-
works. Most of the research work in this area has concen-
trated on studying the optimal formation of a WSN that
can be used to collect data from a given field and to trans-
mit this data to one or more sink points (e.g., [10, 11]).
For example, Chakrabarty et al. [10] proposed a mathemat-
ical programming approach for sensor and target locations
in distributed sensor networks. The formulation assumes
homogenous sensing devices with perfect accuracy. Isler et
al. [12] proposed concurrent and incremental deployment
methods using sampling theory in which new nodes are de-
ployed based on samples taken from some other randomly
deployed nodes. Liu and Mahapatra [13] proposed an inte-
ger linear program to maximize the overall lifetime of WSNGs.
A heuristic is proposed where nodes are forced to send col-
lected data as far as they could and bypass some intermediate
nodes to save their energy. Hu et al. [14] proposed the de-
ployment of superior set of sensors, called microservers in a
hybrid deployment framework. These microservers are used
to filter and route the data in order to reduce the load on
other devices. Lee et al. [15] show mathematically and using
simulation that using sensors with different lifetime might
prolong the overall wireless sensor network’s lifetime.

Deployment of mobile nodes has been described in sev-
eral contexts. One common approach assumes availability of
a superior leader that guides several mobile sensor nodes to
their deployment positions. Wang et al. [16] proposed an al-
gorithm that uses mobile nodes to cover the blind spots in
the monitored area based on static nodes bidding data. In ad-

dition, Poduri and Sukhatme [17] introduced an algorithm
based on artificial potential fields for self-deployment of mo-
bile sensor nodes. The algorithm aims to achieve maximum
coverage of the monitored fields. Furthermore, Howard et
al. [18] presented an incremental deployment approach that
uses the information gathered from previously deployed
nodes in unknown environment to guide deploying the rest
of the nodes. Issues related to sensors reliability are presented
in [19-21] considering the deployment of stationary sensing
devices with imprecise detection capabilities. The objective
is to maximize coverage of the monitored field for target de-
tection using a set of devices with probabilistic precessions.
In addition, the effect of sensors aging on coverage perfor-
mance is studied in [22]. Furthermore, example of deploying
sensors with self-scheduling (state-switching) capability for
energy saving can be found in [23, 24]. The goal is to pro-
long the network lifetime through scheduling sensor nodes
to be inactive during periods with slow or no activities (e.g.,
off-peak periods).

Maximizing coverage is one of the fundamental objec-
tives of most sensor networks. Nonetheless, coverage is con-
sidered in different contexts in the literature. For example,
Cardei and Wu [11] categorized the coverage in static wire-
less sensor networks into area, point, and barrier coverage.
Gage [25] classified the coverage into blanket, barrier, and
sweep coverage. In addition, Huang and Tseng [26] considers
the coverage as a decision problem that determines whether
every point is covered by at least k sensors, where k is pre-
defined. This concept is extended by Zhou et al. [27] con-
sidering k-connected coverage in which k sensors are con-
nected. Moreover, Poduri and Sukhatme [17] measure the
sensor network quality of service by finding the uncovered
or low observed areas and highly observed areas in the moni-
tored field. In this paper, the definition of coverage is slightly
different. Coverage refers to monitoring the highest impor-
tant areas in the deployment field by the highest reliable sen-
sors. For example, in border security applications, covering
the mountain areas might not be as important as covering
the flat areas that people or vehicles can easily pass through.
Thus, we use higher reliable sensors in covering hotspots in
the monitored filed.

The paper is organized as follows. The sensor deploy-
ment problem is formally defined and modeled in Section 2.
Section 3 describes the optimal solution approach for this
problem. Section 4 presents the GA and SA algorithms used
to solve this problem. Experiments that illustrate the perfor-
mance of these algorithms are presented in Section 5. Finally,
the paper concludes in Section 6.

2. PROBLEM DEFINITION AND MODELING

A field F(A) is given to be monitored for a time horizon T
using a set of heterogeneous sensing/surveillance devices S.
This monitored field is divided into a number of zones A.
Each zone i € A is associated with a time-varying weight
function w!, where t € T. This weight function defines the
importance of the observations (surveillance requirement) in
this zone over the horizon T. The given sensors may differ in
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their capabilities such as lifespan, allowed number of state-
switching, allowed number of moves, and reliability. More-
over, sensor movement cost, described in terms of loss in the
sensor’s energy, may differ based on the length and the time
of the move. A sensor’s lifespan L; is measured by the initial
energy of sensor s. The cost factor e in terms of energy is
associated with each lifetime unit when sensor s is being acti-
vated at any unit of time. In addition, sensors are assumed to
have limited number of state-switching P; in which a sensor
s € § changes its state from “on” to “off” or vice versa. For
example, a sensor s € S could be switched to “off” at time
t € T to save its lifetime (energy) for other time periods and
zones with higher security requirement.

