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Maximum-likelihood (ML) detection is guaranteed to yield minimum probability of erroneous detection and is thus of great
importance for both multiuser detection and space-time decoding. For multiple-input multiple-output (MIMO) antenna systems
where the number of receive antennas is at least the number of signals multiplexed in the spatial domain, ML detection can be done
efficiently using sphere decoding. Suboptimal detectors are also well known to have reasonable performance at low complexity. It
is, nevertheless, much less understood for obtaining good detection at affordable complexity if there are less receive antennas than
transmitted signals (i.e., underdetermined MIMO systems). In this paper, our aim is to develop an effcient detection strategy that
can achieve near ML performance for underdetermined MIMO systems. Our method is based on the geometrical understanding
that the ML point happens to be a point that is “close” to the decoding hyperplane in all directions. The fact that such proximity-
close points are much less is used to devise a decoding method that promises to greatly reduce the decoding complexity while
achieving near ML performance. An average-case complexity analysis based on Gaussian approximation is also given.
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1. INTRODUCTION

One approach to achieve high rate in wireless channels is
to form a multiple-input multiple-output (MIMO) chan-
nel by employing multiple antennas at both ends [1, 2].
The merit is that multiple signal streams can be accommo-
dated simultaneously so that a higher rate can be supported.
But the challenge is that optimal performance comes with
maximum-likelihood (ML) detection/decoding complexity,
which is known to grow exponentially with the number of
signals coexisted in the same radio channel.

For an (Nt ,Nr) antenna system, where Nt ≤ Nr , ML de-
tection can be obtained in a relatively cheap way by spherical
detection or widely known as sphere decoding [3–8] (the no-
tation (Nt ,Nr) is used to denote a MIMO system which has
Nt transmit antennas and Nr receive antennas). In sphere de-
coding, the channel is rotated onto a space such that the spa-
tially multiplexed signals are only sequentially dependent. A
computationally efficient algorithm is thus available to search
the signal points that fall inside the decoding hypersphere for
a given radius. And, the ML detection can then be efficiently

obtained by solving the dual spherical search problem with
a judicious choice of radius. Some recent improvements on
sphere decoding can be found in [9–11] to further reduce its
complexity.

In practice, however, it is not likely to have a sufficient
number of receive antennas for decoupling the spatial signals
(especially in the downlink where the same frequency may
be reused for support of multiple users as suggested by in-
formation theory [12, 13]) (extension from detection to soft
decoding is possible using techniques such as that in [14]).
It is therefore important to consider the asymmetric case,
where Nt > Nr . In this underdetermined MIMO setting, the
immediate difficulty is that the existing low-complexity de-
tectors such as zeroforcing (ZF) or minimum-mean-square-
error (MMSE) receivers would not work, not to mention the
performance degradation suffered from the suboptimal de-
tectors due to receiver linearization.

The main difficulty for efficient ML detection of an un-
derdetermined MIMO system lies in the detection problem
of an (Nt−Nr+1, 1) system where the decision of a multisym-
bol vector needs to be made based only on a single received
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signal. Further, the inefficiency of detecting the multiple-
input single-output (MISO) problem will propagate to the
upper decoding layers, leading to exponential average com-
plexity. There were a few attempts that looked at general-
izing the sphere decoder to cope with overloaded detection
[15, 16] and they will be used as benchmarks in this paper.

Focusing on making hard detection, this paper aims to
devising an efficient detection scheme for underdetermined
MIMO antenna systems (i.e., with Nt > Nr). Knowing that
the bottleneck of realizing efficient detection lies in the MISO
detection in the first decoding layer, we exploit the geomet-
rical representation of the MISO ML detection, and then de-
velop an efficient detection algorithm to achieve near ML
performance at much lower complexity. In particular, we ob-
serve that an ML solution, which is the lattice point mini-
mizing the Euclidean distance from the decoding hyperplane,
happens to be the point that first sees the hyperplane (or re-
garded as “close”) in all coordinate axes. The fact that the
points, jointly closed in all axes, are rare permits an efficient
implementation of ML detection. In light of this interpreta-
tion, we will refer to the proposed detection scheme as planar
detection.

This paper has made the following contributions.

(i) An efficient MIMO detector, which is applicable for
underdetermined MIMO systems to achieve exact ML
performance for real-valued signal constellations and
near ML performance for general complex modula-
tions, is proposed. Numerical results will show that the
proposed detector requires much lower average com-
plexity than the recently published techniques [15, 16],
especially for high-level modulations.

(ii) Making a few approximations, we derive analytically
the average-case complexity exponent, ec � log NC(N ,
SNR), foran ideal realization of the proposed planar
detector, where C(N , SNR) is the expected computa-
tional complexity in the number of elementary calcu-
lations averaged over many independent channel in-
stantiations and the transmit lattices.

The remainder of the paper is organized as follows.
Section 2 describes the channel model for an underdeter-
mined MIMO antenna system and introduces the ML de-
tection problem. In Section 3, we present the proposed pla-
nar detection algorithm for MISO-ML detection. Section 4
is dedicated to the derivation of the average-case complexity
exponent for an ideal realization of a planar detector. Simu-
lation results will be given in Section 5, and we conclude the
paper in Section 6.

2. PROBLEM FORMULATION AND CHANNELMODEL

2.1. Systemmodel

The system of a MIMO antenna network, where Nt antennas
are located at the transmitter and Nr antennas are located at
the receiver, can be written as

ỹ = ˜H s̃ + ñ, (1)

where ỹ = [ ỹ1 ỹ2 · · · ỹNr ]
T is the received signal vec-

tor, ˜H = [˜hi, j]i=1,...,Nr ; j=1,...,Nt
is the MIMO channel matrix,

s̃ = [s̃1 s̃2 · · · s̃Nt ]
T is the transmitted symbol vector,

and ñ is the noise vector whose elements are independent
and identically distributed (i.i.d.) Gaussian random variables
with zero mean and variance of N0/2 per dimension, that
is, N (0,N0/2). Note that this paper focuses on overloaded
asymmetric MIMO antenna systems where Nt > Nr , ˜H is a
fat matrix and constitutes an underdetermined system.

