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A novel framework is proposed to model downlink resource allocation problem in multiservice direct-sequence code division
multiple-access (DS-CDMA) cellular networks. This framework is based on a defined utility function, which leads to utilizing the
network resources in a more efficient way. This utility function quantifies the degree of utilization of resources. As a matter of fact,
using the defined utility function, users’ channel fluctuations and their delay constraints along with the load conditions of all BSs
are all taken into consideration. Unlike previous works, we solve the problem with the general objective of maximizing the total
network utility instead of maximizing the achieved utility of each base station (BS). It is shown that this problem is equivalent to
finding the optimum BS assignment throughout the network, which is mapped to a multidimensional multiple-choice knapsack
problem (MMKP). Since MMKP is NP-hard, a polynomial-time suboptimal algorithm is then proposed to develop an efficient
base-station assignment. Simulation results indicate a significant performance improvement in terms of achieved utility and packet
drop ratio.
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1. INTRODUCTION

Third generation wireless cellular networks provide a variety
of services ranging from multimedia to Internet access. In
order to enable these services cellular networks are required
to support multiple classes of traffic with diverse quality-
of-service (QoS) requirements. Due to the limited availabil-
ity of radio resources, designing a resource control mecha-
nism to utilize the network resources efficiently is a crucial
task for the next generation cellular communication systems.
However, designing an optimal resource allocation scheme in
CDMA cellular networks is a challenging problem especially
when different parameters are involved in the system such as
the rate, QoS, and delay requirements of various services.
The optimization can be performed either in the network
level or in the cell level. Conventional methods for resource
allocation in wireless networks are based on the characteriza-
tion of traffic flows. In these methods the objective is either to
minimize base-station power consumption or to maximize
the system capacity [1-4]. There are two major limitations

in these approaches: they require the traffic characteristics of
each flow, which may be difficult to obtain unless standard
assumptions such as Poisson traffic are made. Furthermore,
admission and access control must be considered in con-
junction with the resource allocation mechanism. Moreover,
these classical approaches fail to address the throughput-
delay tradeoff efficiently [5].

For the multirate delay-constrained services, as in 3G, the
conventional approaches are not effective enough in terms
of the optimization of the network resources. Therefore, an
alternative approach that avoids the above limitations is re-
quired. An efficient approach, which surmounts this chal-
lenge, is to assign a utility function to each user based on its
QoS requirements and channel status. This utility function
represents the benefit that the network can earn by serving
that user. In other words, by introducing the utility function,
no matter how many various services are involved in the net-
work, each service is specified and integrated in the system
modeling via a utility function. This implies that the system
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treats multiclass services in a unified way. The utility func-
tion then can be used as a tool to design an optimal resource
allocation scheme. The objective of the allocation scheme is
to optimize the total network utility, which is defined as the
summation of all the users’ utility functions.

There is no clear way to define the utility function for
multirate delay-constrained services. It is a complicated task
because a comprehensive and yet meaningful utility function
requires to take all the various aspects of the network and
service types into account. Some of these aspects include the
channel status, required data rates, and delay constraints of
the services.

In this paper, we define a novel utility function for each
user that is a function of its channel status, its required ser-
vice as well as the load condition of the corresponding serv-
ing base station. This new definition of the utility function
incorporates the information of both the network side (chan-
nel) and the user side (rate and delay) in a unified way for ra-
dio resource allocation. We focus our attention on the down-
link resources (i.e., power and bandwidth), which is consid-
ered to be the bottleneck in multiservice systems [6]. To de-
sign such a scheme, we take into account the system varia-
tions in the physical layer as well as the traffic load of the
base stations.

In other words, we propose a utility-based base station
assignment and resource scheduling scheme for the down-
link in multiservice cellular DS-CDMA networks. Unlike
previous works, we solve the problem with the general objec-
tive of maximizing the total network utility (multiple base)
instead of maximizing the utility of each base station (BS) in-
dividually. The scheme can be considered as a scheduler de-
termining the set of users that should be served within each
time slot. For the special case of having only packet traffic the
work in this paper is a general case of the work in [7, 8].

2. LITERATURE REVIEW

Radio resource allocation for the downlink in a DS-CDMA
cellular network is considered in [9, 10] based on the joint
power allocation and base-station assignment. A pricing
framework based on the utility concept has been introduced
in [11]. Using this concept, the uplink resource allocation for
power and spreading gain control for one type of non-real-
time service is studied in [12]. Utility-based modeling is also
utilized for uplink power control in a single service multicell
data network in [13]. In the proposed method in [13], QoS
for data users is modeled through a utility function that indi-
cates the value of information per assigned power level (bits
per Joule). Using the utility function the problem is solved by
modeling it as a noncooperative game where each user tries
to maximize its own utility.

For multiservice cellular networks with a mixture of sym-
metric and asymmetric services, it has been shown that in
most cases the downlink performance is more critical than
that of the uplink [6]. For the downlink, the power allo-
cation problem for multiservice DS-CDMA wireless net-
works is studied in [14], where the downlink power con-
trol problem for multicell wireless networks is formulated

as a noncooperative game, although they do not consider
downlink power limitation. In practice, transmission power
limitation in DS-CDMA cellular systems is a major con-
cern. Therefore, it is necessary to develop algorithms for the
power-constrained case as it is presented in this paper.