Moreover, a sensing device could be stationary or mobile.
If a stationary device is deployed on a zone i € A, this device
is assumed to remain in this zone for the entire lifespan of the
device. On the contrary, a mobile sensor can cover multiple
zones over a time period T. All mobile devices are assumed to
have no restrictions on the start or the end locations of their
deployment, but they have restrictions M per sensor on the
number of moves from zone to another. A sensor transfer
between two zones is assumed to be associated with a cost.
This cost is expressed in terms of the loss in the device’s en-
ergy Eg;. Nevertheless, each sensor s € S is characterized by
a predefined reliability R that typically changes over time.

A limited set of heterogeneous sensing devices in terms of
R!, L, and P; is given in addition to the movement cost E;; i
and the lifetime cost es; the objective is to determine their op-
timal deployment scheme such that the field coverage is max-
imized. Coverage is maximized when observations with the
highest importance are collected. At the same time, sensors
with high reliability are assigned to high weight zones. Nev-
ertheless, the coverage is also maximized by serving a zone
with only one sensor at any given time and by keeping the
sensors active as much as possible.

3. OPTIMAL SOLUTION APPROACH

In this section, we address the optimal solution approach.
A mathematical formulation of the problem described
Section 2 is developed. The formulation is based on inte-
ger linear programming (ILP); this ILP is implemented us-
ing CPLEX 8.0. The objective function and list of constraints
developed for this program are as follows.

Define

(i) xt, =1  if device s exists in active state on zone i
at time interval ¢, and 0 otherwise,

(i) y5 =1  if device s exists in inactive state on zone
i at time interval ¢, and 0 otherwise,

(iii) mg; = 1 if device s is moved from zone i to zone

j at time interval ¢, and 0 otherwise,

(iv) on’; = 1 if device s is turned to active state at time
interval ¢ on zone i, and 0 otherwise,

(v) off’; = 1 if device s is deactivated at time

interval t on zone i, and 0 otherwise,

The objective function is defined by the following equa-

tion.

Maximize

Zszfx - R, (1)
t s

1 if the sensing device is deployed in active state

X = during time interval ¢,
0 otherwise.
(2)
The set of constraints is formulated as follows.
(i) Deployment constraints to relate x%; and y;:
xi+yhi <1 Vs, (3)
yit =z X Zx”l Vi, (4)
yi 'z xg- fo L Vs, (5)
iz Y- Zx”‘ Vi,is, (6)
yi 'z yh fo ' Vs, (7)
where
1 if the sensing device is deployed in inactive
Vi = state during time interval f, (8)
0 otherwise.
(ii) Assignment constraints:
Dxhi+yl) <1 Vs, 9)
i
dxli<1 Vi (10)
S
(iii) Mobility constraints:
mi; = (" +yi) + (6 +y5) =1 Vi, ji# jys,
(11)
mél] = g;] +y_£]+1 Vt) i)j)S) (12)
ms,-j <xL+yh Viij,s, (13)

Z Z sttj <M; Vs (14)

(iv) State-switching constraints:

onl > (ki1 +yh) — 1 Vtis, (15)
on; < xf Vi,i,s, (16)
onl < yS,» Yt i,s, (17)
offi; = (Y +x) =1 Vti,s, (18)
offy < yi' Vs, (19)
offi, < xl, Vti,s, (20)
z Z onl, +off’) <P, Vs. (21)
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(v) Lifespan constraints:
> Dexti+> > Y Eyml <L Vs (22)
t i ij ot

(vi) Binary constraints:
{x5i> yai» Mg ong, offi} =lor0 Vti,s. (23)

As shown in (1), the objective function maximizes the
field coverage which is described as the sum over all time in-
tervals of the products of the observation weight w!, the de-
cision variable x; (x!; = 1 if device s exists in active state in
zone i in time interval ), and the reliability of the used device
R

Constraints in (3) ensure that a sensing device is either
active or inactive during any time interval. Constraints in
(4)—(7) determine the value of the binary variable y; based
on the value of x.. If a sensing device is set to be active in
zone i during time interval ¢, and this device is not used in
any zone during the next (previous) time interval, this de-
vice is assumed to be inactive and to stay in this zone during
the next (previous) time interval. Similarly, if a device is set
to be inactive in zone i during time interval ¢, and this device
is not used in any zone during the next (previous) time in-
terval, this device is assumed to remain inactive in the same
zone during the next (previous) time interval. The greater
than or equal signs used in these constraints prevents the in-
feasibility of the constraints if the value of 3; ;" or X x{;!
is turned to be 1 and the value x/; is equal to 0. However, this
might lead y!! or y;! tobe 0 or 1 in some cases. These cases
are handled by constraints in (9). Constraints in (9) ensure
that each zone is covered by at most one device in any time
interval. Also, at each time interval, a surveillance device is
covering at most one zone, which is guaranteed in constraints
(10).