Assuming that channel state information (CSI) is un-
available at the transmitter, s̃ consists of only data or coded
data without signal preprocessing. To further simplify our
discussion, we assume that the transmitter is sending inde-
pendent symbols across antennas (i.e., purely uncoded spa-
tial multiplexing). Therefore, s̃n ∈ ˜Q, where ˜Q is the discrete
alphabet set (e.g., ˜Q = {−1− j,−1+ j, 1− j, 1+ j}) if 4-QAM
(quadrature amplitude modulation) is considered.

ML detection is realized by finding s that minimizes

s̃ML = arg min
s∈ ˜QNt

‖ỹ − ˜H s̃‖2
. (2)

For efficient detection, it is often advantageous to convert the
above complex system model into an equivalent real-valued
representation as

y = Hs + n, (3)

where

y =
[

Re{ỹ}T Im{ỹ}T
]

T ,

H =
[

Re{ ˜H} −Im{ ˜H}
Im{ ˜H} Re{ ˜H}

]

,

s =
[

Re{s̃}T Im{s̃}T
]

T ,

n =
[

Re{ñ}T Im{ñ}T
]

T ,

(4)

where the superscript T denotes transposition. Note that H
is now of dimensions N ×M, where M = 2Nt and N = 2Nr .
As a consequence, our detection problem becomes

sML = arg min
s∈QNt

‖y −Hs‖2, (5)

where Q = {−1, 1} if 4-QAM is used and Q = {−3,−1, 1, 3}
if 16-QAM is used.

2.2. Spherical search forMIMO-ML detection

To efficiently perform (5) [and hence (2)], it is proposed in
[3–8] to solve a dual search problem that finds all the lattice
points satisfying

‖y −Hs‖2 ≤ C2 (6)

for a given radius C(> 0). The one that is the closest to the
center of the hypersphere, y, will be the ML point giving
the smallest Euclidean distance. The complexity advantage
of this search can be described as follows.
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By structuring the channel using QR decomposition, that
is, H = QR, where Q is a unitary matrix and R is an upper
triangular matrix, (6) can be rewritten as

‖y̆ − Rs‖2 ≤ C2, (7)
(

R1,1s1 + R1,2s2 + · · · + R1,MsM − y̆2
1

)2

+
(

R2,2s2 + R2,3s3 + · · · + R2,MsM − y̆2
2

)2

⇐⇒
... ≤ C2

+
(

RN−1,N−1sN−1 + RN−1,MsM − y̆2
N−1

)2

+
(

RN ,NsN + · · · + RN ,MsM − y̆2
N

)2
,

(8)

where y̆ � QTy.
If M = N or the channel is square, searching the points

that satisfy (7) can be realized by finding the points satisfying
all of the following inequalities:

(

y̆� −
N
∑

k=�
R�,ksk

)2

≤ C2
� , for � = 1, 2, . . . ,N , (9)

where

C� =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

√

√

√

√

√C2
�+1 −

(

y̆�+1 −
N
∑

k=�+1

R�+1,ksk

)2

� �=N ,

C � = N.

(10)

The search can be done efficiently by examining the following
inequalities in a sequential manner:

y̆� −
∑ N

k=�+1R�,ksk − C�

R�,�
≤ s� ≤

y̆� −
∑ N

k=�+1R�,ksk + C�

R�,�
.

(11)

The complexity advantage lies in the fact that when � = M,
the search only involves one transmitted symbol, that is,

y̆M − C

RM,M
≤ sM ≤

y̆M + C

RM,M
. (12)

After sM is known, this information will be carried forward
to the upper layer (i.e., � = M − 1) and the search will then
involve only one undetermined symbol sM−1 (since sM has
been found). This decoding strategy continues until all the
symbol sequences that satisfy the inequalities are found.

Unfortunately, if M > N or the channel is fat, then at the
Nth layer, we will have

[

y̆N −
(

RN ,NsN + · · · + RN ,MsM
)]2 ≤ C2 (13)

that involves M − N + 1 symbols for detection. It becomes
the complexity bottleneck of the detection problem. Recog-
nizing that it has a similar form as the detection problem of
a real-valued MISO system. In the sequel, our effort will first
be spent onto developing an efficient detection algorithm for
a MISO system, and then extend the results for an underde-
termined MIMO system.

x2

x1

h1x1 + h2x2 > y

ML

ML

h1x1 + h2x2 < y

h1x1 + h2x2 = y

ML point

Closed point

A possible point

Figure 1: A diagram showing the decoding line when Q =
{−3,−1, 1, 3} and K = 2.

3. PLANAR DETECTION

3.1. Geometrical interpretation and algorithm

For a spatially multiplexed MISO system where the inputs
are independent symbols, xk ∈ Q, which take values from
the alphabet set Q, the received signal can be written as

y = h1x1 + h2x2 + · · · + hKxK + η, (14)

where hn denotes the effective channel response from the kth
transmitter input to the receiver, and η∼N (0, σ2

η) denotes
the noise.