The pricing framework is also used in [15] to develop a
distributed joint power allocation and base-station assign-
ment with the objective of maximization of the total net-
work utility. However, in the strategy adopted in [15], each
base station tries to maximize its total utility without con-
sidering the status of others. Therefore, the proposed scheme
does not necessarily result in maximum total network utility.
Furthermore, other QoS parameters such as delay constraint
is not discussed. An opportunistic transmission scheduling
with resource-sharing constraints has been proposed in [16],
which exploits time-varying channel conditions in a single
cell. However, the user’s delay constraint is not taken into ac-
count in [16]. Moreover, their proposed utility function only
depends on the channel status in the time slot that the user is
being served.

Downlink resource allocation problem for multicell mul-
tiservice DS-CDMA system is also studied in our previous
works [17, 18]. Both papers, besides per-user throughput,
take into account delay requirements of data services as well.
The optimum power allocation scheme in a multiservice en-
vironment, which supports both data and real-time services,
is then modeled using the multiple-choice multidimensional
knapsack problem(MMKP); however, the detailed analysis of
the problem as well as corresponding heuristic algorithm for
MMKRP has not been presented in [17, 18].

In our later work [7], we show that optimal packet
scheduling in a packet-oriented cellular COMA/TDMA net-
work can also be modeled as an MMKP. Exploiting delay
tolerance of data traffic, we then introduced the notion of
multiaccess-point diversity, which is a potential form of di-
versity in cellular networks, where a signal can be transmit-
ted to the corresponding mobile user via multiple base sta-
tions. In [8] we derived analytical performance gain bound
on multiaccess-point diversity.

3. SYSTEM MODEL

We consider a time hierarchy for wireless cellular systems
where there are three main types of temporal variations in
the system.

(1) Small-scale variation that is mainly due to the fast fad-
ing effect of wireless channel. Fast fading is a consequence
of multipath propagation due to reflections of the signal by
physical obstacles. We consider Ty second as the time-scale
of small-scale variations, that is, fading is assumed to be con-
stant during each Ty seconds.

(2) Medium-scale variations that is because of the shad-
owing effect. Shadowing is the result of the existence of some
obstacles between the transmitter and the receiver, usually
modeled by a log-normal distribution. Here T, indicates the
time-scale of the medium-scale variations.

(3) Large-scale variations that is due to the mobility of
users in the network, which results in variations in the system
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TABLE 1: Notations.

Symbol Definition
M Number of base stations in the network coverage area
B Set of base stations in the network coverage area,
which are controlled by the RNC
N Number of total users in the network coverage area
NE Number of real-time users assigned to base-station i
NP Number of non-real-time users assigned to
base-station i
T; Maximum tolerable delay for user j
dj(n) The remaining tolerable delay of user j at time n
o Orthogonality factor
8isj The channel gain from base-station i to the user j of
service s
P The transmitted power from BS1, to user j of service s
RT Set of real-time users
NRT Set of non-real-time users
AS; Active set of user j
A; Set of users assigned to base-station i
Qp A feasible base-station assignment
R; Average required data rate for user j
Pr; Total available transmit power for BS i
Pri Total remaining transmit power for BSi to be
allocated to nonreal-time users

connectivity. In this paper, T}, indicates the time scale of such
variations.

In each time scale, appropriate mechanisms should be
utilized to manage the above variations. In this paper, a mul-
tiservice DS-CDMA cellular network is considered. Base-
stations and users are nonuniformly distributed in the net-
work coverage area. This system supports both real-time and
nonreal-time (data) services. Real-time services include voice
and multimedia. In this paper, we utilize the method pre-
sented in our previous work, [18], in T, time-scale to adap-
tively adjust coverage areas of base stations based on their
traffic loads. Based on this adjustment, in a smaller time
scale, each T, seconds, the more detailed decisions about as-
signed base stations and data rate of each individual user are
made. The typical values for T, T, and T}, are 1 millisecond,
10 milliseconds, and 100 milliseconds, respectively. For the
easy reference, we present the notations used in the rest of
the paper in Table 1.

A nested-loop power control is used. A central radio net-
work controller (RNC) performs outer-loop power control
every T, seconds. T, is assumed to be less than the maxi-
mum tolerable delay of user j, 7;. RNC also performs base-
station pilot power adjustments with a time scale of T}, sec-
onds; the coverage area of base stations are adjusted to tackle
the large-scale mobility of users. For nonreal-time users, QoS
is defined as a maximum delay constraint and a required av-
erage bit rate. Data traffic is packetized into equal size packets
and served by the DS-CDMA air interface.