Constraints in (11)—(13) determine if sensing device s is
moved from zone 7 to zone j at the end of interval t. They
compare zones where sensing device s is deployed during
time intervals ¢ and ¢ + 1. The binary variable mﬁij is set to
one if they are different. Constraint (11) uses the “>” sign in-
stead of “=" sign to avoid the infeasibility in case (x{f' + i)
and (xg; + y;) are equal to 0. Again, this might lead my;; to
have 0 or 1 which is handled by constraints (12) and (13).
Constraints in (14) ensure that the number of moves made
by a device is less than or equal to the maximum number of
moves allowed for this device.

The state switching of a sensing device from active state
to inactive state and vice versa are determined in constraints
(15)—(20). The binary variables x!; and y/; are examined for
each sensing device while being deployed in every zone. If
both variables are equal to one in two successive time inter-
vals, this indicates that the device’s state is altered. The total
number of state switchings for each sensing device is com-
puted and compared to the maximum number of switches
allowed for each device as given in constraints (21). Con-
straints in (22) ensure that each sensing device is not uti-
lized beyond its lifespan through the sum over x!; multiplied
by the cost factor e; of sensor’s lifetime. The consumption

of a device’s lifespan is computed as the sum over all inter-
vals in which the device is active plus the loss in the device
lifespan associated with its moves along the different zones.
Finally, the integrality of all binary variables is preserved in
constraints (23).

4. METAHEURISTIC APPROXIMATE APPROACHES

The deployment problem, described above, is intractable
in its general form as well as in many special cases. The
art gallery problem which was proven to be NP-hard prob-
lem [28] represents a restricted case of the sensor deploy-
ment problem. Therefore, seeking sensors optimal deploy-
ment scheme for large-scale problems might be impractical.

In this section, we present two approximate metaheuris-
tics to solve large-scale sensor deployment problems. These
heuristics adopt genetic algorithm and simulated annealing
approaches, respectively. Details on modeling and imple-
mentation issues of these two algorithms are provided in the
following subsections.

4.1. The genetic algorithm approach

Genetic algorithms are optimization and search techniques
inspired by evaluation. They use the principles of genetics
and natural selection. GA has been used to solve a wide range
of combinatorial problems in different areas. The common
major steps, as shown in Figure 4(a), for any genetic algo-
rithm are as follows.

(1) Generation: generate an initial population of chromo-
somes.

(2) Evaluation: evaluate the cost of each individual chro-
mosome.

(3) Selection: determine the fitness of each individual
chromosome.

(4) Reproduction: reproduce based on fitness, giving more
chances to fit individuals to reproduce. In general, use
crossover and mutation operators for reproduction.

(5) Go to 2, until stopping criteria are met.

The details of the algorithm and its advanced features can be
found in [29-31].

Applying GA to the sensor deployment problem, chro-
mosomes are designed to describe a feasible deployment plan
for the set of available sensors. The length of each chromo-
some (number of genes) is taken to be equal to |A[* | T|* S|,
where |A[, |T|, |S| are number of zones, number of intervals
in the monitoring horizon, and number of sensors, respec-
tively. All genes are initially set to zero; however, if a sensor
s € Sis deployed at zone z € A, at time interval t € T, the
correspondent gene is set to 1. Figure 1 illustrates the struc-
ture of a chromosome used to represent the deployment of
two sensors (s1 and s2) in a field of three zones (z1, z2, and
z3) which is monitored for two time intervals (¢1 and £2). As
shown in the figure, s1 is used for the two time intervals and
is moved once to cover z3 at t1 and z1 at t2. Thus, s1 does not
exercise the state-switching capability. Sensor s2 is used only
for the first time interval (¢1); then it is turned off at time £2.
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t1 2
zl | z22 | z3 zl1 | 22 | 23 | z1 z2 | z3 | z1 | 22 | 23
o[1]o 0olo]o]
sl s2 sl s2

Figure 1: Example of a chromosome for the sensor deployment
problem.

t2
22| 23| z1 | z2 | 23

sl s2

t1
zl | z2 | 23 zl | 22 | 23

sl s2

(®)

FI1GURE 2: Time-exchange crossover operation (a) before crossover
and (b) after crossover. t1 and 2 of chromosome are exchanged to
generate a new chromosome.

The algorithm allows two chromosome generation mech-
anisms: single chromosome per iteration or multiple chro-
mosomes per iteration. In the single-chromosome case,
an initial chromosome is randomly generated. For a new
chromosome to be generated in the subsequent iteration,
two different crossover operators are adopted, namely time
exchange (TE) and sensor exchange (SE). Using the TE
crossover operator, sensors deployment pattern in two
randomly selected time intervals are exchanged. Figure 2
illustrates the application of the TE crossover operator. The
sensors deployment pattern during time intervals #1 and
t2 is exchanged. The SE crossover operator exchanges the
deployment pattern of two randomly selected sensors over
the entire horizon. Figure 3 presents an example on the SE
crossover operator. The deployment patterns of sensors sl
and s2 are exchanged over the entire horizon (¢1 and 2).