ML detection aims to find the values, x1, x2, . . . , xK ,
jointly or the vector x = [x1 x2 . . . xK ]T that minimizes the
following:

xML = arg min
x1,x2,...,xK

(h1x1 + h2x2 + · · · + hKxK − y)2. (15)

Geometrically, it means to find the point (x1, x2, . . . , xK ) ∈
QK that is the closest to the decoding hyperplane (see
Figure 1 for Q = {−3,−1, 1, 3} and K = 2),

P : h1x1 + h2x2 + · · · + hKxK = y. (16)

The following definition and theorem link the proximity
closeness of a point to the ML detection (15), which will later
permit an efficient implementation of ML detection.
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Definition 1. Closeness of a poin. Assuming for the sake of
simplicity that the channels are real and positive, that is,
h1,h2, . . . ≥ 0, a point (x1, x2, . . . , xK ) is said to be close in
coordinate axis or direction k (or abbreviated as d-k) if xk
is the first point that sees the decoding hyperplane from the
half-space h1x1 + · · · + hKxK > y or h1x1 + · · · + hKxK < y,
that is,

xk ∈
{

x : min
x∈Q

x s.t. x >
y −∑m �=khmxm

hk

}

∪
{

x : max
x∈Q

x s.t. x <
y −∑m �=khmxm

hk

}

.

(17)

It should be noted that the closeness property of a point in
one particular direction is conditioning on the coordinates in
other directions. In other words, if some coordinates change,
the closeness property may be destroyed.

Theorem 2. Joint closeness of the ML point. The point
(x1, x2, . . . , xK ) ∈ QK that corresponds to the ML detection
must be close in all directions (or close in d-1, 2, . . . ,K).

Proof. Assuming (proof by contradiction) that the ML point
(x1, x2, . . . , xK ) is not close in some direction, say k, so
xk does not satisfy (17). Then, there will exist a coor-
dinate x∗k that satisfies (17) and produces another point
(x1, x2, . . . , x∗k , . . . , xK ), which is now close in d-k. This new
point will give a smaller distance from the decoding hyper-
plane (16). Thus, we have a contradiction and the proof is
complete.

The joint closeness property serves as a necessary con-
dition for the ML detection (15). The fact that the number
of points that are jointly close in all directions are scarce be-
comes the key to the design of an efficient detection algo-
rithm. In Figure 1, we illustrate an example of a decoding
line if Q = {−3,−1, 1, 3}. In this example, there are six lat-
tice points that are close in d-1, 2. As compared to the to-
tal of 16 possible lattice points, if we search only the closed
points, it can significantly reduce the decoding complexity
while still achieving the exact ML performance. To do so, we
propose the following planar detection algorithm. (To sup-
plement the following description, the pseudocode of the al-
gorithm is also given in Algorithm 1.)

Planar Detection algorithm

(1) Initialize the sets C·x = C·d = Ø and the dimension
index k = 1. Arbitrarily choose a lattice point x ∈ QK

and store it in the set B·x = {x}. Compute

Δy(x) = hTx − y = h1x1 + h2x2 + · · · + hKxK − y, (18)

which is stored in the set B·d = {Δy(x)}.

(2) If B·x = Ø, then go to Step 6. Otherwise, find the two
coordinates that make the first element of B·x, denoted
as e1[B·x], close in d-k. This is done by computing

âk =
{

x : min
x∈Q

x s.t. x > xB

}

,

ǎk =
{

x : max
x∈Q

x s.t. x < xB

}

,
(19)

where

xB = xk − e1[B·d]
hk

. (20)

If âk �=Ø, then produce a new point x̂ = x but with
x̂k = âk and compute

Δy(x̂) = hk(x̂k − xB). (21)

Similarly, we will have also x̌ with x̌k = ǎk and Δy(x̌) if
ǎ�=Ø.

(3) If x̂k = xk, the point x is close in d-1, 2, . . . , k. Then do
the followings.

(i) If k < K , update k := k + 1, B·x := {B·x, x̌} and
B·d := {B·d,Δy(x̌)}.

(ii) If k = K , erase x from the set B·x and reset k = 1.
The point x is a point jointly closed in all dimen-
sions and a candidate for ML detection (15). The
point is stored in C·x and its Euclidean distance
from the decoding hyperplane is stored in C·d.

(iii) Go back to Step 2.

(4) If x̌k = xk, the point x is close in d-1, 2, . . . , k. Then do
the followings.

(i) If k < K , update k := k + 1, B·x := {B·x, x̂}, and
B·d := {B·d,Δy(x̂)}.

(ii) If k = K , erase x from the set B·x and reset k = 1.
The point x is a point jointly closed in all dimen-
sions and a candidate for ML detection (15). The
point is stored in C·x and its Euclidean distance
from the decoding hyperplane is stored in C·d.

(iii) Go back to Step 2.

(5) Erase the first elements of the sets B·x and B·d. Reset
k = 1 and also update B·x := {B·x, x̂, x̌}, and B·d :=
{B·d,Δy(x̂),Δy(x̌)}. Then, go back to Step 2.

(6) All of the points jointly close in all directions are lo-
cated and stored in C·x with their Euclidean distances
stored in C·d. Among these points, the one that gives
the smallest Δy2(x) is the ML detection point for the
MISO system (15).

In the above algorithm, we have assumed that h1,
h2, . . . ≥ 0. However, if some channels are negative, one can
still apply the above planar detection algorithm for the chan-
nels, |h1|, |h2|, . . . , |hK |, and then obtain the corresponding
ML solution by flipping the signs of the symbols for the neg-
ative channels.
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Planar Detection (y,h, Q)
comment: Initialize the starting lattice point and its Euclidean distance
⎧

⎨

⎩

x ∈ QK is arbitraily chosen

d = hTx − y

⎧
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⎩

B·x = {x}
B·d = {d}
B·s = {0}

and
C·x = ∅

C·d = ∅

comment: The WHILE loop proceeds from one point to another to identify the closed points
while B·x �=∅
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I = max
{

find
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e1[B·s] = 1
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if I = ∅

then I = 0

if I = K
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output (B·x, B·d, B·s, ERASE (B·x, B·d, B·s))
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B·x = {B·x, e1[P], e2[P]}
B·d = {B·d, e1[dp]e2[dp]}
B·s = {B·s, 0, 0}

returne (C·x, C·d)

Algorithm 1: The pseudocode of the Planar Detection algorithm where ∅ is an empty set, ei[A] denotes the ith element of a given set A,
and ei[A]( j) denotes the jth entry of the ith element of A. The algorithms of finding closed points and erase are shown in Algorithms 2 and
3, respectively.