Note that our proposed scheme for joint base-station
assignment and time scheduling (JBSATS), which will be

described in Sections 4 and 5, is performed every T, sec-
onds. The scheme can be considered as a scheduler de-
termining the set of users that should be served within
each time slot. Adaptive pilot power adjustment schemes
for base stations, [18], can be performed every T} seconds.
In other words, every T, seconds, the pilot powers of BSs
and consequently their coverage areas are adjusted. Based
on these determined coverage areas, the active set of all
users are determined. Using these active sets, within each T,
seconds, the base-station assignment scheme is performed
to determine the actual assignment of users to the net-
work.

4. BASE-STATION ASSIGNMENT

The system is time slotted and at any time slot each base sta-
tion first allocates power to the real-time users.

4.1. Real-time users

We consider a system with hexagonal cells including a cen-
tral cell and the cells in its first and second tier. The received
bit-energy-to-interference-plus-noise-spectral-density ratio
of user j served by service s while being in the coverage of
base-station i, I'; s, can be written as

o w 8isj Pisj
" Rj ziw:l,k%iPTkgk,sj + (1 = &) (Pri — pisj)&isj +1

(1)

foralliin B, sin RT, and j in N;, where W is the chip rate, r,
is the data rate of user j, and # is the spectral density of the
additive white Gaussian noise. The term in the numerator
represents the desired received power at the location of the
user j, where P;; is the transmitted power of the base-station
i, and g;; is the gain between the base-station i and user j of
the class s, which accounts for the effect of path loss, as well
as the large scale fading (shadowing). A fast power control
is assumed to be running with a separate mechanism, and
the outer loop power control is performed within each T,
seconds.

The first term in denominator represents the total re-
ceived interference from the other base stations, inter cell
interference, while the second term shows the intra cell in-
terference, resulted from the portion of the power of base-
station i that is allocated to the other users within the cover-
age area of the base-station i, Pr; — P;sj. The parameter « is
the orthogonality factor that is due to the effect of the multi-
path fading.

Based on (1), the achieved rate of each user, r;, depends
directly on the amount of allocated power to that user by its
base station, P;;, as well as its received interference. Basi-
cally these are the two main factors that enable us to manage
the total capacity of the system. Using the above definitions,
the problem of optimal power allocation to real-time users is
formulated as the following classic downlink power control
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problem:
M Nf
min { > 2. Pi,s]}’, s € RT, )
i=1 j=1
NE
st. 0< ZP,')S]» < Py, (3)
j=1
Iisj>y, VieB, VseRT,Vje N& (4)

where (4) denotes the constraint for the maximum allow-
able BS transmit power that can be assigned based on an up-
per layer mechanism (i.e., managed by RNC). Constraint (4)
indicates the air interface QoS satisfaction of the real-time
users. The allocated power based on the downlink power
control is the solution of (3), (e.g., see [19-21]).

4.2. Nonreal-time traffic

After power allocation to the real-time users, the available
power for allocation to the nonreal-time data users is upper
bounded by the remaining power of each base-station, which
comes from the hardware limitation. We denote this available
power of BSi at time slot n by Pr;(n) as

Nii
Pri(n) = Pri(n) — >, > Pisj(n). (5)

SERT j=1

The solution of (3) results in maximum available power.
Note that all of the remaining power is not necessarily the
remaining resource of the system because of the more in-
terference generated in the system by admitting more and
more nonreal-time users. Therefore, to prevent real-time
users’ call degradation after power allocation to nonreal-
time users, someone may allocate powers to the real-time
users based on the worst-case interference. Worst-case inter-
ference is when all base-stations transmit with their maxi-
mum transmit power. In this case, the received Ep/Ij of the
real-time users are higher than the threshold value and af-
ter some degradations due to the assignment of the nonreal-
time users; they will still get their minimum required E;/I.
Therefore, at the end all real-time users will experience an
acceptable level of QoS. The bit energy to the interference
spectral density ratio for user j of the base-station i served by
the service s is

W pisigisi

T, = —
7RI+ ;)

> T, (6)

where T is the minimum required Ey/Ij of the service s, W
is the chip rate, #; is the additive white Gaussian noise at the
user j’s receiver, and I;; is the total received interference at
the location of user j served by the base-station i calculated
by RNC as follows:

M

Lj(n) = > Prigkj+ (1 — a)Prigij. (7)
k=Lk#i

Based on (6), data rate of each user depends on its allo-
cated power, p;j, channel gain, g;;, and received interfer-
ence, I;;. Hereafter, we simply refer to gi;(n)/I;j(n) as the
channel status and drop subscript s for the brevity of discus-
sion.

Providing service to a user with poor channel status
would require more air interface resources such as transmis-
sion power, p;j, or longer transmission time due to a lower
data rate. As a result, providing the service to a user with bet-
ter channel status leads to an efficient system resource utiliza-
tion. On the other hand, among users with the same channel
status, providing service to users with less remaining tolera-
ble delay leads to QoS satisfaction of these users while does
not degrade the service level of the others. Therefore, utility-
based resource allocation is the technique of choice, where
the user’s service and channel quality is jointly integrated and
considered by a utility function, which is used as a tool to op-
timize the resource allocation scheme.