In the multiple chromosomes mechanism, n chromo-
somes per iteration are generated, where n is a predefined
parameter. The initial # chromosomes can be generated ran-
domly or based on a guided algorithm. In case a guided
algorithm is used, the first chromosome is generated ran-
domly; then the second chromosome is generated through
applying one of the two crossover operators described above.
These two chromosomes are then used to generate the rest
of the population as described hereafter. For n new chro-
mosomes to be generated, crossover and mutation operators
are applied on chromosomes generated in the previous iter-
ation. Two different crossover operators are adopted, which
are time exchange (TE) and best chromosome (BC). The TE
crossover is similar to the case where a single chromosome
per iteration is generated. However, in the case where mul-

t1
zl | z2 | z3 zl | 22

sl s2

zl | z2 | 23 zl | 22

sl s2

(®)

FIGURE 3: Sensor-exchange crossover operation (a) before crossover
and (b) after crossover. s1 and s2 are exchanged at both times ¢1 and
12 to generate a new chromosome.

t1 12
zl | z2 | z3 z1 | 22 | 23 | z1 | 22 | 23 | 2zl | 22 | 23

sl s2 sl s2

t1 2
zl | 22 | z3 z1 | 22 | 23 | z1 z22 | 23| z1| 22 | 23

sl s2

(a)

t1 t2
z2 | z3 zl | 22 z3

sl s2

1 2

zl | z2 | z3 | z1 | 22 | z3 | 2zl | 22| 23| z1 | 22 | 23

[oJo 1ol 1]o|ol1]of1]o]o
sl s2 sl s2

(b)

Fi1GURE 4: Time-exchange crossover operation between two chro-
mosomes (a) before crossover and (b) after crossover. t1 in both
chromosomes are exchanged to generate two new chromosomes.

tiple chromosomes per iteration are generated, the sensor
deployment patterns, in the same time interval, in two dif-
ferent chromosomes are exchanged. Figure 4 presents an ex-
ample on the application of the TE crossover operator. Two
chromosomes exchanges their sensor deployment patterns in
time interval ¢1 resulting in two new constraints. The BC
crossover operator is similar to the TE operator with the ex-
ception that only the two fittest chromosomes are used as
parents for all new chromosomes. Following the crossover
operations, the mutation operation is used to prevent the
search from getting trapped in the local minima and also to
prevent chromosomes repetition. In the mutation step, some
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t1 12
zl | 22 | z3 zl |22 | 2z3 | z1 | 22 | z3 | z1 | 22 | 23
0 0 0 0 1 0 1 0 0 0 0 0
sl s2 sl s2
t1 12
zl |22 | z3 zl | 22 | 23 | z1 | 22 | 23 | z1 | 22 | 23
o Jofolol1t]lo[1]o]o 0 |
sl s2 sl s2

F1GURE 5: Mutation operation; s1 at t1 and s2 at {2 are muted to be
used on z1 and z2, respectively.

of the generated chromosomes genes are randomly altered
(from zero to one or vice versa). Thus, the search is directed
to a new area in the search space. Figure 5 depicts an example
of the mutation step for a single chromosome.

Crossover and mutation operations could result in un-
feasible chromosomes as some sensors might exceed their
capabilities (e.g., lifespan, maximum number of moves, and
maximum number of allowed switches). As such, a feasibility
check routine is applied for each newly generated chromo-
some to ensure that all chromosomes in the population are
representing feasible deployment patterns.

The fitness of each generated chromosomes is measured
using the fitness function given below. One should note the
similarity between this fitness function and the objective
function of the mathematical program in Section 2,

F(x) = > Z > wi- R, (24)

where x is the chromosome identifier.

Given the fitness value for each new chromosome, chro-
mosomes are added as part of the current population only
if they outperform the current available solution. The algo-
rithm stopping criteria could be based on a fixed number of
iterations or a given number of iterations in which the solu-
tion does not improve.

4.2. Thesimulated annealing approach

Simulated annealing (SA) is a randomized search technique
for highly nonlinear problems [2]. In its search process, the
algorithm is similar to using a bouncing ball that can bounce
over mountain from valley to valley based on the ball’s tem-
perature until the highest tip is found. The algorithm starts
by generating an initial feasible solution and computing its
performance. This solution is stored as the best solution ob-
tained so far. Neighborhood of this solution is searched and a
new solution is generated. If the new solution’s performance
is greater than the highest gain found so far (uphill move),
the new solution is accepted and saved. If the gain of the new
solution is less than the upper bound performance found so
far, still accept this new inferior solution but with some prob-
ability (downhill move). The probability of accepting inferior
solutions is reduced after each iteration (increase of the ball
temperature). The process continues until no better solution

t1 12 13
| zl | 0 | z4 z2 | z4 | z3 0 | z4 | z2 |
sl s2 s3 sl s2 s3 sl s2 s3

FIGURE 6: Example on the simulated annealing solution in which 4
zones are monitored by 3 sensors for 3 time units.