This algorithm guarantees to obtain the ML lattice point
of the real-valued MISO system (15) and this can be seen
from the fact that the algorithm performs the search exhaus-
tively but along the decoding hyperplane P . As such, the
worse-case complexity occurs when the decoding hyperplane
cuts the middle of the lattice space, but much reduction in
the average-case complexity is anticipated as the decoding
hyperplane may cut the edges of or when the cut is away
from the lattice space. A more detailed analysis will be given
in Section 4. Figure 2 shows an example (with K = 2 and
Q = {−3,−1, 1, 3}) of the decoding procedure for planar

detection. As can be seen in this example, eight points are ac-
tually visited instead of six points because some extra points
have to be visited in order to browse along the decoding hy-
perplane P .

Because of the exhaustive nature of the algorithm, it is
necessary to have another set, V·x, which stores all the visited
lattice points. This set is important to avoid repeated visits of
the same point through the search. In this way, convergence
will be ensured. Due to the limited space of the paper, the
inclusion of the set V·x is omitted in both the algorithm de-
scription and the pseudocode.
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Finding Closed Points (B·x, B·d,h, J , Q)
P = ∅

dp = ∅

xB = e1[B·x]− e1[B·d]
hJ

â = min
{

Q
(

find
(

Q > xB
))}

ǎ = max
{

Q
(

find
(

Q ≤ xB
))}

if â�=∅

then

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

T = e1[B·x]

T(J) = â

dt = hJ (â− xB)

P = {P, T}
dp = {dp, dt}

if ǎ�=∅

then

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

T = e1[B·x]

T(J) = ǎ

dt = hJ (ǎ− xB)

P = {P, T}
dp = {dp, dt}

if â = ∅ and ǎ = ∅

then Np = 0
else if {â = ∅ and ǎ�=∅} or {â �=∅ and ǎ = ∅}
then Np = 1
else if â�=∅ and ǎ�=∅

then Np = 2
return

(

P, dp,Np

)

Algorithm 2: The pseudocode of the finding closed points algo-
rithm.

Erase (B·x, B·d, B·s)
B·x = B·x \ e1[B·x]
B·d = B·d \ e1[B·d]
B·s = B·s \ e1[B·s]
return (B·x, B·d, B·s)

Algorithm 3: The pseudocode of the erase algorithm.

3.2. Incorporating “good” points

In this section, we integrate the planar detection algorithm
above for use of efficient detection of an undetermined
MIMO system. Recall that for MIMO systems with M > N ,
after QR decomposition of the channel, we have to find the
lattice points that satisfy all of the following inequalities:

(

y̆N −
M
∑

k=N
RN ,ksk

)2

≤ C2, (22)

...

N
∑

j=1

(

y̆ j −
M
∑

k= j

Rj,ksk

)2

≤ C2. (23)

x2

x1

1 3

1′ 2 2′

4 5

6

h1x1 + h2x2 > y

h1x1 + h2x2 < y

h1x1 + h2x2 = y

Visited point

Closed point

A possible point

Figure 2: A diagram showing the decoding sequence of planar de-
tection.

Note that (22) is the weakest necessary condition for the
spherical search (7) while (23) is regarded as the strongest
necessary (indeed sufficient) condition for the ML search.
As described previously, complexity saving is realized by ex-
amining from the weakest condition to the strongest condi-
tion. At a reasonable signal-to-noise ratio (SNR), it is of high
probability that the ML solution, which minimizes the Eu-
clidean distance from y̆ overall, is also the ML solution of
(22). For this reason, instead of performing an overall search
of the inequalities sequentially, we can concentrate on (22)
and have the hyperplane

P : RN ,NsN + RN ,N+1sN+1 + · · · + RN ,MsM = y̆N . (24)

Apparently, this is the same as (16) but with hk =
RN ,N+k−1, xk = sN+k−1 for k = 1, 2, . . . ,K and y = y̆N . There-
fore, the proposed planar detection strategy can be readily
used to identify the closed points to the decoding hyperplane
(24). With these candidates of sN , sN+1, . . . , sM , we can then
sequentially determine {s�}N−1

�=1 using (11) for a given C.
The decoding method is very efficient as it avoids exhaus-

tively searching all the possibilities for sN , . . . , sM . However,
due to the fact that the ML solution may not be one of the
closed points obtained by planar detection, there is chance
that the ML point is mistakenly discarded or pruned at the
Nth decoding layer, and thus ML performance is no longer
guaranteed. This probability of miss depends on the level of
modulation being used and the operating SNR (for details,
see the numerical results in Section 5).
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Let

C·x = {sN↔M : sN↔M is close in d −N , . . . ,M
}

, (25)

where sN↔M � [sN sN+1 · · · sM]T and let

C·d = {Δy(sN↔M
)

: sN↔M ∈ C·x} (26)

denote the two sets that contain all the closed points and their
corresponding distances from the decoding hyperplane, ob-
tained from planar detection. In order to regain the perfor-
mance, we need to avoid or reduce as much as possible the
probability that the ML point is being mistakenly pruned be-
cause the subcomponents of sML are not in C·x.

The performance can be mostly recovered by slightly en-
larging the set of the closed points. In this paper, this is done
by adding some extra points that are potentially “good” (i.e.,
likely to be the ML point). The good points are found by vis-
iting the neighboring points of some of the closed points in
C·x. First of all, we obtain the set C·x(J)(⊂ C·x) that has J-
closed points that have the smallest distances |Δy|. Then, for
each point in C·x(J), we alternate one symbol per each di-
mension to obtain new (good) points (see Figure 3), which
are contained in the set

G·x

=

⎧

⎪

⎨

⎪

⎩

z∈QK :z�=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

min
(

sN↔M,�+d, max
s∈Q

s
)

max
(

sN↔M,�−d, min
s∈Q

s
) ∀sN↔M∈C·x(J)

⎫

⎪

⎬

⎪

⎭

,

(27)

where d is the separation of every adjacent constellations. As
a result, the points that are carried forward to the upper lay-
ers are now in an enlarged set C·x+ = C·x⋃G·x . J is a
design parameter, which can tradeoff the performance and
complexity of the detector. It is hoped that C·x+ is now large
enough to include the ML point, but small enough to keep
the complexity low.