4.3. Utility-based resource allocation

Considering the delay tolerance of a nonreal-time data user,
the network can wait for a good channel status and then send
to that user. This idea has been used in recently proposed
methods based on utility-based resource control [13, 15]. In
these methods, the total network throughput is maximized
subject to a set of QoS and resource constraints. For each
user, a utility function is defined as an indicator of user’s
achieved throughput.

In the case where each user has a finite delay constraint,
the user’s throughput can only indicate the user’s satisfaction
if it is served in its predetermined tolerable delay period. Tak-
ing a network side insight, for a data user with a given max-
imum delay tolerance, serving that user can be done during
its maximum delay tolerance period. This is an opportunity
for the network to postpone serving that user and serve other
users with better channel status, which corresponds to the
less air interface resource to be allocated, and/or a worse de-
lay condition. In this paper, we define a novel utility function
that shows the network’s benefit due to the above mentioned
opportunity.

For user j being served by the BS i in time-slot #, we pro-
pose the utility function as

uij(ﬂ) _ {@(d](n))T(F,J(n)), i€ AS], (8)

0, otherwise,

where d;(n) is the remaining tolerable delay of user j, ®(-)
is an increasing function of 1/d;(n), and ‘¥(-) is the proba-
bility of success in packet transmission that is assumed to be
an increasing function of I';;(n), defined in (6). The function
®(d;(n)) manages the delay-throughout tradeoff by increas-
ing the priority of the users with a given minimum delay tol-
erance, while W(T;;(n)) characterizes multiaccess-point and
multiuser diversity gains. For instance, from two users with
the same channel status, the one with less d;(n) has the
higher priority to be served by the network, while between
two users with the same delay constraint, the one with a bet-
ter channel status is served first. In brief, the utility function
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defined in (8) is a decreasing function of d;(n), which has its
maximum value at d;(n) = 0.

Total network utility, Q : U, is defined as a function of the
individual utilities of the users that are assigned to the BSs,
where u £ (U1p,> Uabys - - - » UNby ) 1s the utility vector, index b;
shows the assigned BS to the user j, and Q(-) is a casual pol-
icy defined based on the network performance perspective.

The mathematical definition of Q(-) is related to the ser-
vice provider’s resource management strategy and generally
is as follow:

M=

Q(u) =

J

M
> wij(n)xij(n), 9)
1i-1

where x;j(n) is the assignment indicator in time-slot n, that
is, x;j(n) = 1 if BSi is assigned to user j and x;j(n) = 0,
otherwise. If a specific user is not assigned to the network at
time-slot n, this means that a BS that is out of its active set
is selected for serving. Therefore, by the definition in (8), its
corresponding utility would be zero. The total network utility
represents the total benefit that network earns by serving the
users while their delay requirements are also being satisfied.

In this paper, the total network utility is defined as the
sum of all individual user’s utility. In other words, the higher
network utility shows the more resource control efficiency in
terms of providing service to the users with the maximum
achievable utility.

5. BASE-STATION ASSIGNMENT ALGORITHM

In this paper, our objective is to maximize the total network
utility. Such optimization leads to maximizing the total allo-
cated data rate in the network while considering the channel
status, and the delay constraints of all users. In other words,
maximizing the total network utility shows that the network
waits intelligently for a better accessible channel status for
each user while considering its maximum tolerable delay.
Based on (8), the utility function of a user depends on its
assigned base station. Therefore, for a given set of available
powers for nonreal-time users, the problem of maximizing
the total utility of the network leads to the problem of finding
the optimum base-station assignment, which is implemented
by RNC.

In DS-CDMA networks, for each user, the base-station
assignment is performed based on the selection of a base-
station whose corresponding received E./Iy, the bit energy of
pilot channel to the total received interference spectral den-
sity, is the maximum. In other words, each user has an ac-
tive set of base stations from which it chooses its best server.
This active set is defined as a set of base stations whose cor-
responding received E /I, are greater than a performance
threshold, that is,

AS; = {i|i€B, (E/I);; = Ymin}> (10)

where ymin is the minimum required E./I.

In this case, in selecting the best server for each user, the
traffic profile of the network and the target base station is
not taken into account while in our scheme it is possible for

(1) For each j € NRT, RNC obtains uij for all BS; € AS;,

(2) RNC obtains valid subsets for all base stations,

(3) RNC searches different feasible base-station assignments,
Q,, and the optimal assignment is determined based on
(14).

ALcoriTHM 1: Proposed base-station assignment scheme.

a specific user, whose best server is overloaded, to be served
by another base station in its active set with better load con-
dition. Therefore, the total utility of the network can be im-
proved.

Here, we propose a base-station assignment mechanism,
which selects the best server of each user to maximize the
total network utility. The input of the algorithm consists of
the values of the utility functions of all users, which can be
defined in an arbitrary but meaningful way. Therefore, our
proposed modeling can be applied in a more general case by
any definition of utility. Let Pg = [Pgy, ..., Pry] be the vector
of base-stations’ remaining powers. Therefore, the optimal
base-station assignment in the time-slot 7 is a solution of the
following optimization problem:

M N
maxx,.j<z Z uij(n)x,-j(n)), (11)

i=1 j=1

s.t. Z pij(n)xij(n) < Ppi(n), VieB, (12)

jEA[

M
> xij(n) =1, x5(n) €{0,1} Vj=1,.,N, (13)
i=1

where x;;(n) is one if the user j is assigned to the base-station
i at the time-slot #, and zero, otherwise. For the brevity of
discussion in the following we drop the time index n.