is found indicating that the maximum possible temperature
is achieved. A formal description of the SA algorithm can be
described using the following main steps.
Define
(i) Xo = initial solution, and the best solution so far,
(ii) X = current solution,
(iii) N(Xk) = neighborhood of the current solution,
(iv) G(Xk) = performance of the current solution,
(v) X = variable to keep the best solution,
(vi) Bk = current temperature,
(vii) B =final temperature (highest temperature value),
(viii) a = heating rate for temperature schedule,
(ix) P(Xk+1, Xx) = probability of acceptance of a new
solution (Xj+1) given that the solution is (X).
This probability is calculated as follows:

P(Xpy1, Xi) = e CXer) =GOV Br=pe), (25)

Step 1. Setk = 1 and select the initial temperature 3, and the
final temperature f7.
Select an initial solution X; and set Xy = Xj.

Step 2. Select a new solution Xy from N (Xk).

If G(Xk+1) > G(Xo), set Xo = Xi+1 and update )?; then,
go to Step 3.

If G(Xk+1) = G(Xp), generate Uy ~ uniform (0,1).

If Ux < P(Xk+1,Xk), set Xxs1 = Xi; otherwise set Xy =
Xk+15 g0 to Step 3.

Step 3. Update Bi+1 = Bi/a.
If (Bk+1 = fBy) stop; else set k = k + 1 and go to Step 2.

Applying the SA algorithm for the sensors deployment
problem, a solution is represented by a string of integers. The
length of this string is S| * |T|. In this string, each sensor-
time interval is assigned a zone such that no two sensors
are allowed to be deployed on the same zone in the same
time interval. If a sensor is not used in one time interval,
the corresponding cell in this solution string is assigned to
zero. Figure 6 illustrates an example for representing a solu-
tion generated by SA algorithm. Similar to the GA algorithm,
generated solutions are subjected to feasibility check to en-
sure the satisfaction of all constraints described in Section 2.
In addition, the algorithm can be extended to generate mul-
tiple solutions per iteration. In such case, different neighbor-
hoods are explored at the same time. The incumbent value
X maintains the best solution from all of generated solutions
per iteration. A comparison of the SA algorithm performance
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TaBLE 1: Performance of the GA and SA algorithms compared to the optimal solution.

. . GA . . SA
No.of No.of Optimal solution single solution per iteration time single solution per iteration
Exp no. - . Horizon LS exchange crossover
zones sensors running time (s) — ' ' ‘ Objective Running
Objective function (%) Running time (%) function (%) time (%)

1 10 5 12 1960 80 0.04 79 0.04
2 20 5 12 32030.8 85 0.009 83 0.008
3 25 5 12 39670 85 .01 85 0.009
4 20 3 12 2400 79 0.05 70 0.04
5 20 5 12 32030.8 85 0.009 83 0.008
6 20 10 12 50056 85 0.006 81 0.006
7 20 5 3 300.8 90 0.4 85 0.3
8 20 5 6 2300 92 0.1 85 0.1
9 20 5 12 32030.8 85 0.009 83 0.008

considering single solution and multiple solution implemen-
tations is presented hereafter.

5. EXPERIMENTAL RESULTS

5.1. GAand SA benchmarking and comparison

The mathematical program described in Section 3 is used to
provide an optimal solution for the sensor deployment prob-
lem. The commercial optimization package CPLEX 8.0 run-
ning on a 2.4 GHz machine with 2 GB memory is used to
generate the optimal solution for different problem settings.
This optimal solution is used to benchmark the performance
of solutions obtained by the GA and SA. Three different sets
of experiments are conducted. These experiments study the
effect of increasing number of zones, number of sensors, and
time horizon on the running time required to generate the
optimal solution, respectively. In all experiments, the time-
varying observations on the different zones were generated
randomly following a uniform distribution U(0, 200). In ad-
dition, a heterogeneous set of sensors is assumed. The sen-
sors’ lifespan L, is generated randomly as function of the
length of monitored horizon, while M, and P; are generated
randomly based on L;. For example, if the monitoring hori-
zon is T intervals, the sensor lifespan is generated randomly
using the uniform distribution U(1, T) and both M, and P
use a uniform distribution function U(1, Ls). In addition,
sensors reliability R! is generated randomly using a uniform
random generator R(0, 1), where 0 and 1 represent 0% and
100% reliability, respectively. Furthermore, the lifespan cost
e, is set to unity throughout these experiments.