3.3. Increasing radius for efficient detection

Another key techniques to reduce the decoding complexity
are sorting and shrinking radii [17, 18]. Sorting when used
will navigate the search so that the ML point is more likely
to be visited earlier. This is implemented through ordering
of the lattice points. Specifically, we sort the possible lattice
coordinates, s� , [defined by the intervals (11)] in descending
order, according to their distance from the middle of the in-
terval, that is,

∣

∣

∣

∣

∣

s� −
(

y̆� −
∑ N

k=�+1R�,ksk
R�,�

)∣

∣

∣

∣

∣

2

. (28)

The shrinking radius approach is to miniaturize itera-
tively the sphere in order that the ML search can be done
more efficiently. However, it is important to note that for fat
MIMO channels, an increasing radius approach (i.e., start-
ing the search with a very small radius and increasing it pro-
gressively if no point is found) turns out to be much more

PD

ML

ML PD

Good point (not closed)

True ML point

Closed point

The point not closed

ML point defined
by plane decoding

Figure 3: A diagram illustrating the good points obtained by in-
cluding the neighboring points of some closed points.

efficient than the shrinking radius approach [17] because of
the fact that the shrinking radius approach is efficient only
when the miniaturization of the decoding sphere can be done
rapidly. But for an underdetermined MIMO system, we deal
with in this paper, the confidence level of visiting the lattice
points leading to the radius close to Cmin is low. As a conse-
quence, an increasing radius approach will be used instead in
the detection.

To do so, note that

C2
min

(N0/2)
= ‖n‖2

(N0/2)
∼χ2

N (29)

is Chi-square distributed with N degrees of freedom which
has the cumulative distribution function (cdf) given by

FN (r) = γ(N/2, r/2)
Γ(N/2)

, (30)

where γ(·, ·) denotes the incomplete Gamma function and
Γ(·) is the Gamma function. In other words, Cmin is a ran-
dom variable and C2

min∼(N0/2)χ2
N . Therefore, to ensure the

efficiency of the detector, the spherical search starts by choos-
ing

C =
√

(

N0

2

)

F−1
N (iΔ), (31)

where i = 1 and Δ is judiciously set (e.g., typically Δ = 0.1).
If no point can be found, then C is updated by i := i+1. Since
C is kept small at the beginning of the search, the detection
complexity is minimized.
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Figure 4: Comparison of the actual (or simulated) and Gaussian distributions for 4-PAM at SNR of 10 dB with various K .
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Figure 5: Signal constellations for |Q|-PAM.

4. FIRST LOOK AT AVERAGE-CASE COMPLEXITY
FOR A LARGEK

To gain understanding on the average-case complexity in-
volved, this section is devoted to give the first look at the
expected computational complexity of planar detection av-
eraged over independent fading channels and the transmit
sequences x ∈ QK assuming an ideal implementation, that
is, all the visited points during detection are jointly close or
overheads are ignored. In particular, our analysis also relies
on the assumption that K is large so that the distribution of
the received signal can be worked out though numerical re-
sults in Figure 4 show that the approximation is surprisingly

good for small K . The complexity exponent to be derived will
serve as an average-case complexity measure for an ideal re-
alization of planar detection and will provide a reasonable
estimate on the average complexity for actual implementa-
tion of planar detection. To make the analysis succinct, the
overall complexity involving both planar and spherical de-
tections for a given radius C is not considered although we
believe that it is possible with the help of the works in [6, 7].

Consider pulse-amplitude modulation (PAM) with |Q|
constellations as shown in Figure 5, that is,

Q = {±0.5d,±1.5d, . . . ,±0.5(|Q| − 1)d}, (32)

where d is the separation of every adjacent constellations. As
a result, the average transmit energy per dimension, σ2

x �
E[x2

k], is given by

σ2
x =

2
|Q|

|Q|/2
∑

�=1

(

� − 1
2

)2

d2. (33)
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Denoting dc = (|Q| − 1)d as the distance between the two
endpoints of Q and then simplifying (33), we have

σ2
x =

d2
c

12

( |Q| + 1
|Q| − 1

)

. (34)

Note that if xk ∈ Q [defined in (32)], then x ∈ QK will form
the lattice space of a hypercube. Nevertheless, for simplicity
sake, we will approximate it by the lattice space of a hyper-
sphere and this approximation greatly simplifies the calcu-
lation of the intersection between the decoding hyperplane
and the lattice space later on. To preserve the same transmit
energy, we set

dKc =
πK/2

I(K)
RK , (35)

where

I(K) =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

(

K

2

)

! ifK is even,

√
π

2K
K !

(

(K − 1)/2
)

!
ifK is odd,

(36)

and R denotes the radius of the lattice hypersphere

S : x2
1 + x2

2 + · · · + x2
K ≤ R2, x ∈ QK . (37)

For an ideal implementation of planar detection, the
average-case complexity allows the following expansion:

C(K , SNR) ≈ 4E[Nclose], (38)

where Nclose denotes the number of lattice points jointly close
in all directions and we have used the fact that only four el-
ementary computations are required for each visited point
[see (20) and (21)]. To know the complexity C, it requires
the estimation of the average number of Nclose.