Let MS; = {j | i € AS;} be the set of nonreal-time
users that base station i is in their active sets. The total re-
quired power to serve a valid subset of MS; should be smaller
than or equal to Pg;. Each user is assumed to be served by
only one base-station. Therefore, a feasible base-station as-
signment, (), is the combination of nonintersect valid sub-
setsof MS;,i = 1,..., M. A valid subset means a subset whose
sum of required powers of its individual users is less than or
equal to the total remaining power of its corresponding base-
station. Our objective is to find Q,,« as its corresponding to-
tal utility, U(Qy+ ), such that

*

m* = argmax U (Qy+). (14)

m

The base-station assignment scheme is summarized in
Algorithm 1.

In the following, we map the downlink resource alloca-
tion problem in (12) to a multidimensional multiple-choice
knapsack problems (MMKP).
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Definition 1 (MMKP). An MMKP is the problem where
there is an M-dimensional knapsack with M total allowable
volumes of Wy, W,. .., Wy and there are N groups of items.
Group j has n; items. Each item has a value and M volumes
corresponding to the knapsack’s M dimensions. The objec-
tive of the MMKP is to pick up exactly one item from each
group for the maximum total value of the selected items, sub-
ject to the volume constraints of the knapsack’s dimensions.
In mathematical representation, let vi; be the value of the
kth item of the jth group, let wi; = (wkj1,..., wkjm) be the
required volume of the kth item of the jth group correspond-
ing to M dimensions, and let W = (W1,..., W) be the vol-
ume constraints of different knapsack’s dimensions. Then the
problem can be written as

N nj
maxz Zijukj,
jo1 k=1

] =

Z

nj
s.t. ZijW,'kj <W; Vie{l,...,M}, (15)
=1 k=1

J

nj
Doxj=1 Vje{l..,N}, x; € (1,0}
k=1

5.1. Algorithm for optimal base-station assignment

Problem (12) is mapped to a multidimensional multiple-
choice knapsack problem (MMKP) as follows. We consider
M base stations as a knapsack with M dimensions and each
user as a group. Each group has n; (here M) items equal
to the number of base stations. Item k of the user j has a
value uy; defined in (8), that is, the utility of user j when
it is assigned to the base-station k, and M volumes pi; =
(P1jk>- - > PMjk)> Which is defined as

pijk(n) = ‘|pij(n)’ ek (16)

0, otherwise,

which ensures that item k of any group (user), that corre-
sponds to base-station k, can only be assigned to base-station
k, which is meaningful.

Therefore, if item k of group j is selected in the op-
timal solution, it means that the user j has been assigned
to the base-station k, its corresponding achieved utility is
ugj, and the amount of power it takes from the base-station
k is pxj. We have to choose exactly one item from each
group, meaning that each user can be assigned to at most
one base station. It is worth mentioning that by the defi-
nition of MMKP we have to choose exactly one item from
each group. However, the selection of all users is not feasi-
ble in many cases. Therefore, if user j does not exist in the
optimal solution it means that one of its items whose corre-
sponding value and volumes are zero has been selected. This
indirectly implies that user j has not been assigned to the
network.

Using above mapping, problem (12) can be rewritten as

N nj
m_axz Zxkjukj, (17)
MiiT1 k=1
N nj
s.t. Z Z XkjPijk < Pr; VieB, (18)
j=1 k=1
nj
Dxj=1 Vje{l,...,N}, xij € {0,1}, (19)
k=1

where x;; is one when the item k of user j is selected.

Since the problem was formulated as an MMKP, any
technique available to solve MMKP can be used. Gener-
ally, there are two approaches to solve an MMKP; exact and
heuristic. The exact solution is based on the branch-and-
bound algorithm [22]. The computational complexity of
these algorithms is O(2M°N). Therefore, branch-and-bound
linear programming approach (BBLP) is often too slow to be
useful for radio resource allocation. The alternative is to use
a heuristic approach. There are some heuristic algorithms in
the literature like the ones in [23, 24]. We use the modified
version of [24] to solve our MMKP. Here, we briefly outline
some of the known theory on Lagrange multipliers and the
algorithm for solving our MMKP to simplify the understand-
ing of our approach.

Theorem 1 (see [25]). Let Ay,...,Am, be M nonnegative La-
grange multipliers, and let x;; € {0, 1} be the solution of

N nj M N nj
mox | (3 T ) - S0 Y Y], @0
j=1

k=1 =1 j=1k=1

then the binary variables x;; are also the solution to

N o
max > > Xkjlkjs (21)
M2 k=
N nj N 7
D 2 XkiPijk < . D XiPijk. (22)
j=1 k=1 j=1 k=1

Theorem 1 is the fundamental result that makes La-
grange multipliers applicable to discrete optimization prob-
lems such as the MMKP. According to this theorem, the
solution to the unconstrained optimization problem (20)
is also the solution to the constraint optimization problem
(22), which is our MMKP with the constraint values Pg; re-
placed by Z?Ll Sy ' pijk- Therefore, if the multipliers A;
are known, the optimization problem is easily solved, be-
cause by a simple manipulation equation (20) can be written
as

N nj M

max{ > 2 (”kj - Z/\ipijk>xkj}, (23)
j=1 k=1 i=1

which in turn implies that the solutions are

M
% 1, ifukj - Z/\,’p,'jk >0,

Xkj = i=1
0, otherwise.

(24)
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L INITIALIZATION PHASE
Ai—0 Vi=1,...,M;
Pijk‘ipijk/PTi Vjil,...,N; Vkil,...,ﬂj;
I€j=argmaxk(ukj)andx,;jj<—l Vj=1,...,N;

Ti — 300 Pk, Vi=1,...,M;

II. DROP PHASE

While (T; > 1 for any i) do
1= argmax, {T;}

For {j | K; =T}

Fork=1:M

Aj — (ug; — ukj = Ap(piji — Prik) )/ piji

end
end
K*J* = argminy; {Ax;}
Ap — Ap 4 Agsg=
Xy 0

Vi k

XKHJ* <~ 1 (i.e., I%]* — K*)
Tp — T = pijsi
Tgx — Tkx + Pr*jrK*
end
III. ADD PHASE
While more items can be exchanged

Forj=1:N
Fork=1:M
|k —ug if(uk]- —Ug,; >0, Ty + prjr < 1)
Hij 0 otherwise
end
end

K'J" = argmaxy; {ux;} Vi, k
Ty, — Tg, — Pruyiy
Ty — Ty + pryx

Xgyy 0
XK') 1 (i.e., K]' — K’)
end

ArLcoriTHM 2: Heuristic algorithm for base-station assignment.

Since we have another constraint in (19), among the so-
lutions in (24), we have to look for the one which satisfies
(19) and is optimal at the same time.

Therefore, the only step to do so is to compute the La-
grange multipliers A;. It is worth noting that if these multipli-
ers are computed such that the terms Pg; — 2;\,:1 Z,Zj:l X0 ' Dijk
are nonnegative, the solution is feasible. The solution is opti-
mal, if the following condition holds:

M N
> A (PRi -2 > x;ckjpifk> =0 (25)

i=1 j=1 k=1

(i.e., the case whereby error is zero). The MMKP algorithm
is given in Algorithm 2.

5.2. Heuristic algorithm

The algorithm starts with the most valuable item of each user
j as the selected item (K i), and the Lagrange multipliers ini-
tialized to zero such that the constraints in (19) and (24) are
satisfied, Initialization Phase. In general, however, the vol-
ume constraints will now be violated. The initial choice of
selected items is adapted to obey the volume constraints by
repeatedly improving on the most violated constraint, 1. This
step is done in DROP phase.

Consider the users whose selected items correspond to
base-station [ (ie, {j | IQj = f}). For each item k of these
users, the increase Ax; of multiplier A7, that results from ex-
changing the selected item of group j, is computed. Eventu-
ally, the item K* of user J* causing the least increase of mul-
tiplier A; is chosen for exchange. This choice minimizes the
widening of the gap between the optimal solution character-
ized by (25) and the solution returned by MMKP algorithm.
The process is repeated until for each user an item has been
selected such that the volume constraints are satisfied. Since
each user has always an item whose value and M-dimension
volume are zero corresponding to the base station that is not
in its active set, the solution is always feasible.

After completion of Drop Phase, there may be some space
left in the knapsack. This space may be utilized to improve
the solution by replacing some selected items with more
valuable ones. Therefore, in the Add Phase of the algorithm,
each item k of every user j is checked against the selected item
of that user (I% ). It is tested whether item k is more valu-
able than the selected item, and if k can replace the selected
item without violating the volume constraints. Among all ex-
changeable items, the item K’ of user J causing the largest
increase of the knapsack value is exchanged with the selected
item of that user (K 7). This process is repeated until no more
exchanges are possible. The resulting solution comprised of

the selected items is feasible, and even optimal, if (25) is sat-
isfied.

Proposition 1. The maximum difference between the total
achieved throughput using above suboptimal algorithm and
globally optimal solution is

M N 1
ZA{ (PRi - Z Z x;:jpijk)) (26)
i=1 j=1

k=1
where x;;; are the outputs of the heuristic algorithm.

Proof. See the appendix. O

5.3. Computational complexity

Step I is just the initialization whose effect on the time com-
plexity of the algorithm is negligible O(M + 3NM + M2N).
Drop phase is the determining factor in the complexity of
the algorithm. Basically this step can be repeated at most
NM times until no infeasible knapsack (T; > 1) remains. At
each iteration, there are NM? + NM + 2M additions and/or
comparisons, which means that the complexity of this phase
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is at most O(MN(NM? + NM + 2M)). Therefore, ignoring
the negligible terms, we end up to the total complexity of
O(N?M?), which is polynomial time. For detailed complex-
ity analysis, see [17].