As illustrated in Table 1, the running time required to
generate the optimal solution increases exponentially with
the increase in the size of the problem. For instance, a run-
ning time of 1960 seconds is recorded for a problem of 10
zones, 5 sensors, and a horizon of 12 intervals. This running
time jumps to 39670 seconds when the number of zones is
increased to 25. Problem settings with dimensions beyond
the ones presented in the table could not be generated us-

ing the machine mentioned above. The results indicate that
both GA and SA algorithms provide high-quality solutions.
In the experiment with the lowest performance (experiment
4 using the SA), 70% of the optimal objective function value
is obtained. Furthermore, up to 85%, on average, of the cor-
responding optimal performance is recorded when the GA
algorithm is used in experiments 1-9. The running time of
both algorithms is noticeably small compared to that of the
optimal solution. For example, in experiment 6, the running
times of the GA and SA algorithms are observed to be 0.006%
of the optimal solution’s running time.

On the other hand, the SA seems to converge faster than
GA algorithm. These results are confirmed in Figure 7 which
illustrates the comparison results of the GA and SA algo-
rithms when different numbers of chromosomes/solutions
per iteration are considered.

The number of chromosomes/solutions per iteration is
set to range from 1 to 50. The figure presents the compar-
ison in terms of objective performance and running time.
In this set of experiments, 300 zones are monitored for 12
time intervals using 200 sensors. Zones weights and sensors
capabilities are generated randomly as mentioned above. As
shown in Figure 8(a), the genetic algorithms outperform the
simulated annealing algorithm in terms of the objective func-
tion. On average, the recorded objective performance for the
SA algorithm is almost 96% of the genetic algorithm per-
formance. However, the SA running time is less than that
of the GA running time by about 9%. This set of experi-
ments also illustrates the impact of the number of chromo-
somes/solutions per iteration on the solution performance.
In general, increasing the number of solutions per iteration
resulted in convergence at a better objective function for both
algorithms. This is achieved on the expense of the running
time, however. For example, the objective performance of
a single chromosome/solution is almost 70% of that when
50 chromosomes/solutions per iteration are generated. The
required time for a single chromosome/solution is approxi-
mately 0.02% of the 50 chromosomes/solutions per iteration
case.
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FIGURE 7: A comparison between genetic and simulated annealing
algorithms with different chromosomes/solutions per iteration: (a)
objective performance and (b) elapsed time.

5.2. GA-related results

In this section, we present results related to the GA algo-
rithm. First, the algorithm convergence pattern is presented
for the cases of single and multiple chromosomes. Then,
the effect of crossover and mutation strategies on the so-
lution quality is illustrated. In all of the experiments con-
ducted in this section, sensors lifespan is generated based on
a uniform distribution U(1,T) and other parameters such
as state-switching, mobility and mobility cost are generated
randomly based on the lifespan of the sensors. Sensors relia-
bility is also generated randomly based on a uniform distri-
bution R(0, 1). Figure 8 shows the objective performance and
corresponding running time for a deployment problem with
100 zones, 50 sensors, and 12 time intervals. The value of
the objective performance and the corresponding cumulative
running time are recorded after every iteration. SE crossover
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FIGURE 8: GA performance progress with number of iterations: (a)
objective performance and (b) elapsed time.

operator and 100% mutation are used in these experiments.
As shown in Figure 8(a), generating 10 chromosomes per it-
eration results in convergence at higher objective using less
number of iterations. For instance, in the multiple chromo-
somes case, an objective of 24841 units is recorded at itera-
tion 64. This value is achieved at iteration 156 in the single-
chromosome case. On the other hand, the running time of
multiple chromosomes is higher than the time recorded for
the single-chromosome case. As shown in Figure 8(b), the
running time in the single-chromosome implementation is
almost 60% of that recorded in the multiple chromosomes
implementation.

The GA performance associated with using different
crossover and mutation strategies are also studied. The TE
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FIGURE 9: A comparison between time-exchange and sensor-
exchange crossover operators performance with increasing number
of sensors: (a) objective performance and (b) running time.

and SE crossover strategies are first compared. Two sets of
experiments are considered. In the first set of experiments,
100 zones are observed for 12 time intervals. The problem
size is increased in terms of number of sensors. In the second
set of experiments, the problem size is increased through in-
creasing the time horizon. The field size is 100 zones covered
with 50 sensors. Figures 9 and 10 present objective value and
running associated for both crossover strategies. As shown in

FIGURE 10: A comparison between time-exchange and sensor-
exchange crossover operators performance with increasing the hori-
zon: (a) objective performance and (b) running time.

Figure 9, SE crossover operator outperforms the TE opera-
tor. However, as the number of sensors becomes close to the
number of zones, both operators recorded similar coverage
performance. On the other hand, using SE crossover opera-
tor results in greater running time. Thus, for higher cover-
age performance, one might recommend using SE crossover
operator as long as the number of sensors is less than the
number of zones. Otherwise, TE is recommended from the
running time point of view.

