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Fault-tolerant target detection and localization is a challenging task in collaborative sensor networks. This paper introduces our
exploratory work toward identifying the targets in sensor networks with faulty sensors. We explore both spatial and temporal
dimensions for data aggregation to decrease the false alarm rate and improve the target position accuracy. To filter out extreme
measurements, the median of all readings in a close neighborhood of a sensor is used to approximate its local observation to the
targets. The sensor whose observation is a local maxima computes a position estimate at each epoch. Results frommultiple epoches
are combined together to further decrease the false alarm rate and improve the target localization accuracy. Our algorithms have
low computation and communication overheads. Simulation study demonstrates the validity and efficiency of our design.
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1. INTRODUCTION

The development of wireless sensor networks provides many
exciting applications, including roadway safety warning [1],
habitat monitoring [2], smart classroom [3], and so forth.
Such networks rely on the collaboration of thousands of
resource-constrained error-prone sensors for monitoring
and control. One important task of a typical sensor network
is to detect and report the locations of targets (e.g., tanks,
land mines, etc.) with the presence of faulty sensor mea-
surements. In our study, we seek fault-tolerant algorithms
to identify the region containing targets and the position of
each target.

Filtering faulty sensor measurements and locating targets
are not trivial. Due to the stingy energy budget within each
sensor, we have to seek localized and computationally effi-
cient algorithms such that a sensor can determine whether
a target presents and whether it needs to report the target
information to the base station (to determine whether and
where a target presents). The existence of faulty sensors ex-
acerbates the “hardness” of the problem. False alarms waste
network resource. They may mislead users to make wrong
decisions. Therefore, target identification and localization al-
gorithms must be fault-tolerant, must have a low false alarm
rate, and must be robust.

In this paper, we propose fault-tolerant algorithms to de-
tect the region containing targets and to identify possible

targets within the target region. Here only the same kind
of targets are considered. To avoid the disturbance of ex-
treme measurements at faulty sensors, each sensor collects
neighboring readings and computes the median, represent-
ing its local observation on the targets. Median is proved to
be an effective robust nonparametric operator that requires
no strong mathematical assumptions [4]. A median exceed-
ing some threshold indicates the occurrence of a possible tar-
get. Whether a real target exists or not must be jointly deter-
mined by neighboring sensors at the same time. To localize a
target within the target region, a sensor whose observation is
a local maxima computes the geometric center of neighbor-
ing sensors with similar observations. We also explore time
dimension to reduce the false alarm rate. Results from mul-
tiple epoches are combined to refine the target position es-
timates. Our algorithms have low computation overhead be-
cause only simple numerical operations (maximum,median,
andmean) are involved at each sensor. The protocol has a low
communication overhead too, since only sensors in charge of
the location estimation report to the base station. Simulation
study indicates that in most cases our algorithms can identify
all the targets and only one report for one target is sent to the
base station per epoch when up to 20% of the sensors are
faulty, and when the network is moderately dense.

This paper is organized as follows. Related work and
network model are sketched in Sections 2 and 3, respec-
tively. Fault-tolerant target identification and localization
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algorithms are proposed in Section 4. Simulation results are
reported in Section 5. We conclude our paper in Section 6.

2. RELATEDWORK

Target detection and localization [5–8], target classification
[9–11] and target tracking [12–15] have attracted many re-
search activities in sensor networks. In this section, we focus
on the related works in target localization and target identi-
fication.

Clouqueur et al. [5] seek algorithms to collaboratively de-
tect a target region. Each sensor obtains the target energy (or
local decision) from other sensors, drops extreme values if
faulty sensors exist, computes the average, and then com-
pares it with a predetermined threshold for final decisions.
For these algorithms, the challenge is the determination of
the number of extreme values. This is unavoidable when us-
ing “mean” for data aggregation. As a comparison, we ex-
plore the utilization of “median” to effectively filter out ex-
treme values for target region detection.