6. SIMULATION RESULTS

We consider a two-tier hexagonal cell configuration with a
wrap-around technique [26]. A universal mobile telecom-
munication system (UMTS), with a fast power controller
running at 1500 updates per second, is simulated. Cross-
correlation between the codes in a cell at the mobile receiver
is assumed to be equal to 0.3. We simulate a mixture of voice
and data users; voice services with 12.2 kbps, activity factor
of 0.67 and minimum required E,/Iy = 5 dB, while data ser-
vices have minimum required Ep/Ij of 3 dB. Packet arrival is
modeled by a Poisson process.
In this paper, we define

1
O (d;(n)) = e"p(m)’ 0 = dj(n) <),

0, otherwise.

(27)

In fact, any function that is a decreasing function of d;(n) will
result in the same performance result. It is seen that if d;(n)
of a user approaches zero, its corresponding ®@(-) becomes
very high, and overrides channel considerations in (8). Note
that when all services have no delay constraint, the problem
is simply reduced to the conventional SIR-based base-station
assignment.

Channel fading is based on the Gudmundson model
with fading standard deviation equal to 6.5 dB. A distance-
dependent channel loss with path exponent of —4 is consid-
ered. We focus on the central cell and use the delay constraint
and channel status of users to determine the utility function
for each user relative to the base stations in its active set.

We now compare the gain of our proposed base-station
assignment to the conventional SIR-based assignment. Ini-
tially, Nuni users were distributed uniformly throughout all
the cells. After that, Nyonuni users were added to the boundary
of the central cell. All users have the same delay constraint.
The ratio of total achieved utility of our scheme to that of
SIR-based scheme versus the number of added nonuniform
users in an 8-set cell corresponding to the central cell and
seven cells in its first tier is shown in Figure 1.

It is seen that our proposed scheme performs better for
small values of Nypni, which means more total utility is gained
when neighboring cells are lightly loaded or have users with
more relaxed delay constraints. Therefore, the rate of in-
crease in total utility is maximum for Ny, = 2. This idea
is seen more clearly in Figure 2, where the rate of increase in
achieved utility for different cases is shown.

It is seen by increasing the number of added nonuniform
users in the boundary of the central cell, the performance is
better when the number of uniform users is smaller. This is
because adjacent cells can serve more users of the central cell
when they have a smaller number of users. Moreover, by in-
creasing the number of nonuniform users, Nyonuni> the total
achieved gain approaches a steady-state value, which is the
maximum capacity that can be obtained using our scheme.

1.3 1

1.25

1.2 1

Total achieved utility in first 8 cells

5 10 15 20 25

Nhonuni
—*— Nuni =2
== Nuj =4
—*— Nuni =6

FiGure 1: The ratio of total achieved utility of our scheme to that
of SIR-based scheme in first eight cell versus different number of
added nonuniform users in the central cell.

In another scenario, we distributed 5 users in all cells like
before, but limited the number of base stations in the active
set of each user. Moreover, we considered the results for the
two different patterns of nonuniform users’ distributions. In
the first case (pattern A), we distributed more users through-
out the central cell randomly, while in the second one (pat-
tern B) the users were grouped in subcells located at the cell
boundary in the corner of three adjacent cells. The result is
shown in Figure 3. It is seen that by increasing the number of
allowable BSs in the active set of each user the performance is
improved slightly. Moreover, if all nonuniform users are lo-
cated in the cell boundary for large values of Nyonuni, the total
achieved utility is improved while for small values of Nyonuni
the results are almost the same.

We also consider the total network utility as in (12)
and compare the system performance for three distinct re-
source control schemes: SIR-based (SIR-BSA), the individ-
ual BS utility maximization (IU-BSA) [15], and the proposed
JBATS. Nonuniform user distribution in the network cover-
age area is expressed by the nonuniformity factor yp, which
is the ratio of the users that are distributed nonuniformly to
the total number of users. The result is shown in Figure 4.

In order to study the run-time performance of the algo-
rithm, we implemented it along with the optimal algorithm
based on branch and bound search using linear program-
ming for upper bound computation. Although branch-and-
bound is infeasible in practical application for larger data
sets, we run this algorithm to determine the optimality of the
heuristics by finding an upper bound using the linear pro-
gramming approach. We have performed experiments on an
extensive set of problem sets where we used randomly gener-
ated MMKP instances for our tests. For each set of parame-
ters N and M, we run the algorithm ten times and tabulated
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Ratio of achieved utility

5 10 15 20 25

Nhonuni

—— Nuni = 2/Nun; = 4
- Nuni = 2/I\]uni =6

FiGure 2: The ratio of total achieved utility of the case, where Ny =
2, to the other two cases (Ny,; = 4 and Ny,; = 6).

1.25 |

1.2

Total achieved utility in first 8 cells

5 10 15 20 25

Nronuni

—e— Active set = 2, pattern A
—-—- Active set = 2, pattern B
—*— Active set = 3, pattern A

FiGure 3: The ratio of total achieved utility of our scheme to that
of SIR-based scheme in first eight cell versus different pattern of
nonuniform users and number of active sets.

the averages of achieved throughput and execution time.
Table 2 shows the percentage of the achieved throughput us-
ing our heuristic method compared to the value achieved in
the optimal case. Moreover, the third column of the table
shows the required execution time in the heuristic method
compared to that of branch-and-bound method. It shows
that the performance is really good for large sets (greater than
95% most of the time), while the execution time is just a few
percent of the time required for optimal solution (less than
5%).

9

1.7

L6t : - p-= 0.55 heavy
= nonuniformity T .
é R A
> U= Oi2; llgl’.lt et -
= nonuniformity s -
= 14 : . Y . e a7
& '/_-‘/" //

i L

1.3 PO

1.2 g

1.1 L L

10 15 20 25 30 35

N/B

—— JBATS, up = 0.5
...... TU-BSA, up = 0.5

-~ PPA-BA, up = 0.2
-~ TU-BSA, up = 0.2

FIGURE 4: The average achieved total network utility for TU-BSA
and JBATS normalized by the average achieved total network util-
ity of SIR-BSA versus average number of users per BS (N/B). Two
nonuniformity cases: yp = 0.2 and yp = 0.5.

TaBLE 2: Performance comparison of branch-and-bound and a
heuristic algorithm in terms of total achieved throughput and ex-
ecution time.

N Value % Time %
40 92.5 15.3
70 95.6 4.2

100 97.3 3.9

130 98.1 2.7

160 97.7 2.7

190 98.1 2.9

220 98.5 3.1

250 98.7 3.1

280 97.5 3.9

310 97.4 3.0

340 98.3 2.4

370 99.3 1.9

400 99.2 2.6

7. CONCLUSION

In this paper, we propose a novel comprehensive scheme,
which leads to utilizing the network resources more effi-
ciently. To design such a scheme we take a multi time scale
approach. Then in large time scales, we adaptively adjust
base-station coverage area based on the corresponding traf-
fic profile of the users in the coverage area. Then in medium
time-scales we utilize a utility-based platform to formulate
downlink resource allocation based on a novel defined util-
ity function. This utility function quantifies the degree of
utilization of network resources. Unlike previous works, we
solve the problem with the general objective of maximizing
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the total network utility instead of achieved utility of each
base station. We then map this problem to multidimensional
multiple-choice knapsack Problems (MMKP). Since MMKP
is NP-hard, a polynomial-time suboptimal algorithm was
then modified to develop an efficient base-station assign-
ment. Simulation results indicate significant performance
improvement using the proposed scheme.

APPENDIX

Proof of Proposition 1. Assume X* = {x;;} is the output of

the algorithm, and Y* = { y,fj} is the result of the glob-

ally optimum solution. Lets denote T}* = Z?’zl S X5 Pijk-
Therefore, the total achieved throughput using the heuristic
algorithm can be written as (A.1)-(A.2). For the optimal so-
lution, Y*, we can rewrite the same expression as in (A.2)
as

j=1k=1 1:1;1;:11” (A.1)
-2 2. ZAXkJPIJk
i=1 j=1 k=1
M N M M
XU (VR SIS
k=1 j=1 k=1 i=1
(A.2)

[\/JE

:

M
>. /‘iPijk) Yijp

i=1

Vijukj = ZAT %%(“kr

1 j=1 k=1

—
>~
Il

(A.3)

where T;* = le\]:l S Yi;Pijk- By definition, we know that
all T] < Pg;. Therefore, the upper limit for (27) can be writ-
ten as

N M M N M M
IPIFNED YIRS S (A w Y et
j=1 k=1 k=1 j=1 k=1 i=1

(A4)

Using (A.3) and (A.4), the difference between total achieved
throughput using the sub-optimal algorithm and the global
optimal solution is

N M M
-2 2 (”kj - Z/\ipijk>x;})§.
j i=1

(A.5)

Let us denote the last term in (A5) as W =
N M N M
-1 zk:1ﬁkj)’lj<j - 2 2k:1ﬁijl><kja where Bi; = (uxj —
szl Aipijr). We define the following sets H; = (X* U Y*) —
Y* H, = (X* UY*) - X*,and Hs = (X* N Y*).

For the elements of Hs, it is clear that W is equal to
zero. For the elements of Hj, 2?7:1 chvilﬁkjy,fj = 0 and
Z;"ZI Zﬁilﬁij;fj > 0, hence W < 0. As for the ele-
ments of H,, szxr:l Zkleﬁkjyfj < 0 (since Bx; < 0) and
z;\]:l Zﬁilﬁij,’fj = 0, thus, again W < 0. Therefore, in
all cases, we have W < 0, which in conjunction with (A.5)
meaning that

M
Z Zuk} yk] xk] = Z’ll PRI Tl )

=1 k=1
Y " (A.6)
= Z <PR1 Z Z xk]p11k>
k=1 j=1 k=1
which completes the proof. O
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