As the horizon length increases, the TE crossover strat-
egy becomes more superior in terms of coverage perfor-
mance. This is also associated with an increase in the run-
ning time. As illustrated in Figure 10, for horizons beyond
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20 time intervals, the SE strategy yields higher coverage per-
formance. A corresponding pattern is recorded for the algo-
rithm running time. The time difference shown in Figures
9(b) and 10(b) returns to the additional processing time re-
quired for the SE operator to ensure feasibility of generated
chromosomes.

As mentioned above, mutation in GA plays an impor-
tant role in directing the solution towards different search
spaces. Figure 11 illustrates the effect of using different muta-
tion percentages on the average objective performance. Mu-
tation percentage is measured as the ratio between number
of altered genes and total chromosome length. A field of 100
zones is monitored for 12 units of time using 50 sensors. Ten
chromosomes per iteration and TE crossover operator are
used throughout these experiments. The mutation percent-
age ranges from 0% to 100%. The results show that as the
mutation percentage increases, the objective performance in-
creases. For instance, at 20% mutation rate, an objective of
9376 units is recorded. The objective increased to 10389 units
at 100% mutation rate.

5.3. SA-related results

The SA objective function convergence pattern is presented
in this section. For this purpose, the SA algorithm is applied
for a problem of 100 zones, 12 time units, and 50 sensors. The
heating rate is selected to be 0.99 and a sample of 300 itera-
tions is recorded. The starting temperature is assumed to be 2
temperature units and the final temperature is set to 50. Sen-
sors configurations are generated randomly based on uni-
form distribution as mentioned in Section 5.2. As shown in
Figure 12, the algorithm starts by pivoting at solutions with
low objective values since the acceptance probability of a new
solution is initially high. This may lead the algorithm to fall
in a local minimum such as the fall that occurred at itera-
tion 154. Also, the incumbent value X maintains the high-
est objective value which is 7939 reached at iteration 114. As
the temperature increases, the acceptance probability is de-
creased and the chance of pivoting at low performance so-
lutions decreases. This pattern is clearly showed starting at
iteration 200.

Two implementations are considered for the SA algo-
rithm: single solution per iteration and multiple solutions
per iteration. Multiple solutions per iteration algorithm di-
rect the search into multiple search spaces. To compare these
two implementations, a problem with 50 sensors, 12 time
units and number of zones that range from 100 to 1000 zones
is used. For the multiple solutions case, 10 solutions per iter-
ation are generated. The starting and final temperatures are
set to 2 and 1000, respectively. The temperature rate is as-
sumed to be 0.99. As shown in Figure 13, based on the con-
ducted experiments, the multiple solutions implementation
seems to outperform the single solution. For example, for
a problem with 1000 zones, the objective function of single
solution implementation is 10% less than that of the multi-
ple solutions implementation. This 10% improvement in the
coverage performance is associated with about 40% increase
in the running time.
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5.4. Effect of deployment parameters

In this section, we study the effect of different deployment
parameters on the performance of the genetic and simulated
annealing algorithms. In the first set of experiments, we dis-
cuss the effect of the zones’ weight variance on the perfor-
mance of the developed algorithms. The second set of ex-
periments examines the tradeoff between different sensors
attributes such as reliability, lifespan, mobility, and state-
switching. In addition, these parameters illustrate the effect
of these attributes on the coverage performance of both GA
and SA solutions. Throughout these experiments, the time-
exchange crossover operator is used with 10 chromosomes
per iteration. For SA, the starting and ending temperatures
are assumed to be 2 and 50, respectively. The heat rate is set
to 0.99. A sample of 300 iterations from both GA and SA is
presented.

5.4.1. Effect of observations variance

A set of experiments is conducted to illustrate the effect
of the observation weights’ variance on the algorithms
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per iteration: (a) objective performance and (b) elapsed time.

performance. In these experiments, the results of the opti-
mal solution mentioned in Section 3 are compared to the
output of both GA and SA for small-scale problems due
to the limitation of the optimal solution. A field of six
zones is monitored for 12 time intervals using three sen-
sors. The observation weights along the different zones are
generated randomly using uniform distributions with differ-
ent ranges. In addition, sensors parameters such as lifespan,
state-switching, and mobility are generated using uniform
distribution as mentioned in Section 5.2. Sensors’ reliability
is also generated uniformly within the range of R(0, 1).