For a given channel state (h1,h2, . . . ,hK ) and the trans-
mit lattice x, the number of jointly close points, Nclose, de-
pends greatly on the intersectional area (or volume if K > 3)
between the lattice space and the decoding hyperplane. This
can be exemplified in Figure 6 where the number of jointly
close points is shown for the decoding line 2x1 + 3x2 = y
with various y. As can be seen, Nclose is, by and large, pro-
portional to the sectional length between the decoding line
and the lattice space. Also, it should be noted that Nclose de-
pends largely on y (i.e., the shortest distance of the decoding
line from the origin) but not the channel state. Therefore, for
K = 2, we have

Nclose ≈
(

Nmax − 1
Lmax

)

L(y) + 1, (39)

where L(y) denotes the sectional length as a function of y
and Nmax denotes the maximal possible number of jointly
close points. Equation (39) is written in a form such that
when L(y) = 0, then Nclose = 1 while if L(y) = Lmax,
then Nclose = Nmax. In this example, Nmax = 6 which occurs
when the decoding line intersects with the stepwise border

43210−1−2−3−4

x1 = {−3,−1, 1, 3}

−4

−3

−2

−1

0

1

2

3

4

x 2
=
{−

3,
−1

,1
,3
}

Nclose = 1

Nclose = 3

Nclose = 4

Nclose = 5

Nclose = 6

Nclose = 1

Nclose = 3

Nclose = 4

Nclose = 5

Direction of
increasing y

Figure 6: An example showing how Nclose depends on y assuming
the decoding line 2x1 +3x2 = y and Q = {−3,−1, 1, 3}. The regions
where the decoding line lies are labelled with the corresponding val-
ues of Nclose.

Intersectional
area Lattice hypersphereR′

R
y x1

x2
x3

O

x2
1 + x2

2 + · · · + x2
n = R2

Decoding hyperplane
h1x1 + h2x2 + · · · + hnxn = y

Figure 7: Geometry of the decoding hyperplane and the lattice hy-
persphere.

lines shown in Figure 6. For a general |Q|-PAM, it can be
easily seen that Nmax ≈ 2|Q| if K = 2.

This idea is illustrated in Figure 7 and is generalized here
for K > 2 so that

Nclose =
(

Nmax − 1
Vmax

)

V(y) + 1, (40)

where V denotesthe intersectional area or volume. Because
the intersection of the decoding hyperplane P and the lat-
tice hypersphere S is another hypersphere, the intersectional
volume can be found as

V(y) =

⎧

⎪

⎨

⎪

⎩

π(K−1)/2

I(K − 1)

(

R2 − y2
)(K−1)/2

if |y| ≤ R,

0 if |y| > R.
(41)
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Table 1: The average number of flops for planar detection with J =
0. The numbers in brackets indicate the required complexity for a
BF detector.

(Nt ,Nr) 4-QAM 16-QAM 64-QAM

(2,1) 191.5 (352) 335.2 (5.6k) 737.1 (90.1k)

(3,1) 368.7 (1.9k) 2.27k (123k) 25.5k (7.86M)

(3,2) 759.1 (4.35k) 1.26k (279k) 2.9k (17.8M)

(4,3) 1.87k (8.1k) 3.35k (516k) 10.15k (33M)

Table 2: The average number of flops for planar detection with J =
10.

(Nt ,Nr) 4-QAM 16-QAM 64-QAM

(2,1) 210.6 426.5 863.0

(3,1) 429.0 2.448k 25.8k

(3,2) 786.0 1.425k 3.366k

(4,3) 1.91k 3.723k 11.89k

Table 3: The average number of flops for planar detection with J =
20.

(Nt ,Nr) 4-QAM 16-QAM 64-QAM

(2,1) 210.6 471.4 947.6

(3,1) 453.5 2.56k 25.9k

(3,2) 786.0 1.47k 3.48k

(4,3) 1.91k 3.77k 12.13k

Table 4: The average number of flops for DLSD.

(Nt ,Nr) 4-QAM 16-QAM 64-QAM

(2,1) 381.9 1.95k 8.01k

(3,1) 1.08k 17.7k 0.699M

(3,2) 1.0k 3.52k 20.8k

(4,3) 1.99k 4.65k 28.2k

Moreover, we know that Vmax = V(0) and Nmax ≈ 2|Q|K−1.
Equation (40) can therefore be expressed as

Nclose =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(

2|Q|K−1 − 1
)

[

1−
(

y

R

)2](K−1)/2

+ 1 if |y| ≤ R,

1 if |y| > R.

(42)

To find the expected value of Nclose, we need the proba-
bility distribution of y. Recognizing that

y = h1x
(t)
1 + h2x

(t)
2 + · · · + hKx

(t)
K + η, (43)

where (x(t)
1 , x(t)

2 , . . . , x(t)
K ) is the actual lattice point being

transmitted, a random model for the channel, and the trans-
mit lattice is required. In this paper, we assume that hk’s are
i.i.d. zero-mean unit-variance Gaussian random variables,
that is, E[hk] = 0 but E[h2

k] = 1∀k. Likewise, x(t)
k ’s are i.i.d.

uniform distributed discrete random variables from the set
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Figure 8: The complexity exponent as a function of K for various
|Q| and SNR = 15 dB. PD refers to planar detection and BF refers to
exhaustive ML detection.

Q. If K is large, for example, K > 3, by the central limit the-
orem, y will be nearly Gaussian with

E[y] = 0,

E[y2] = Kσ2
x + σ2

η

(44)

so that

fY (y) = 1
√

2π
(

Kσ2
x + σ2

η

)
e−y

2/2(Kσ2
x+σ2

η). (45)

Although the Gaussian approximation is analytically correct
only at asymptotically large K , results in Figure 4 show that
the approximation is surprisingly good even when K is small.