Zou andChakrabarty [6–8] propose an energy-aware tar-
get detection and localization strategy for cluster-based wire-
less networks. The cluster head collects event notification
from sensors within the cluster and then executes a proba-
bilistic localization algorithm to determine candidate nodes
to be queried for target information. This algorithm is de-
signed only for cluster-based sensor networks. The cluster
head must keep a pregenerated detection probability table
constructed from sensor locations. Each sensor reports the
detection of an object to the cluster head based on its own
measurements. This work does not consider fault-tolerance
at all, thus the decision by cluster head may be based on in-
correct information.

Fang et al. [9, 10] provide the algorithms for target count-
ing and enumeration in sensor networks. A spanning tree is
constructed to locate a possible target. The root of each tree
has the maximal sensed signal power among all the nodes in
the tree cluster. The tree structures which define the target
region are formed step by step. Each node in the tree must
relay its root information. Fault-tolerance is not considered
in their protocols, therefore a faulty sensor may be elected as
a leader and reports wrong target information.

Li et al. [16] estimate target position by solving a non-
linear least squares problem. Target localization based on
the time-of-arrival (TOA) [17] or the direction-of-arrival
(DOA) [18] of acoustical/seismic signals has also been ex-
plored. Locating victims through emergency sensor networks
in a centralized fashion has been studied in [19]. In [14, 15],
a spanning tree rooted at the sensor node close to a target is
used for target tracking, with target position estimated by the
location of the root sensor. We propose much simpler algo-
rithms for target identification and localization in this paper.

3. NETWORKMODEL

In this paper, we assume that N sensors are deployed uni-
formly in a b × b square field located in the two dimen-
sional Euclidean planeR2, with a base station residing in the

boundary. Sensors are powered by batteries and have a fixed
radio range. The base station has a strong computational ca-
pability with an unlimited power supply. Power conservation
and fault-tolerance are the major goals when designing algo-
rithms for target localization.

Let R(si) or Ri denote the reading of sensor si. Instead
of a 0-1 binary variable, R(si) is assumed to represent sig-
nal strengthmeasurements on factors such as vibration, light,
sound, and so on. A target region, denoted by T R, is a subset
ofR2 such that it contains all the sensors that can detect the
presence of the targets. A sensor’s reading is faulty if it reports
inconsistent and arbitrary values to the neighboring sensors
[5]. Sensors with faulty readings are called faulty sensors. In
this paper, we will use si to refer to either the ith sensor or the
location of the ith sensor.

We assume that each sensor can compute its physical po-
sition through either GPS or some GPS-less techniques [20–
22]. In this paper, we focus on the fault-tolerant target iden-
tification and localization, and thus the delivery of the target
location will not be considered. We assume there exists a ro-
bust routing protocol in charge of the transmission of the
target information to the base station.

All targets emit some kinds of signals (vibration, acous-
tic, light, etc.) when present. These signals will be propagated
to the surrounding area with a decayed intensity. The follow-
ing model is used to quantify the signal strength at location
si for a target at location L [5]:

S
(
si
) =

⎧
⎪⎪⎨

⎪⎪⎩

P0, if d < d0,

P0
(
d/d0

)k , otherwise,
(1)

where P0 is the signal intensity at L, d = ‖L − si‖ is the Eu-
clidean distance between the target and the sensor at si, d0
is a constant that accounts for the physical size of the target,
and k ∈ [2.0, 5.0] [23] is a decay factor determined by the
environment. The signal strength measured by a sensor at si
is then

R
(
si
) = S

(
si
)
+N

(
si
)
, (2)

where N(si) represents the noise level at si. We assume N(si)
follows N (μ, σ2), a Gaussian distribution with mean μ and
variance σ2. For Gaussian white noise, μ = 0. When more
than one target present in the network, signals of multiple
targets are summed at each sensor.

In this paper, we assume sensors can properly execute our
algorithms even though their readings are faulty. In other
words, we assume there is no fault in processing and trans-
mitting/receiving neighboring measurements.

4. FAULT-TOLERANT TARGET DETECTION
AND LOCALIZATION

In this section, we first describe an algorithm for target re-
gion detection. Then we present a procedure to estimate the
locations of the targets from the sensors within the target
region. We also propose an algorithm for data aggregation
along temporal dimension to decrease the false alarm rate
and improve the target position accuracy.
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For any given sensor si,
(1) Obtain signal measurements R(i)

1 ,R(i)
2 , . . . ,R(i)

n from all
sensors inN (si).

(2) Compute medi of the set {R(i)
1 ,R(i)

2 , . . . ,R(i)
n } as the

estimated reading R̃i at location si.
(3) Determine event sensors. A sensor si is an event sensor if

the estimated value R̃i is larger than a predefined threshold
θ1.

Algorithm 1: For target region detection.

4.1. Target region detection

Our target region detection algorithm aims at finding all sen-
sors that can detect the presence of the targets. Nodes closer
to the targets usually have higher measurements. Faulty sen-
sors may report arbitrary values.

Let N (si) denote a bounded closed set of R2 that con-
tains a sensor si and additional n − 1 sensors. The set N (si)
represents a closed neighborhood of the sensor si. An exam-
ple of N (si) is the closed disk centered at si with its radius
equal to the radio range. Let R(i)

1 ,R(i)
2 , . . . ,R(i)

n denote the sig-
nal strength measured by the nodes inN (si). A possible esti-
mate of signal strength at location si is

R̃i = medi, (3)

where medi denotes the median of the set {R(i)
1 ,R(i)

2 , . . . ,R(i)
n }.

In other words, one could estimate Ri by the “center” of

{R(i)
1 ,R(i)

2 , . . . ,R(i)
n }.

Note that medi in (3) should not be replaced by the mean

(R(i)
1 + R(i)

2 + · · · + R(i)
n )/n of the set {R(i)

1 ,R(i)
2 , . . . ,R(i)

n }. This
is because the sample mean cannot represent well the “cen-
ter” of a sample when some values of the sample are extreme.
Nevertheless, median is widely used to estimate the “center”
of samples with outliers. Its conditional correctness is proved
in [4]. Faulty sensors may have extreme values, representing
outliers in the sample set. Faulty readings have little influence
on medi as long as most sensors behave properly.

The procedure of target region detection is described as
follows.

Intuitively, an event sensor is a sensor that can detect the
presence of the targets. Compared to the value fusionmethod
for target region detection in [5], which computes the mean
after dropping η highest and η lowest values, Algorithm 1
employs the robust operator median so that it effectively
eliminates the effects of faulty sensors without exploiting any
complicated algorithm for the estimation of η.

4.2. Target Localization

Algorithm 1 is used to detect the presence of targets. It does
not tell how many targets exist and where they are. Shifting
the task of target localization to the base station by sending
the measurements of all sensors in the target region is too

(1) Obtain estimated signal strength R̃(i)
1 , R̃(i)

2 , . . . , R̃(i)
m , from all

m event sensors inN (si) if si is an event sensor.
(2) Determine root sensors. An event sensor si is a root sensor if

m ≥ n/2,

R̃i ≥ max
{
R̃(i)
1 , R̃(i)

2 , · · · , R̃(i)
m

}
.

(4)

(3) For each root sensor si, estimate the location of a possible
target by the geometric center of a subset of event sensors
inN (si). Let {s′i1, s′i2, . . . , s′iq} be the subset of event sensors
inN (si) such that R̃(i)′

j ≥ R̃i − θ2 for 1 ≤ j ≤ q, where R̃(i)′
j

is the estimated signal strength from s′i j and θ2 is a
threshold that mainly characterizes the target size. Denote
the x and y coordinates of s′i j by x(s

′
i j) and y(s′i j),

respectively, and set

L̃i(x) =
[
x
(
s′i1
)
+ x
(
s′i2
)
+ · · · + x

(
s′iq
)]/

q,

L̃i(y) =
[
y
(
s′i1
)
+ y
(
s′i2
)
+ · · · + y

(
s′iq
)]/

q
(5)

L̃i(x) and L̃i(y) are the estimated coordinates for a
possible target close to si.

Algorithm 2: For target localization.

expensive in terms of energy consumption. Therefore, we
consider to delegate one sensor to communicate with the
base station for each target and compute the position of the
target locally. The following algorithm is employed to locate
the targets in the target region.

Note that in step (1) of Algorithm 2, m can be smaller
than n. A sensor is selected as a root sensor if its estimated
signal strength is a maxima among event sensors in N (si).
Nodes closer to the targets usually have larger measurements
and thus have a higher probability to become root sensors.
Furthermore, the number of root sensors is constrained by
(4). A root sensor uses (5) to compute the location of a tar-
get based on the locations of some neighboring nodes. As a
comparison, most related works in literature [9, 10, 14, 15]
utilize the position of the root sensor as an approximation of
the target position.

4.3. Temporal dimension consideration

We observe that the two algorithms proposed in Sections 4.1
and 4.2 explore only spatial information for data aggregation.
In reality, sensors sample their observations periodically. By
investigating along the temporal dimension, performance for
target detection and localization can be improved, as verified
by simulation study in Section 5. In this section, we discuss
how the base station can identify false alarms and improve
the target position accuracy by using location estimates ob-
tained atT epoches from root sensors. For better elaboration,
we call the location estimates by root sensors the raw data.

Assume both Algorithms 1 and 2 are executed once per
epoch. The base station receives a sequence of raw data,
denoted by {L̃(1), L̃(2), . . . L̃(t), . . . }, from root sensors, where
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(1) For each epoch, apply Algorithms 1 and 2. All root sensors
report their target position estimates to the base station.

(2) After collecting raw data for T epoches, the base station
apply K-means clustering algorithm to identify groups for
targets. For each group G with cardinality |G|,
• If |G| < T/2, then report a false alarm.
• Otherwise, report a target and obtain the estimate of
the position of the target, denoted by L̃, using the
geometric center of all raw data within G.

Algorithm 3: For target identification.

each L̃ is two dimensional. The base station then applies an
appropriate clustering algorithm to group the received lo-
cation estimates for final target position computation. Each
group corresponds to one target.

Note that the base stationmay observe a group computed
by a group of neighboring faulty sensors. Such a group rep-
resents a false alarm and may be signaled in the following
way. If the size of a group is less than half of T , with a high
probability this group is a false alarm based onmajority vote.

Based on the previous analysis, we propose the following
target identification algorithm (Algorithm 3) exploring both
temporal and spatial information.

Note that the communication overhead of our algo-
rithms is low, even though location estimates are sent to
the base station. As indicated by the simulation study in
Section 5, in most cases only one message per target will be
sent to the base station per epoch in moderately dense sensor
networks.

5. SIMULATION

5.1. Performancemetrics

Evaluation of the target detection and localization algorithms
includes two tasks: evaluating the degree of fault-tolerance
and evaluating the accuracy of the estimated positions of tar-
gets. The degree of fault-tolerance has been considered in our
prior work [24].

To evaluate the accuracy of the estimated positions of the
targets, we first define position error e(L̃αi) for the target at
location Lαi to be the Euclidean distance between L̃αi and the
real target location Lαi , that is,

e
(
L̃αi
) = ∥∥L̃αi − Lαi

∥∥. (6)

We use the average of the position errors for all targets to
evaluate the accuracy of our algorithms,

e(L) =
[
e
(
L̃α1
)
+ e
(
L̃α2
)
+ · · · + e

(
L̃αp

)]

p
, (7)

where p is the total number of the targets in the network.
Obviously, smaller e(L) indicates higher position accuracy.

5.2. Simulation setup

MATLAB is used to perform all simulations. The sensor
nodes are deployed in a 32× 32 square region, which resides
in the first quadrant such that the lower-left corner and the
origin are colocated. Sensor coordinates are defined accord-
ingly. We fix the transmission range of each sensor to be 3.1,
and vary the number of sensor nodes to get different network
densities. Network density is defined as the average number
of one-hop neighbors for each sensor. Sensors are randomly
deployed according to the uniform distribution. We choose
N (si) to be the set containing all one-hop neighbors of si.

In the simulation formultiple targets detection and local-
ization, three targets are located in the network region, where
the coordinates of each target position are randomly sampled
from [8, 10]. The distance between each target pair is not less
than 4d0 = 8. We also evaluate the performance of the al-
gorithms when one target is deployed. In this scenario, the
target coordinates are chosen in the similar way.

In this paper, we consider identification and localization
problem for targets of the same kind, thus we assume all the
targets to have the same signal intensity. The signal intensity
P0 from each target is set to 30. Signal model follows (1) with
d0 = 2 and k = 2. (We have simulated the cases of k = 3, 4, 5,
and obtained similar results. We only report the result for
k = 2 in this paper.) For sensor si, its noise level N(si) is
drawn from N(μ, σ2) with μ = 0 and σ = 1, characteriz-
ing both environment disturbance and sensor measurement
error. The readings of a faulty sensor are randomly chosen
from [0, 60].

The base station classifies the position estimates from dif-
ferent epoches into different groups based on the distances of
pairwise estimates and d0. A group indicates the existence of
a target only if its cardinality is not less than half of the num-
ber of epoches under consideration.

Note that two thresholds (θ1 in Algorithm 1 and θ2 in
Algorithm 2) are needed to make decisions. Throughout the
simulation, we choose θ1 = 3σ = 3, showing that a normal
sensor has a low probability (1 − 99.7%) to report a noise
value that is larger than 3σ . To estimate the locations of the
detected targets, we set θ2 = 4. This means that sensors in
close proximity of a root sensor will contribute to the target
position estimation if the deviation of their (estimated) sig-
nal strengths from that of the root sensor is at most 4.

5.3. Simulation results

In this section, we report our simulation results, with
each representing an averaged summary over 100 runs.
In our prior work [24], we have evaluated the degree of
fault-tolerance of our algorithms through two parameters:
the correction accuracy and the false correction rate. We also
have studied the accuracy for target localization when only
one target presents in the network. We note that for a low
network density and a high sensor fault probability, the base
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Figure 1: The number of targets detected when three targets are deployed. Here, T = 1 and density = 10, 30, 50, respectively.
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Figure 2: The number of targets detected when three targets are deployed. Here, T = 9 and density = 10, 30, 50, respectively.

station fails to locate the real target with a reasonably high
false alarm rate. Furthermore, the simulation results in [24]
also indicate that it is sufficient to overcome the disturbance
of the Byzantine behavior of faulty sensors using the readings
from 9 epoches. Thus in this paper we choose to use p ≤ 0.35
and T = 1 or 9 for multiple target detection and localization,
where p is the sensor fault probability.

We first study the number of targets detected when three
targets present in the network. The targets are apart enough
so that different targets can be identified. Figures 1 and 2 il-
lustrate the number of targets detected by the base station
when position estimates from 1 epoch and from 9 epoches
are exploited, respectively.

First, we observe that in moderately and high dense net-
works, the probability of reporting the existence of three tar-
gets is high. The false alarm rate is less than 0.1 for p ≤ 0.20

and density = 30, 50 when aggregating over 9 epoches, as
shown in Figure 2. By comparing Figure 1 with Figure 2, we
observe that the number of reported targets contributing to
the false alarm rate can be reduced by increasing T . We also
notice that the average numbers of position estimates sent to
the base station at each epoch are 3.18 and 3.05 for p = 0.20
and density = 30, 50, respectively (as shown in Figures 1(b)
and 1(c)). This indicates that in many cases, only three root
sensors need to send their target location estimation to the
base station at each epoch. Therefore, the communication
overhead of our algorithms is low. In Figure 1(a), we ob-
serve that false alarm exists under density = 10 and T = 1
when faulty sensors do not exist. It is possible for some sen-
sors to be a local maxima due to the accumulation of the sig-
nal strength from all targets. Therefore, median is not robust
enough under low density.
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Figure 3: The number of targets detected when one target is deployed. Here, T = 9 and density = 10, 30, 50, respectively.
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Figure 4: Position error versus p with different network densities
when three targets are deployed. In this scenario, T = 1.

For comparison, we study the performance in the sce-
nario when only one target exists. Similarly, the number of
reported target leading to the false alarm rate can be reduced
by temporal aggregation. Here, we only report the number
of targets detected by the base station for T = 9. As shown
in Figures 3(b) and 3(c), the false alarm rate equals to 0
for p ≤ 0.20 and density = 30, 50 by aggregating over 9
epoches. Our algorithms have better performance for one
target identification since there is no interference of signal
strengths from multiple targets.

Figures 4 and 5 illustrate the position error in units ver-
sus p for multiple target localization under different net-
work densities. Both figures demonstrate that our algorithms
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Figure 5: Position error versus p with different network densities
when three targets are deployed. In this scenario, T = 9.

obtain a high accuracy for target localization. As shown in
Figure 5, position errors are less than 0.5 unit when density ≥
30 and p ≤ 0.25. By comparing Figures 4 and 5, we ob-
serve that position errors are decreased when position esti-
mates from multiple epoches are exploited. Note that posi-
tion errors generally increase with higher p when the net-
work density is fixed. We also note that a higher density
could decrease position errors. This is reasonable since in
higher density networks, more sensors are involved in the
computation, which brings in more information, and thus
results in more accurate results. For the case when only one
target presents, the position errors show the similar trends
when position estimates from 1 epoch and from 9 epoches
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Figure 6: Frequency of one target detected versus target distance when two targets are deployed, T = 9, and density= 10, 30, 50, respectively.
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Figure 7: Frequency of two targets detected versus target distance when two targets are deployed,T = 9, and density= 10, 30, 50, respectively.

are exploited. The results are not shown here for space con-
straint.

5.4. Discussion

The simulation results reported in the previous section re-
veal the high performance of our algorithms for target detec-
tion and localization in moderate and high density networks
when p ≤ 0.20. The false alarm rate is decreased and the tar-
get position accuracy is increased by exploring both temporal
and spatial aggregation.

We notice that two targets may be identified as a sin-
gle one when their locations are very close. It is necessary
to study the sensitivity of our algorithms for targets that are
close to each other. Thus, we evaluate our algorithms for the
scenarios when two targets are deployed at different posi-
tions.

Figures 6 and 7 illustrate the frequency of one target be-
ing detected and two targets being detected, versus the vari-

able distance between the two targets under different sensor
fault probabilities for density = 10, 30, 50, respectively. We
observe that the frequency of one target detected normally
decreases and the frequency of two targets detected increases
when their distance gets larger. Two targets are distinguish-
able when their distance is equal or larger than 8. Note that
in our simulation we consider targets with size d0 = 2 and
the decay factor k = 2. These two parameters are key fac-
tors to the sensitivity of our algorithms. Under these set-
tings, for moderately or highly dense networks, the probabil-
ity that two targets are ambiguous is high when their distance
is less than 6. It is also interesting to notice that the two tar-
gets are more easily to be distinguished with higher p when
density = 10, due to the relatively high disturbance of fault
sensors.

Our algorithms may fail when the locations of the two
targets are very close. One and only one local maximamay be
formed at a sensor that has roughly the same distance to both
targets, due to the accumulation of the target signal strength.
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In this case, the energy level at the root sensor may be ex-
plored. We target this as our future research.

6. CONCLUSION

In this paper, we present fault-tolerant algorithms for tar-
get identification and localization in sensor networks. In this
study, data aggregation is conducted along both temporal
and spatial dimensions for decreasing the false alarm rate
and increasing the target position accuracy. Simulation re-
sults verify the efficiency and effectiveness of our design.

This paper is exploratory in that we use “median” instead
of “mean” to locally aggregate neighboring readings to filter
out faulty measurements. We report the simulation results
when the target region contains multiple targets. We believe
that this idea can be extended to target classification and tar-
get tracking, and decide to explore along this direction in the
future.
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