As illustrated in Figure 14, as the variance in the obser-
vation weights across the zones and time intervals increases,

Coverage performance
w1
(=}
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Weight variance

75-125
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M sA

FIGURE 14: Effect of zones’ weight variance on the coverage perfor-
mance of GA and SA.

the approximation algorithms tend to produce solutions that
are closer to the optimal ones. For example, using GA, a cov-
erage performance of 75% is obtained when the zones’ ob-
servation weights are set according to uniform distribution
with a range of 25-125. This performance is improved to
90% when the range is increased to 200. These results are also
confirmed using SA in which the performance of the algo-
rithm is increasing with increasing the weight variance. For
instance, 75% coverage is given when a variance range 50—
150 is used, while the coverage percentage is increased to 85%
when the variance range is increased to 200. As the variance
increases the number of zone-time intervals with high obser-
vation weights decreases. In other words, important obser-
vations are concentrated in less number of zones and time
intervals. In addition, the observation weights of these zone-
time intervals represent high percentage of the observation
weights of all considered zone and time intervals. Thus, these
observations could be collected using less number of sensors’
lifespan, which frees other sensors to collect other observa-
tions. Hence, the overall coverage performance is improved
with the increase in the observation variance.

5.4.2. Effect of state-switching and mobility

In this section, we study the effect of sensors’ state-switching
and mobile capabilities on the coverage performance using
GA and SA. Two sets of experiments are conducted in which
20 zones are monitored using five sensors for 12 units of time.
Observation weights of the different zones are generated ran-
domly based on uniform distribution U(1,200). In addition,
sensors’ reliability is generated uniformly within the range
(0,1). In the first set of experiments, the effect of sensor state-
switching limitation is examined. The effect of using sensors
with mobile capabilities is assessed in the second set of ex-
periments.

Figure 15 illustrates the coverage performance for sensors
with different state-switching capabilities that range from 0%
to 100% as ratio of the sensors lifespan. Based on the ob-
tained results, using sensors with state-switching capabilities
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improves overall coverage performance in the monitored
field. Sensors are able to save their lifespan to be used on
high weights’ zones at different time(s), and therefore en-
hance the overall coverage performance. For example, cov-
erage performances of 5340 and 5000 coverage units are ob-
served for 10% state-switching by GA and SA, respectively.
These values are increased to about 6700 units using both GA
and SA when 80% of the state-switching is used. Similarly, as
illustrated in Figure 16, sensors with high mobility are able
to move among the different zones to capture high-weights
observations. When sensors’ mobility is increased from 0%
to 10%, the coverage performance improves by about 30 for
the GA and by about 34 for the SA.

5.4.3. Effect of lifespan and reliability

In this section, we discuss the effect of sensors lifespan and
reliability on the coverage performance. Using a problem
configuration similar to the one presented in Section 5.4.2,
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FiGure 17: Effect of sensors’ reliability with different numbers of
sensors on the coverage performance of GA.
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FiGure 18: Effect of sensors’ reliability with different numbers of
sensors on the coverage performance of SA.

Figures 17 and 18 illustrate the relationship between num-
ber of sensors and overall coverage performance for differ-
ent levels of sensors reliability using GA and SA, respectively.
As illustrated in the figures, the same coverage performance
using less reliable sensors can be achieved only through in-
creasing the number of used sensors. For instance, as shown
in Figure 17, ten sensors with 100% reliability give the same
coverage performance as that of 40 sensors with 25% reliabil-
ity using GA. Similar results are obtained for the SA as shown
in Figure 18.

The same pattern could also be observed when sensors
with different lifespans are used. As the sensors lifespan de-
creases, more sensors will be needed to achieve a certain re-
quired coverage performance. As illustrated in Figure 19, to
achieve a coverage performance of 3470 units using GA, five
sensors are needed if the sensors’ lifespan is equal to the mon-
itoring horizon. This number jumps to about 35 sensors if
the sensors lifespan is only 25% of the monitoring horizon.
This result is also confirmed using SA as shown in Figure 20.
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6. CONCLUSION AND FUTURE WORK

A modeling framework for the problem of deploying a set
of heterogeneous sensors in a field with time-varying differ-
ential sensing requirements is presented. In this framework,
the problem is formulated as mixed integer mathematical
program with the objective to maximize coverage of a given
field. A set of constraints is defined to ensure that sensors
are not used beyond their capacity. Two metaheuristics are
used to solve this problem. The first heuristic adopts a ge-
netic algorithm (GA) approach while the second heuristic
implements a simulated annealing (SA) algorithm. A set of
experiments is used to illustrate capabilities of the developed
models and to compare their performance. The results indi-
cate that both GA and SA algorithms provide high-quality
solutions in terms of objective function and running time.
In addition, GA seems to yield better coverage performance
than the SA. However, its running time was always higher in
all considered experimental settings.

In this paper, sensors’ lifetime, switching, and mobility
capabilities are assumed to be deterministic. Their costs are
also assumed to be given. For future research, these parame-
ters could be related to a cost function that is based on the
sensors’ consumed energy. For example, the lifetime con-
sumed energy may possibly associate with actual active du-
ration of the sensor. The movement consumed energy of a
sensor from one zone to another could be measured by the
movement distance and the movement time. Furthermore,
the state-switching energy could have a separate energy func-
tion for changing the sensor’s state from on to off or vice
versa.
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