As a consequence, we get

E[Nclose] =
∫∞

R
fY (y)dy +

∫ −R

−∞
fY (y)dy

+
∫ R

−R

{

(

2|Q|K−1 − 1
)

[

1−
(

y

R

)2](K−1)/2

+ 1
}

× fY (y)dy

= 1 +
2|Q|K−1 − 1√

2π

×
∫ R/
√

Kσ2
x+σ2

η

−R/√Kσ2
x+σ2

η

[

1−
(Kσ2

x + σ2
η

R2

)

y2
]

(K−1)/2

× e−y
2/2dy.

(46)
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Figure 9: The average SER performance versus the average SNR per bit for 4-QAM modulation.

After some mathematical manipulations, it can further be
simplified as

E
[

Nclose
] =1 +

2|Q|K−1 − 1√
2π

(

R
√

Kσ2
x + σ2

η

)

×
∫ π/2

−π/2
cosKθe−(R2/2(Kσ2

x+σ2
η))sin2θdθ.

(47)

Now, define

SNR �
∑ K

k=1E
[

x2
k

]

E
[

η2
] = Kσ2

x

σ2
η

(48)

and note that R = μσx where

μ = K
√

I(K)

√

12
π

√

|Q| − 1
|Q| + 1

. (49)

As such, we have also

R
√

Kσ2
x + σ2

η

= μ√
K

√
SNR√

SNR + 1
. (50)

To summarize, we can now rewrite C(K , SNR) as

C(K , SNR) = 4
[

1 +
2|Q|K−1 − 1√

2π
· μ√

K
·
√

SNR√
SNR + 1

×
∫ π/2

−π/2
cosKθe−(μ2/2K)(SNR/(SNR+1))sin2θdθ

]

(51)

with μ previously defined in (49). Additionally, the complex-
ity exponent, ec, can be readily found as

ec =
logC(K , SNR)

logK
. (52)
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It is often useful to consider ec for complexity comparisons
because if ec approaches to a constant, then the complexity is
polynomial, but if ec grows like K/logK , then the complexity
is exponential. For brute-force (BF) ML detection of a MISO
system, C(K , SNR) = |Q|K (2K + 1) and the complexity ex-
ponent ec will grow like K/logK . Therefore, the complexity
is exponential.

5. SIMULATION RESULTS

Computer simulations have been done to evaluate the aver-
age detection complexity and error performance. In the sim-
ulations, quasistatic flat fading channels have been assumed.
To illustrate the complexity reduction, we provide the av-
erage number of floating point operations (flops) measured
over many independent channel realizations at average SNR
of 20 dB. In addition, results for the average symbol error rate
(SER) performances for various average SNR are also pro-
vided.

Table 1 reveals the average number of flops at average
SNR of 20 dB for MIMO-ML detection using planar detec-
tion with J = 0 (the parameter used to design the set for
good points) and a BF search [whose number of flops is
|Q|Nt (8Nt + 6) for MISO channels and 2|Q|NtNr(4Nt + 5)
for MIMO channels]. In Table 1, the numbers in (·) indicate
the results for BF-ML detection. Results in Tables 2 and 3 are,
respectively, the measured average flops for planar-sphere de-
tection when J = 10 and J = 20. Results conclude that signif-
icant reduction in complexity is possible especially for larger
MIMO or higher level modulation. Moreover, only a mild
increase in complexity is required for a larger J for improved
SER (which will become apparent in the results of Figures 9
and 10).

Results showing the average complexity of the double-
layer sphere decoder (DLSD) in [16] are also provided in
Table 4 for comparison. A close observation of the results in
this table indicates that for slightly overloaded systems [i.e.,
(3,2) and (4,3) 4-QAM systems], the proposed scheme and
DLSD require similar average complexity; though DLSD, in
general, has slightly greater average flops. However, for more
overloaded systems such as (3,1) and higher-level modula-
tions, we observe significant complexity savings of using the
proposed scheme as compared to DLSD. In particular, re-
sults reveal that the proposed scheme with J = 20 requires
only 14.5% of the complexity required by DLSD for a (3,1)
16-QAM system. Much complexity reduction is seen for a
64-QAM system where the proposed scheme with J = 20
requires only 11.8% and 3.7% of the complexity of DLSD,
respectively, for (2,1) and (3,1) settings.

Using the expression derived in (52) [and (51)], simula-
tions have also been conducted to evaluate the average-case
complexity of planar detection for real-valued MISO systems
for various size of signal constellations |Q| and various num-
ber of dimensions K . Complexity exponent results are plot-
ted in Figure 8 for comparisons. In this figure, SNR = 15 dB
has been assumed, but it should be noted that the results are
insensitive to the SNR. Results show that the complexity of
planar detection is still exponential as it grows linearly with
K . This is however not surprising because there is no chan-
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Figure 10: The average SER performance versus the average SNR
per bit for 16-QAM modulation.
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nel structure that can be exploited to simplify the detection
(note that in a square MIMO, sphere decoding simplifies the
detection by rotating the channel into a triangular structure).
Havingthis in mind, planar detection in fact significantly re-
duces the complexity as compared toa BF-ML detector, the
only choice for MISO ML. In particular, planar detection
achieves a complexity reduction from ec to ec − 2 irrespec-
tive of the signal constellation size |Q| and the SNR without
compromising the ML performance.

Figures 9 and 10 show the average SER results using
planar-sphere detection with various J for 4-QAM and 16-
QAM, respectively. Results for exact ML detection are pro-
vided for comparison. As we can see, near ML performance
can be achieved for both 4-QAM and 16-QAM. For 4-QAM,
J = 0 is sufficient while J = 20 is required for 16-QAM. It
tells us that the set of closed points defined by the bottom
layer is likely to contain the ML point so that optimal per-
formance is preserved. For 16-QAM, this is not the case and
SER degradation is observed. However, the ML point tends
to be in the proximity of the closed points. Thus, the decod-
ing performance improves with J .

6. CONCLUSION

This paper has presented a novel efficient detection algo-
rithm that can achieve near ML performance for underde-
termined MIMO channels. The complexity advantage arises
from a better geometrical understanding of the ML-detection
problem, which tells us that the ML point at the bottom de-
coding layer appears to be a point that is close to the decoding
hyperplane in all coordinate axes. The fact that these points
are much less is used to prune the decoding tree in order to
reduce the complexity. Although the performance is not ML-
guaranteed, the error performance can be largely recovered
by visiting some extra points, which are potentially “good.”
Simulation results have demonstrated that significant reduc-
tion in complexityis obtained while achieving near ML per-
formance. Average-case complexity for planar detection has
also been derived with some approximations. The expression
derived can serve as a complexity measure for an ideal real-
ization of planar detection and provide a reasonable estimate
on the average complexity for an actual implementation of a
planar detector.

ACKNOWLEDGMENTS

This work was supported in part by Wai-Sun Leung Fellow-
ships from the University of Hong Kong and in part by the
Engineering and Physical Science Research Council (EPSRC)
under Grant EP/E022308/1, United Kingdom.

REFERENCES

[1] G. J. Foschini and M. J. Gans, “On limits of wireless commu-
nications in a fading environment when using multiple an-
tennas,” Wireless Personal Communications, vol. 6, no. 3, pp.
311–335, 1998.

[2] V. Tarokh, N. Seshadri, and A. R. Calderbank, “Space-time
codes for high data rate wireless communication: performance

criterion and code construction,” IEEE Transactions on Infor-
mation Theory, vol. 44, no. 2, pp. 744–765, 1998.

[3] U. Fincke and M. Phost, “Improved methods for calculating
vectors of short length in a lattice, including a complexity anal-
ysis,” Mathematics of Computation, vol. 44, no. 170, pp. 463–
471, 1985.

[4] W. H. Mow, “Maximum likelihood sequence estimation from
the lattice viewpoint,” IEEE Transactions on Information The-
ory, vol. 40, no. 5, pp. 1591–1600, 1994.

[5] O. Damen, A. Chkeif, and J.-C. Belfiore, “Lattice code decoder
for space-time codes,” IEEE Communications Letters, vol. 4,
no. 5, pp. 161–163, 2000.

[6] B. Hassibi and H. Vikalo, “On the sphere-decoding algo-
rithm—I: expected complexity,” IEEE Transactions on Signal
Processing, vol. 53, no. 8, pp. 2806–2818, 2005.

[7] H. Vikalo and B. Hassibi, “On the sphere-decoding algo-
rithm—II: generalizations, second-order statistics, and appli-
cations to communications,” IEEE Transactions on Signal Pro-
cessing, vol. 53, no. 8, pp. 2819–2834, 2005.

[8] E. Viterbo and J. Boutros, “A universal lattice code decoder
for fading channels,” IEEE Transactions on Information Theory,
vol. 45, no. 5, pp. 1639–1642, 1999.

[9] N. D. Sidiropoulos and Z.-Q. Luo, “A semidefinite relaxation
approach to MIMO detection for high-order QAM constella-
tions,” IEEE Signal Processing Letters, vol. 13, no. 9, pp. 525–
528, 2006.

[10] Z. Guo and P. Nilsson, “Algorithm and implementation of the
K-best Sphere decoding for MIMO detection,” IEEE Journal
on Selected Areas in Communications, vol. 24, no. 3, pp. 491–
503, 2006.

[11] Y. Xie, Q. Li, and C. N. Georghiades, “On some near optimal
low complexity detectors for MIMO fading channels,” IEEE
Transactions on Wireless Communications, vol. 6, no. 4, pp.
1182–1186, 2007.

[12] D. Tse and P. Viswanath, “On the capacity of the multiple
antenna broadcast channel,” in Proceedings of the DIMACS
Workshop on Signal Processing for Wireless Transmission, Series
Discrete Math. and Theoretical Computer Science, American
Mathematical Society, Piscataway, NJ, USA, October 2002.

[13] S. Vishwanath, N. Jindal, and A. Goldsmith, “Duality, achiev-
able rates, and sum-rate capacity of Gaussian MIMO broad-
cast channels,” IEEE Transactions on Information Theory,
vol. 49, no. 10, pp. 2658–2668, 2003.

[14] H. Vikalo, B. Hassibi, and T. Kailath, “Iterative decoding for
MIMO channels via modified sphere decoding,” IEEE Transac-
tions onWireless Communications, vol. 3, no. 6, pp. 2299–2311,
2004.

[15] M. O. Damen, K. Abed-Meraim, and J.-C. Belfiore, “Gener-
alized sphere decoder for asymmetrical space-time communi-
cation architecture,” Electronics Letters, vol. 36, no. 2, pp. 166–
167, 2000.

[16] Z. Yang, C. Liu, and J. He, “A new approach for fast general-
ized sphere decoding in MIMO Systems,” IEEE Signal Process-
ing Letters, vol. 12, no. 1, pp. 41–44, 2005.

[17] A. M. Chan and I. Lee, “A new reduced-complexity sphere de-
coder for multiple antenna systems,” in Proceedings of IEEE In-
ternational Conference on Communications (ICC ’02), vol. 1,
pp. 460–464, New York, NY, USA, April-May 2002.

[18] K.-K. Wong and A. Paulraj, “On the decoding order of MIMO
maximum-likelihood sphere decoder: linear and non-linear
receivers,” in Proceedings of IEEE 59th Vehicular Technology
Conference (VTC ’04), vol. 2, pp. 698–702, Milan, Italy, May
2004.


	INTRODUCTION
	PROBLEM FORMULATION AND CHANNEL MODEL
	System model
	Spherical search for MIMO-ML detection

	PLANAR DETECTION
	Geometrical interpretation and algorithm
	Planar Detection algorithm

	Incorporating ``good'' points
	Increasing radius for efficient detection

	FIRST LOOK AT AVERAGE-CASE COMPLEXITY FOR A LARGE bold0mu mumu KK---KKKK
	SIMULATION RESULTS
	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES

