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Transformed codebooks are obtained by a transformation of a given codebook to best match the statistical environment at hand.
The procedure, though suboptimal, has recently been suggested for feedback of channel state information (CSI) in multiple
antenna systems with correlated channels because of their simplicity and effectiveness. In this paper, we first consider the general
distortion analysis of vector quantizers with transformed codebooks. Bounds on the average system distortion of this class of
quantizers are provided. It exposes the effects of two kinds of suboptimality introduced by the transformed codebook, namely,
the loss caused by suboptimal point density and the loss caused by mismatched Voronoi shape. We then focus our attention on
the application of the proposed general framework to providing capacity analysis of a feedback-based MISO system over spatially
correlated fading channels. In particular, with capacity loss as an objective function, upper and lower bounds on the average
distortion of MISO systems with transformed codebooks are provided and compared to that of the optimal channel quantizers.
The expressions are examined to provide interesting insights in the high and low SNR regime. Numerical and simulation results
are presented which confirm the tightness of the distortion bounds.
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1. INTRODUCTION

This paper considers multiple antenna systems when partial
channel state information (CSI) is available at the trans-
mitter from the receiver through a finite-rate feedback link.
Recently, several interesting papers have appeared, proposing
design algorithms, as well as analytically quantifying the per-
formance of finite-rate feedback multiple antenna systems
[1–18]. We briefly discuss some of them below to provide
context to this work.

Mukkavilli et al. approximated in [1] the channel quan-
tization region corresponding to each code point based on
the channel geometric property and derived a universal
lower bound on the outage probability of quantized MISO
beamforming systems with an arbitrary number of transmit
antennas t over i.i.d. Rayleigh fading channels. Love and
Heath [2, 3] related the problem to that of Grassmannian

line packing [4]. Results on the density of Grassmannian
line packings were derived and used to develop bounds on
the codebook size given a capacity or SNR loss. Xia et al.
[5, 6], Zhou et al. [7], and Roh and Rao [8] approximated
the statistical distribution of the key random variable that
characterizes the system performance. The distribution was
used to analyze the performance of MISO systems with
limited-rate feedback in the case of i.i.d. Rayleigh fading
channels, and closed-form expressions of the capacity loss
(or SNR loss) in terms of the feedback rate B, and the
number of antennas t were obtained. Moreover, Roh and Rao
extended in [10, 11] the results from MISO channels to the
case of MIMO systems with quantized feedback. Narula et
al. [12] related the quantization problem to rate distortion
theory, and obtained an approximation to the expected
loss of the received SNR due to finite-rate quantization of
the beamforming vectors in an MISO system with a large
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number of antennas t. Furthermore, design and analysis of
finite-rate feedback based multiple antenna systems have
also been extended to multiuser areas in [17, 18], where
efficient multiuser CSI feedback schemes were proposed and
interesting observations of feedback requirement for MIMO
broadcast channels were reported.

Despite all these recent results, the analysis of finite-
rate feedback systems has proven to be difficult. All the
aforementioned approaches are case specific, limited to i.i.d.
channels, mainly MISO channels, and are hard to extend
to more complicated schemes. Recently, in our work [19],
a general framework for the analysis of quantized feedback
multiple antenna systems was developed using a source
coding perspective by leveraging the considerable work that
exists in this area, particularly high resolution quantization
theory. Specifically, the channel quantization was formulated
as a general finite-rate vector quantization problem with
attributes tailored to meet the general issues that arise in
feedback based communication systems, including encoder
side information, source vectors with constrained parame-
terizations, and general non-mean-squared distortion func-
tions. By utilizing the proposed general framework, perfor-
mance analysis of a finite-rate feedback MISO beamforming
system transmitting over spatially correlated Rayleigh flat
fading channels was provided in [20].

The general framework developed in [19] is versatile and
has the potential for being adapted to deal with a variety
of problems. This methodology, with suitable modifications,
is used in this paper to enable the distortion analysis of a
wide class of vector quantizers with transformed codebooks.
Transformed codebooks are often used for simplicity and
are obtained by a transformation of a given codebook to
best match the statistical environment at hand. The pro-
cedure, though suboptimal, has recently been suggested for
CSI feedback-based multiple antenna systems because of
their simplicity and effectiveness. Love and Heath [13] and
Xia and Giannakis [6] proposed a beamforming codebook
design algorithm for correlated MIMO fading channels
using a rotation-based transformation on the codebooks
of the beamforming vectors originally designed for i.i.d.
fading channels. The rotation is derived from the channel
correlation matrix. However, to the authors’ knowledge,
limited analytical results are available characterizing the
performance of transformed channel quantizers for multiple
antenna systems with finite-rate feedback.

In this paper, we focus our attention on investigating
the effects of codebook transformation on the performance
of multiple antenna systems with finite-rate CSI feedback.
The contributions of this paper are twofold. We first provide
insight into the general problem of analyzing a vector quan-
tizer with transformed codebook. Bounds on the average
system distortion of this class of quantizers are provided. It
exposes the effects of two kinds of suboptimality introduced
by the transformed codebook on system performance. They
are the loss caused by the suboptimal point density and the
loss due to the mismatched Voronoi shape. We then focus
our attention on the application of the proposed general
framework to providing capacity analysis of a feedback-based
MISO system with spatially correlated fading channels using

channel quantizers with transformed codebooks. In partic-
ular, using system capacity as the objective function, upper
and lower bounds on the average distortion of MISO systems
with transformed codebooks are provided and compared
to that of the optimal channel quantizers. It is shown that
the average distortion of CSI quantizers with transformed
codebooks can be upper and lower bounded by a scaling
of the distortion of optimal quantizers. Furthermore, based
on numerical and simulation results, the scaling factors
are shown to be close to one for fading channels whose
channel covariance matrix has small to moderate condition
numbers. Preliminary version of these results have appeared
in [21]. This paper provides more detailed (and complete)
derivations along with discussions that could not be included
in [21] due to space limitation.

2. BACKGROUND INFORMATION ON
THE GENERALIZED VECTOR QUANTIZER

Multiple antenna systems with finite-rate CSI feedback were
formulated as a generalized fixed-rate vector quantization
problem in [19] and analyzed by adapting tools from high
resolution quantization theory. In order to facilitate the
understanding, we briefly summarize in this section some
important results of the distortion analysis of the generalized
vector quantizer (for readers that are familiar with the ge-
neral distortion analysis provided in [19], the current section
can be skipped without loss of continuity of the article).
Extension of the distortion analysis to quantizers with a
transformed codebook and its application to CSI-quantized
MISO systems are provided in Section 3 and Section 5,
respectively.

2.1. General vector quantization framework

It is assumed that the source variable x is a two-vector
tuple denoted as (y, z), where vector y ∈ Q represents the
actual variable to be quantized (quantization objective) of
dimension kq, and z ∈ Z is the additional side information
of dimension kz. The side information z is available at the
encoder (receiver) but not at the decoder (transmitter).
Quantization objective y and side information z have joint
probability density function given by p(y, z), and a fixed-
rate (B bits per channel update) quantizer with N= 2B quan-
tization levels is considered. Based on a particular source
realization x, the encoder (or the quantizer) represents
vector y by one of the N vectors ŷ1, ŷ2, . . . , ŷN , which form
the codebook. The encoding or the quantization process
is denoted as ŷ = Q(y, z). The distortion of a finite-rate
quantizer is defined as D = Ex[DQ(y, ŷ; z)], where DQ(y, ŷ; z)
is a general distortion function between y and ŷ that is
parameterized by z, not necessarily the mean square error.
It is further assumed that the distortion function DQ has a
continuous second-order derivative (or Hessian matrix with
respect to y) Wz(ŷ) with the ith and jth elements given by

wi, j = 1
2
· ∂2

∂yi∂yj
DQ
(

y, ŷ; z
)

∣

∣

∣

∣

y=ŷ
. (1)
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2.2. Asymptotic distortion integral of
the general vector quantizer

Under high-resolution assumptions (large N), the distortion
of a finite-rate feedback system has been shown to have the
following form:

D = E
[

DQ
(

y,Q(y, z); z
)]

= 2−2B/kq

∫

Z

∫

Q
m
(

y; z;Ez(y)
)

p(y, z)λ(y)−2/kqdy dz,
(2)

where Ez(y) denotes the asymptotic (as N approaches
infinity) projected Voronoi cell that contains y with side
information z and captures the shape attribute of the
quantization cell. In (2), λ(y) is the point density function
representing the relative density of the codepoints such that
λ(y)dy is approximately the fraction of quantization points
in a small neighborhood of y. The function m(y; z;E) is
the normalized inertial profile that represents the asymptotic
normalized distortion, or the relative distortion, of the
quantizer Q at position y conditioned on side information
z with Voronoi shape E. It is given by

m(y; z;E)
Δ=
(∫

y′∈E
dy′
)−(2+kq)/kq

·
(∫

y′∈E
(y′−y)T·Wz(y)·(y′ − y)dy′

)

.

(3)

The point density function λ(y) and the normalized inertial
profile m(y; z;E) are the key characteristics that can be used
to describe the behavior of a specific quantizer. Alternately,
given a vector quantizer, one has to find these two functions,
as indicated in [19], and the average system distortion can
then be obtained using (2).

2.3. Minimization of the distortion integral

The distortion integral given by (2) allows the minimization
of the overall distortion by optimizing the choice of the
Voronoi shape Ez(y) and the point density function λ(y).
First, the normalized inertial profile of an optimal quantizer
can be defined as the minimum inertia of all admissible
Voronoi regions (or shapes) Ez(y), that is,

mopt(y; z)
Δ= min

Ez(y)∈HQ

m
(

y; z;Ez(y)
)

, (4)

where HQ represents the set of all admissible tessellating
polytopes that can tile the space Qz. It is known that finding
the optimal Voronoi region, as well as characterizing the
exact optimal inertial profile, is hard. However, the inertial
profile of any Voronoi shape, including the optimal inertial
profile, can be tightly lower bounded by that of an “M-
shaped” hyperellipsoid with the closed form expression given
by

m(y; z;E)≥mopt(y; z) � m̃opt(y; z)= kq
kq + 2

·
(∣

∣Wz(y)
∣

∣

κ2
kq

)1/kq

,

κn = πn/2

Γ(n/2 + 1)
.

(5)

Second, by substituting the inertial profile lower bound
(5) into the system distortion integral, as well as utilizing
Holder’s inequality to select the optimal point density, the
asymptotic distortion of the generalized finite-rate quantiza-
tion system can be lower bounded by ˜D Low, given by

˜D Low = 2−2B/kq·
(∫

Q

(

m̃w
opt(y)·p(y)

)kq/(2+kq)
dy
)(2+kq)/kq

,

(6)
where m̃w

opt(y) is the average optimal inertial profile defined
as

m̃w
opt(y) =

∫

Z
m̃opt(y; z)·p(z | y)dz. (7)

The optimal point density that minimizes the asymptotic
system distortion is given by

λ∗(y) = (m̃w
opt(y)·p(y)

)kq/(2+kq)

·
(∫

Q

(

m̃w
opt(y)·p(y)

)kq/(2+kq)
dy
)−1

.
(8)

2.4. Distortion analysis of constrained source

The analysis discussed above is for the case where the input
source y is a free random vector of dimension kq. In some
situations, it is required to quantize the kq-dimensional
source vector y ∈ Q subject to a multidimensional constraint
function g(y) = 0 of size kc × 1, for example, the scalar
function g(y) = (‖y‖2 − 1) represents the unit norm con-
straint. In this case, the distortion analysis discussed above
has been shown to still be valid with the following modifica-
tion. First, the degrees of freedom in y are reduced from kq
to k′q = kq − kc. Second, the sensitivity matrix is replaced by
its constrained version Wc,z(y), given by

Wc,z(y) = VT
2 ·Wz(y)·V2, (9)

where V2 ∈ Rkq×k′q is an orthonormal matrix with its col-
umns constituting an orthonormal basis for the null space
N ((∂/∂y)g(y)). Lastly, the multidimensional integrations
used in evaluating the average distortions are over the con-
strained space g(y) = 0.

3. ASYMPTOTIC DISTORTION ANALYSIS OF
QUANTIZERSWITH TRANSFORMED CODEBOOK

In certain situations, the underlying source distribution
p(y, z) or the distortion function DQ of the source variable
varies during the quantization process. It is practically
infeasible to design separate codebooks optimized for every
different source distribution and distortion function, or
the encoder and the decoder may not have the ability to
store a large number of codebooks. In these situations, it is
convenient to use a quantizer whose codebook is constructed
by a transformation of a fixed codebook based on the current
statistical distribution of the source variable. These types of
quantizers are generally called transformed quantizers [22,
23], and have been used in the conventional source coding
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area with a linear orthogonal transformation followed by a
product quantizer. We provide in this subsection an analysis
of the generalized vector quantizer, which is described in
Section 2, when a transformed codebook is used. Detailed
applications to finite-rate feedback MISO systems with
a transformed codebook over spatially correlated fading
channels are provided in Section 5.

3.1. Problem formulation

It is first assumed that all the codebooks are generated from
one fixed codebook C0, which is designed to match the
source distribution p0(y, z), and distortion function D0,Q

with sensitivity matrix W0,z(y). Codebook C0 has a point
density given by λ0(y), and a normalized inertial profile
I0(y; z;E0,z(y)) that is optimized to match the distortion
function D0,Q, with E0,z(y) representing the asymptotic
Voronoi cell that contains y with side information z. Let
the source distribution change from p0(y, z) to p(y, z), and
let the distortion function become DQ instead of D0,Q with
sensitivity matrix Wz(y) instead of W0,z(y). The encoder and
decoder are assumed to adapt a transformed codebook C
obtained from C0 by using a general one-to-one mapping
F(·) with both its domain and codomain in space Q, that
is,

C = {F(ŷ) | ŷ ∈ C0
}

. (10)

3.2. Suboptimal point density and
suboptimal voronoi shape

Assuming the codebook transformation function F(·) has a
continuous first order derivative, two types of suboptimality
arise when the transformed quantizer is used. One comes
from the suboptimal point density λtr(y), which can be
derived from λ0(y) as

λtr(y) = λ0
(

F−1(y)
)

∣

∣Fd
(

F−1(y)
)∣

∣

,

Fd(y) = ∂F(y)
∂y

.

(11)

If the source variable is subject to kc constraints given by
vector equation g(y) = 0, the transformed point density is
given by

λc-tr(y) = λ0
(

F−1(y)
)

∣

∣

∣V2(y)T·Fd
(

F−1(y)
)·V2

(

F−1(y)
)

∣

∣

∣

, (12)

where V2(y) is an orthonormal matrix whose columns
constitute an orthonormal basis for the null space
N ((∂/∂y)g(y)). Compared to the optimal point density
λ∗(y) given by (8), which corresponds to the optimally
designed codebook, λtr(y) given by (11) is always suboptimal
and hence leads to performance degradation. The other
suboptimality arises from the constraints on the code
points in the transformed codebook C in the sense that
the Voronoi shape of the transformed code is not matched

to the distortion function DQ, and hence is not optimized
to minimize the inertial profile. Note that these two
suboptimalities, named as point density loss and cell
shape loss, were also discussed in [22] in the setting of the
conventional product quantizers and further applied to
study the distortion performance of conventional quantizers
with transformed codebooks.

3.3. Characterizing the inertial profile
of the transformed codebook

Unfortunately, the Voronoi region Etr,z(ŷ′i ) of the trans-
formed codebook, which is defined to be

Etr,z
(

ŷ′i
)

Δ={y |DQ
(

y, ŷ′i ; z
)≤DQ

(

y, ŷ′j ; z
)

, ∀ŷ′j∈C, ŷ′j /= ŷ′i
}

, ŷ′i ∈C,
(13)

is hard to characterize and depends on both the trans-
formation F as well as the distortion function DQ. In
order to characterize the effects of the transformed Voronoi
shape on the system distortion, lower and upper bounds
of the normalized inertial profile of the transformed code
are provided. First, let us consider a suboptimal quantizer
Qsub(·) with transformed codebookC that uses a suboptimal
encoding process given by

ŷ = Qsub(y, z) = F
(

Q
(

F−1(y), z
))

, (14)

where Q(·) is the optimal encoder that is matched to
the distortion function D0,Q. This suboptimal encoder can
be viewed as an extension of the “companding” model
introduced by Bennett [24] to the general vector quan-
tization problem. It was originally used in conventional
scalar quantizers, where the encoder is a combination of
a monotonically increasing nonlinear mapping E(x), the
compressor, followed by a uniform quantizer; and the
corresponding decoder is composed of a uniform decoder
followed by an inverse mapping E−1, the expander. In the
case of the generalized vector quantizer discussed here, the
Voronoi shape of the suboptimal transformed encoder Qsub

can be analytically characterized as

Esub,z
(

F(y)
) = {F(y′) | y′ ∈ E0,z(y)

}

, (15)

where E0,z(y) is the optimal Voronoi shape of the original
codebook C0 corresponding to distortion function D0,Q. Due
to the suboptimality of encoder Qsub, the normalized inertial
profile of the transformed Voronoi shape Etr,z(y) is upper
bounded by the inertial profile of Esub,z(y) given by (15), but
lower bounded by the inertial profile of the optimal Voronoi
shape Ez(y) corresponding to the distortion function DQ.

Proposition 1. Under high resolution assumptions, the ap-
proximated inertial profile m̃tr(F(ŷ); z) of a quantizer with
transformed codebook can be upper and lower bounded by the
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following form:

kq
kq + 2

·
(∣

∣Wz
(

F(y)
)∣

∣

κ2
kq

)1/kq

= m̃opt
(

F(y); z
) a≤ m̃tr

(

F(y); z
) b≤ m̃sub

(

F(y); z
)

=
∣

∣Fd(y)
∣

∣

−2/kq

kq + 2
·
(∣

∣W0,z(y)
∣

∣

κ2
kq

)1/kq

·tr(W0,z(y)−1·Fd(y)T·Wz
(

F(y)
)·Fd(y)

)

.
(16)

Furthermore, if the source variable is subject to kc constraints
given by the vector equation g(y) = 0, the constrained inertial
profile m̃c-tr(F(ŷ); z) can be similarly bounded by

k′q
k′q + 2

·
(∣

∣V2
(

F(y)
)T·Wz

(

F(y)
)·V2

(

F(y)
)∣

∣

κ2
kq′

)1/kq′

= m̃c-opt
(

F(y); z
) a≤ m̃c-tr

(

F(y); z
) b≤ m̃c-sub

(

F(y); z
)

=
∣

∣V2
(

F(y)
)T·Fd(y)·V2(y)

∣

∣

−2/k′q

k′q + 2

·
(∣

∣V2(y)T·W0,z(y)·V2(y)
∣

∣

κ2
k′q

)1/k′q

·tr((V2(y)T·W0,z(y)·V2(y)
)−1·V2(y)T

·Fd(y)T·Wz
(

F(y)
)·Fd(y)·V2(y)

)

,
(17)

where V2(y) is an orthonormal matrix with its columns consti-
tuting an orthonormal basis for the null spaceN ((∂/∂y)g(y)).

Proof. Due to the constraints on the code points in the
transformed codebook C, which cannot be optimized to
minimize the normalized inertial profile, it is evident that
the transformed inertial profile m̃tr is lower bounded by the
optimal inertial profile m̃opt given by (5). Hence, inequality
(a) in (16) can be obtained after some manipulations. The
same reasonings are valid for inequality (a) in (17) for the
constrained source.

As for inequality (b) in (16), since function F(·) is first
order continuous, any points in the vicinity of the trans-
formed code point F(ŷ) has a first-order Taylor series expan-
sion given by

F(y) ≈ F(ŷ) + Fd(ŷ)·(y − ŷ),

Fd(ŷ) = ∂

∂y

∣

∣

∣

∣

y=ŷ
F(y).

(18)

Moreover, due to the fact that F(·) is a one-to-one mapping,
for any point y′ in the vicinity of F(ŷ), there exists a unique
point y in the neighborhood of ŷ such that y′ = F(y).
Therefore, under high resolutions, the distortion function

DQ can be expanded around point F(ŷ) as follows:

DQ
(

y′,F(ŷ); z
)

≈ (y′ − F(ŷ)
)T
Wz
(

F(ŷ)
)(

y′ − F(ŷ)
)

≈ (y − ŷ)T·
(

Fd(ŷ)T·Wz
(

F(ŷ)
)·Fd(ŷ)

)

·(y − ŷ),

(19)

which has quadratic form but with transformed sensitivity
matrix. By substituting (19), as well as the Voronoi shape of
the suboptimal encoder given by (15), into the definition of
the inertial profile given by (3), we can obtain the following
normalized inertial profile of the transformed code with
suboptimal encoder:

m̃tr
(

F(ŷ); z
)

≤ m̃sub
(

F(ŷ); z
) =

∣

∣Fd(ŷ)
∣

∣

−2/kq

kq + 2
·
(∣

∣W0,z(ŷ)
∣

∣

κ2
kq

)1/kq

·tr(W0,z(ŷ)−1·Fd(ŷ)T·Wz
(

F(ŷ)
)·Fd(ŷ)

)

,
(20)

which corresponds to inequality (b) in (16).
If the source variable (vector) y is further subject to

kc constraints given by the vector equation g(y) = 0, the
distortion function DQ can be similarly expanded around
point F(ŷ) as

DQ
(

y′,F(ŷ); z
)

≈ (y − ŷ)T·(Fd(ŷ)T·Wz
(

F(ŷ)
)·Fd(ŷ)

)·(y − ŷ)

=eT·(V2(ŷ)T·Fd(ŷ)T·Wz
(

F(ŷ)
)·Fd(ŷ)·V2(ŷ)

)·e,
(21)

where e is the projected error vector with respect to point ŷ
given by

e = V2(ŷ)T·(y − ŷ). (22)

By substituting (21) and the suboptimal Voronoi shape (15)
into the inertial profile definition (3), we can obtain the
suboptimal inertial profile of the transformed code with
constrained source

m̃tr-c
(

F(ŷ); z
)

≤ m̃sub-c
(

F(ŷ); z
) =

∣

∣V2(ŷ)T·Fd(ŷ)·V2(ŷ)
∣

∣

−2/k′q

k′q + 2

·
(∣

∣V2(ŷ)T·W0,z(ŷ)·V2(ŷ)
∣

∣

κ2
kq

)1/kq

·tr((V2(ŷ)T·W0,z(ŷ)·V2(ŷ)
)−1·V2(ŷ)T

·Fd(ŷ)T·Wz
(

F(ŷ)
)·Fd(ŷ)·V2(ŷ)

)

,

(23)

which corresponds to inequality (b) in (17).
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3.4. Distortion integral of the transformed codebook

By substituting the transformed point density (11) and the
bounds of the transformed inertial profile given by (16) into
the distortion integration (2), we can upper and lower bound
the asymptotic system distortion of a transformed quantizer
by the following form:

˜D tr-Low

= 2−2B/kq·
(∫

Z

∫

Q
m̃opt(y; z) · p(y, z)·λtr(y)−2/kqdy dz

)

≤ ˜D tr

= 2−2B/kq ·
(∫

Z

∫

Q
m̃tr(y; z) · p(y, z) · λtr(y)−2/kqdy dz

)

≤ ˜D tr-Upp

= 2−2B/kq ·
(∫

Z

∫

Q
m̃sub(y; z) · p(y, z) · λtr(y)−2/kqdy dz

)

.

(24)

Similarly, by substituting (12) and (17) into (2), the asymp-
totic distortion of a constrained quantizer with transformed
codebook is bounded by

˜D c-tr-Low

= 2−2B/k′q·
(∫

Z

∫

Q
m̃c-opt(y; z)·p(y, z)·λc-tr(y)−2/k′qdy dz

)

≤ ˜D c-tr

= 2−2B/k′q ·
(∫

Z

∫

Q
m̃c-tr(y; z) · p(y, z) · λc-tr(y)−2/k′qdy dz

)

≤ ˜D c-tr-Upp

= 2−2B/k′q ·
(∫

Z

∫

Q
m̃c-sub(y; z)·p(y, z)·λc-tr(y)−2/k′qdy dz

)

.

(25)

Similar to conventional product transformed quantizers
[22], there exist trade-offs between the two suboptimalities:
point density loss and Voronoi shape loss. To be specific,
it is always possible to find a transformation F(·) such
that the transformed point density λtr(y) matches exactly
the optimal point density λ∗(y). However, by doing so, the
transformation might cause shape loss of the transformed
Voronoi cells in some cases, which will lead to significant
increase in the normalized inertial profile. Therefore, a
transformation that optimally balances two types of losses
should be employed. This tradeoff is directly reflected in the
distortion bound ˜D tr,Upp where both m̃sub(y; z) and λtr(y) in
(24) depend on the transformation F(·). So is the distortion
bound ˜D c-tr,Upp given by (25).

4. MISO SYSTEMS USING FINITE-RATE CSI
QUANTIZERSWITH TRANSFORMED CODEBOOK

4.1. Systemmodel ofMISO fading channels

We consider a MISO system, with t transmit antennas
and one receive antenna, signaling through a frequency flat

fading channel. The channel model can be represented as

y = hH·x + n, (26)

where y is the received signal (scalar), n is the additive
complex Gaussian noise with zero mean and unit variance,
and hH ∈ C1×t is the correlated MISO channel response
with distribution given by h∼Nc(0,Σh). For the sake of fair
comparisons, we normalize the channel covariance matrix
such that the mean of the eigen values equals one (equal
to the i.i.d. channel case Σh = It). Moreover, the statistical
information (i.e., channel covariance matrix Σh) of the MISO
channel response is assumed to be perfectly known at both
the transmitter and the receiver. The transmitted signal
vector x is normalized to have a power constraint given by
E[‖x‖2] = ρ, with ρ representing the average signal-to-noise
ratio at each receive antenna.

4.2. Beamformingwith finite-rate CSI feedback

In this paper, the channel state information h is assumed to
be perfectly known at the receiver but only partially available
at the transmitter through a finite-rate feedback link of B
bits per channel update between the transmitter and receiver.
To be specific, a quantization codebook C = {v̂1, . . . , v̂N},
which is composed of unit-norm transmit beamforming
vectors, is assumed known to both the receiver and the
transmitter. Based on the channel realization h, the receiver
selects the best code point v̂ from the codebook and sends
the corresponding index back to the transmitter. At the
transmitter, the unit-norm vector v̂ is employed as the
beamforming vector, and the resulting received signal can be
represented as

y = 〈h, v̂〉·s + n = ‖h‖·〈v, v̂〉·s + n,

E
[|s|2] = ρ,

(27)

where v is the channel direction vector given by v = h/‖h‖.

4.3. Problem of channel quantizers with
transformed codebook

According to [8], it is clear that the statistical information of
the fading channel is very important for the design of MISO
transmit precoders. The resulting optimal beamforming
codebook obtained by utilizing a vector quantization (VQ)
approach depends on the channel covariance matrix. In
practical situations, the spatial correlation conditions of the
fading channel responses may change during the transmis-
sion process. However, for a real system, it is impossible to
design different codebooks optimized for every instantiation
of the channel covariance matrix and it might also be
infeasible for the transmitter and receiver to store a large
number of codebooks and use them adaptively. In these
cases, it is convenient to use a channel quantizer whose
codebook is generated from a fixed pre-designed codebook
through a transformation parameterized by the channel
covariance matrix. (Imperfect knowledge of the channel
covariance matrix will also impact the system performance.
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Figure 1: System diagram of a MISO beamforming system with limited CSI feedback.

Interested readers are referred to [20, Sections IV-C and V-
B], where a detailed analysis of MISO beamforming systems
employing channel quantizers designed with mismatched
channel covariance matrix is provided.)

To be specific, suppose C0 is the optimal codebook
designed for the i.i.d. MISO fading channels. When the
elements of the fading channel response h are correlated,
that is, h∼Nc(0,Σh), it is evident that codebook C0 is no
longer optimal. In order to compensate for the mismatch
between C0 and the current channel statistics, a transformed
codebook C can be generated by the following manner:

C = {F(v̂) | v̂ ∈ C0
}

, (28)

where F(·) is a general nonlinear transformation that
depends on the channel statistics. Optimization of the
transformation F(·) turns out to be difficult, and hence a
simple suboptimal transformation,

F(v̂) = Gv̂
‖Gv̂‖ , (29)

was proposed in [6, 13] where G ∈ Ct×t is a fixed
matrix which depends on the channel covariance matrix
Σh. Distortion analysis of CSI-quantizers with transformed
codebooks is provided in next section.

In order to facilitate understanding, a top level diagram
of a MISO beamforming system with finite rate CSI feedback
is shown in Figure 1. The exchange of the CSI informa-
tion between the transmitter and receiver is demonstrated.
Major modules of the channel quantization process are also
depicted.

4.4. Capacity loss as system performancemetric

According to the received signal model given by (27), the
corresponding ergodic capacity, or the maximum system

mutual information rate, of the quantized MISO beamform-
ing system is given by

CQ = E
[

log2

(

1 + ρ·‖h‖2·∣∣〈v, v̂〉∣∣2
)]

. (30)

On the other hand, with perfect channel state information
available at the transmitter, which corresponds to the case
of infinite rate feedback B = ∞, it is optimal to choose
v = h/‖h‖ as the transmit beamforming vector, and the
corresponding system ergodic capacity is given by

CP = E
[

log2

(

1 + ρ·‖h‖2)]. (31)

Therefore, the performance of a CSI-feedback-based MISO
system can be characterized by the capacity loss CLoss due
to the finite-rate quantization of the transmit beamforming
vectors, which is defined as the expectation of the instanta-
neous mutual information rate loss CL(h, v̂), that is,

CLoss = CP − CQ = E
[

CL(h, v̂)
]

,

CL(h, v̂) = −log2

(

1− ρ·‖h‖2

1 + ρ·‖h‖2
·(1− |〈v, v̂〉|2)

)

.

(32)

This performance metric was also used in [11, 19]. From an
information theoretical point of view, a CSI feedback scheme
should be designed to minimize this performance metric.

5. CAPACITY ANALYSIS OFMISO CSI QUANTIZERS
WITH TRANSFORMED CODEBOOK

By utilizing the distortion analysis of the transformed
codebooks provided in Sections 2 and 3, this section provides
an investigation of the capacity loss of a finite-rate CSI-
quantized MISO beamforming system over spatially corre-
lated fading channels, that uses transformed CSI quantizers.
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5.1. Reformulation of the CSI-quantized
MISO beamforming system

By employing the general framework described in Section 2,
the finite-rate quantized MISO beamforming system can
be formulated as a general fixed-rate vector quantization
problem by adopting a direct mapping between CSI and
source variables, given by (v,α)→(y, z). Specifically, the
source variable to be quantized is denoted as v = [vT

R , vT
I ]T of

2t real dimensions with vR and vI representing the real and
imaginary parts of the complex channel directional vector
v. The encoder side information is denoted as α = ‖h‖2

of dimension kα = 1 representing the power of the vector
channel. For vectors in the vicinity of v̂ (with v̂R and v̂I
representing its real and imaginary parts), source variable v
is restricted under the constraint function given by

g(v) =
⎡

⎣

vT
RvR + vT

I vI − 1

vT
R v̂I − vT

I v̂R

⎤

⎦ = 0, (33)

where the first element represents the norm constraint ‖v‖ =
1, and the second element represents the phase constraint
�〈v, v̂〉 = 0. The function g(v) has size kc = 2, which
leads to the actual degrees of freedom of the quantization
variable v to be k′q = 2t − 2. The instantaneous capacity
loss due to effects of finite-rate CSI quantization is taken to
be the system distortion function DQ(v, v̂;α), which has the
following form according to (32)

DQ(v, v̂;α)= CL(h, v̂)
Δ=−log2

(

1− ρα

1 + ρα
·(1− ∣∣〈v, v̂〉∣∣2)

)

,

(34)

where α is the instantaneous channel power given by α =
‖h‖2.

5.2. Distortion anslysis of optimal CSI quantizers

In order to understand CSI quantizers with transformed
codebooks, it is worth investigating the optimal CSI quanti-
zation scheme first. For correlated MISO fading channels, by
substituting the distortion function (34) into (5), the optimal
normalized inertial profile of a MISO system is tightly lower
bounded by the following form:

m̃c,opt(v̂;α) = (t − 1)·γ−1/(t−1)
t ·ρα

ln 2·t·(1 + ρα)
,

γt = πt−1

(t − 1)!
.

(35)

Moreover, by substituting the inertial profile lower bound
m̃c,opt(v̂;α) into the distortion integral (6), the average
distortion (or capacity loss) of a CSI-quantized MISO system
can be lower bounded by

˜D c-Low
(

Σh
) =

(

(t − 1)γ−t/(t−1)
t ·ρ·β1

(

ρ, t,Σh
)

ln 2·∣∣Σh

∣

∣

)

·2−B/(t−1).

(36)

Note that β1(ρ, t,Σh) is a constant coefficient that only
depends on the number of antennas t, channel correlation
matrix Σh, and system SNR ρ, and is given by

β1
(

ρ, t,Σh
)

=
(
∫

v:g(v)=0

(

(

vHΣ−1
h v
)−(t+1)

·2F0

(

t + 1, 1; ;− ρ

vHΣ−1
h v

)

)(t−1)/t

dv

)t/(t−1)

,

(37)

with 2F0(; ; ) representing the generalized hypergeometric
function. The optimal point density λ∗(v) that achieves the
minimal distortion is given by

λ∗(v) = β1
(

ρ, t,Σh
)−(t−1)/t

·
(

(

vHΣ−1
h v
)−(t+1)·2F0

(

t + 1, 1; ;− ρ

vHΣ−1
h v

)

)(t−1)/t

.

(38)

As a special case, when the fading channel responses are
spatially uncorrelated, that is, Σh = It, the average system
distortion has the following form:

˜D c-Low =
(

t − 1
ln 2

·2F0(t + 1, 1; ;−ρ)·ρ
)

·2−B/(t−1), (39)

with the optimal point density λ∗(v) being a uniform dis-
tribution given by

λ∗(v) = γ−1
t , v ∈ {v | g(v) = 0

}

. (40)

Due to space limitations and to avoid overlap with
our previous work, the derivations in this subsection have
been condensed by skipping some manipulations used in
obtaining the final expressions. Please refer to [19, 25] for
more details.

5.3. Distortion analysis of quantizers
with transformed codebook

First, according to the codebook transformation given by
(29) as well as the optimal point density function of i.i.d.
channels given by (40), the transformed point density
function λc-tr(v) from (12) has the following form:

λc-tr(v) = γ−1
t ·|Σ|−1·(vHΣ−1v

)−t
, Σ = G·GH, (41)

which is equivalent to the PDF of a unit-norm complex
vector x/‖x‖ with x having complex Gaussian distribution
x∼Nc(0,Σ). It is evident that the transformed point density
given by (41) does not match the optimal point density
function λ∗(v) given by (38) in the general case. However, for
MISO systems with a large number of antennas and in high-
SNR and low-SNR regimes, it can be shown that the optimal
point density λ∗(v) reduces to be the source distribution
pv(x) given by the following form:

lim
t→∞

λ∗(x) = pv(x) = γ−1
t ·
∣

∣Σh

∣

∣

−1·
(

xHΣ−1
h x
)−t

. (42)
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In this case, by choosing matrix G as G = UΛ1/2 with matri-
ces U and Λ obtained from the eigen-value decomposition
of the channel covariance matrix, that is, Σh = UΛUH,
one can generate a transformed codebook C whose point
density λc-tr(v) is equal to the optimal point density function
λ∗(v). By utilizing this codebook transformation, there is
no distortion loss caused by the point density mismatch
(when t is large). However, the system still suffers from the
suboptimal Voronoi shape due to the transformation.

By substituting the transformation given by (29) into
(17), the inertial profile of the transformed codebook with
suboptimal encoder Qsub (or encoding process) is given by

m̃c-sub(v;α) = γ−1/(t−1)
t ·ρα·(vHΣ−1v

)

t· ln 2·(1 + ρα)
·tr((I − vvH)·Σ)

≥ m̃c-opt(v;α),
(43)

where m̃c-opt(v;α) is the optimal inertia profile given by (35).
It is evident from (43) that except for unitary rotations of the
i.i.d. codebook, any nontrivial transformation of codebook
C0 will lead to mismatched Voronoi shapes and hence causes
inertial profile loss. Therefore, a codebook transformation
that makes the best compromise between the point density
loss and the inertial profile loss is favored.

Finding the optimal codebook transformation F that
minimizes the system distortion turns out to be a difficult
problem. In this paper, instead of optimizing the overall
distortion with respect to matrix G, we provide a distortion
analysis of MISO systems with transformed CSI-quantizers
using codebooks generated by the heuristic choice Σh =
G·GH (or G = UΛ1/2). (Note that the codebook transfor-
mation is not unique. Any right unitary rotation G·P on
matrix G, with P·PH = I , can generate another codebook
transformation (or codebook) with the same performance.)
To be specific, by substituting the transformed point density
(41) and the transformed inertia profile (43) into the
distortion integral given by (25), the corresponding upper
and lower bounds of the average system distortion of a MISO
CSI-quantizer with transformed codebook has the following
forms:

˜D c-tr-Low =
(t − 1)·∣∣Σh

∣

∣

1/(t−1)

ln 2·t

·E
[

ρ·(hHΣ−1
h h

)t/(t−1)

(

1 + ρ·‖h‖2
)·‖h‖2/(t−1)

]

·2−B/(t−1),

(44)

˜D c-tr-Upp =
∣

∣Σh

∣

∣

1/(t−1)

ln 2·t

·E
[

ρ·(hHΣ−1
h h

)(2t−1)/(t−1)·(t·‖h‖2 − hHΣhh
)

(

1 + ρ·‖h‖2
)·‖h‖(4t−2)/(t−1)

]

·2−B/(t−1).
(45)

5.4. Performance comparison of CSI-quantizers
with optimal and transformed codebooks

In order to assess the suboptimality caused by codebook
transformation, one would like to compare the system
performance in terms of the average distortion of quantizers
using transformed codebooks with that of the optimally
designed codebooks. Interestingly, in high-SNR and low-
SNR regimes with a large number transmit antennas t, the
average system distortion of CSI quantizers with transformed
codebook can be upper and lower bounded by some
multiplicative factors of the distortion of optimal quantizers.

Proposition 2. For MISO systems with a large number of
transmit antennas, that is, t→∞, the following inequalities are
satisfied:

˜D
H-dim,H-SNR
c-Low

a= ˜D
H-dim,H-SNR
c-tr-Low ≤ ˜D

H-dim,H-SNR
c-tr

≤ ˜D
H-dim,H-SNR
c-tr-Upp

b≤ c1· ˜D
H-dim,H-SNR
c-Low,1 ,

(46)

˜D
H-dim,L-SNR
c-Low

a= ˜D
H-dim,L-SNR
c-tr-Low ≤ ˜D

H-dim,L-SNR
c-tr

≤ ˜D
H-dim,L-SNR
c-tr-Upp

b≤ c2· ˜D
H-dim,L-SNR
c-Low,1 ,

(47)

where the superscript “H-dim” represents the high-dimen-
sional distortion (t large), and “H-SNR” (or “L-SNR”)
represents the distortion in high-SNR (or low-SNR) regimes.
In (46), the constant coefficients c1 and c2 are given by the
following form:

c1 =

(

δ(t − 2)
λh,1·λh,2

− (t − 1)(t − 2)
t
∑

i=1

(

ln λh,i
)

/λ2
h,i

∏

k /=i
(

1− λh,k/λh,i
)

)

ct/(t−1)
1

,

(48)

c2 = (t − 1)
t
∑

i=1

(

ln λh,i
)

/λh,i
∏

k /=i
(

1− λh,k/λh,i
) . (49)

Proof. See Appendix A.

Note from Proposition 2 that constants c1 and c2 can
be viewed as the upper bounds of the penalty paid for
using a transformed codebook instead of the optimal design.
Numerical examples of the loss factors c1 and c2 as well as
corresponding discussions are provided in Section 6.

5.5. Discussion on quantization resolutions

The proposed system distortion bounds, as well as the cor-
responding observations made in previous sections, are all
derived based on the high-resolution assumption. However,
the feedback rate of the channel state information is always
constrained to be low (a few bits per channel update) due
to various practical considerations, for example, reduced
transmission overhead, latency, and uplink spectral efficiency
loss. Fortunately, as a well-known result in the conventional
source coding, the high-rate distortion bounds agree well
with the real simulation results when the resolution is
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larger than 3 bits per dimensions (B/kq ≥ 3) [26]. In this
paper, due to “log-like” nature of the distortion function
(system capacity loss), the distortion bounds converge even
faster (about 1.5 bits per dimension), which is verified by
simulation results in the following section. Therefore, the
proposed distortion lower bounds are tight, and hence are
able to characterize the system performance well even for CSI
quantizers with small to moderate quantization rates.

6. NUMERICAL AND SIMULATION RESULTS

Some numerical experiments were conducted to get a better
feel for the utility of the bounds. Figure 2 shows the system
capacity loss due to the finite-rate quantization of the CSI
versus feedback rate B for a 3×1 MISO system over correlated
Rayleigh fading channels under different system SNRs,
ρ = −10 and 20 dB, respectively. The spatially correlated
channel is simulated by the correlation model in [27]: a
linear antenna array with antenna spacing of half wavelength,
that is, D/λ = 0.5, uniform angular spread in [−30◦, 30◦]
and angle of arrival φ = 0◦. Simulation results of both
the optimal designed codebook using the minimal mean-
squared weighted inner product (MSwIP) criterion proposed
in [10], as well as the suboptimal transformed codebook,
are plotted. For comparison purposes, the distortion lower
bound ˜D c-tr-Low given by (44) and the distortion upper
bound ˜D c-tr-Upp given by (45) are also included in the plot.
Note that the capacity losses (y-axis) are demonstrated using
unit of bits per channel update. To get a relative sense, the
channel capacity assuming perfect CSIT for the same 3 × 1
MISO system is 7.78 bits per channel update for an SNR
of 20 dB, and 0.36 bits per channel update for an SNR of
−10 dB. It can be observed from Figure 2 that the distortion
lower bound ˜D c-tr-Low is tight and the performance of the CSI
quantizer with transformed codebook is close to that of the
optimal codebooks.

In order to see the effects of channel correlation on CSI
quantizations, we plot in Figure 3 the normalized capacity
losses (or capacity loss ratios) versus the adjacent antenna
spacing D/λ of a 3 × 1 MISO system using both optimal
CSI quantizers and quantizers with transformed codebooks.
In the plot, the normalized capacity loss is defined to be
the distortion ratio of correlated fading channels over i.i.d.
fading channels. The reasons of choosing the capacity loss
ratio as a major performance metric are twofold. First,
intuitively uncorrelated Gaussian distribution has the max-
imum amount of “uncertainty” among all possible channel
distributions. It imposes greater challenges in terms of
quantizing the CSI than spatially correlated fading channels.
Therefore, normalizing the system capacity loss w.r.t that
of i.i.d. fading channels would make this ratio a positive
number between 0 and 1, which characterizes the relative
quality of the channel quantizer. Second, according to (36),
(39), (44), and (45), the system distortion (in terms of
capacity loss) of both optimal and transformed codebooks
can be expressed as a weighted exponential function given
by D = c·2−B/(t−1), where c is a constant coefficient that is
independent of the quantization resolution B. Therefore, the
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Figure 2: Capacity loss of a 3 × 1 correlated MISO system with
normalized antenna spacing d = D/λ = 0.5 versus CSI feedback
rate B using different channel quantization codebooks (optimal
codebook versus transformed codebook).

proposed capacity loss ratio does not depend on the feedback
rate, and only reflects the impact of the channel statistical
distributions as well as the type of channel quantizers used.

In Figure 3, the capacity loss ratio is demonstrated with
respect to the adjacent antenna spacing D/λ, which is directly
related to the spatial correlation of the MISO channel
response. When D/λ is sufficiently large, the channels can
be viewed as i.i.d. Gaussian distributed, while D/λ = 0
means the channel is completely correlated (line of sight
cases). In the plot, the average system signal to noise ratio
is chosen in the low SNR regimes where ρ = −10 dB,
and the quantization resolution is B = 10 bits per channel
update. Simulation results in high SNR regimes, which are
not shown here due to space limitations, show very similar
results. Moreover, for comparison purpose, the ratio of the
distortion bounds, that is, ˜D c-tr-Low(Σh)/ ˜D c-tr-Low(It) and
˜D c−tr−Upp(Σh)/ ˜D c−tr−Upp(It), is also included in the plot. One
can first learn from Figure 3 that the system capacity loss
increases as the adjacent antenna spacing increases (channel
correlation decreases). It means higher feedback rate or
finer resolution of the channel quantizer has to be used to
maintain the same level of capacity losses, which is consistent
with our earlier intuition. Moreover, it can be observed
from the plot that the transformed codebook performs very
close to the optimally designed codebook across all channel
correlations. Finally, the plot also indicates that the analytical
bounds agree well with the obtained simulation results.
Therefore, we can analytically characterize the performance
of beamforming systems using transformed channel quantiz-
ers without cumbersome numerical simulations.
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Figure 3: Normalized capacity loss (with respect to the capacity
loss of uncorrelated fading channels) comparison of a 3 × 1 MISO
transmit beamforming with optimal and transformed codebooks
versus antenna spacing d = D/λ, in low-SNR regimes (ρ = −10 dB).

In order to demonstrate the penalties of using trans-
formed codebooks in high-SNR and low-SNR regimes,
Figure 4 plots the constant coefficients c1 and c2 versus the
number of transmit antennas t for correlated MISO channels
with adjacent antenna spacing D/λ = 0.5. From the plot, it
can be observed that (the upper bound of ) the performance
degradation caused by the transformed codebook is less than
10% in low-SNR regimes and 22% in high-SNR regimes for
MISO systems with more than 10 transmit antennas. This
means that the intuitive choice of F given in [6, 13] is a
fairly good solution especially for cases when the channel
covariance matrix has a relatively small condition number.

7. CONCLUSION

This paper extends the high-resolution quantization theory
approach to study the effects of a finite-rate MISO CSI-
quantizer employing a transformed codebook while trans-
mitting over correlated fading channels. The contributions
of this paper are twofold. First, analysis is provided for a
generalized vector quantizer with a transformed codebook.
Bounds on the average system distortion of this class of
quantizers are provided. It exposes the effects of two kinds
suboptimality, which include the suboptimal point density
loss and the mismatched Voronoi shape. Second, we focused
our attention on the application of the proposed general
framework to provide the capacity analysis of a feedback-
based MISO system over correlated fading channels using
channel quantizers with transformed codebooks. In partic-
ular, upper and lower bounds on the channel capacity loss of
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Figure 4: Demonstration of the distortion penalties of a MISO
system using transformed codebooks over correlated fading chan-
nels with different number of transmit antennas of antenna spacing
d = D/λ = 0.5.

MISO systems with transformed codebooks are provided and
compared to that of the optimal quantizers. It was further
proven that the average distortion of CSI quantizers with
transformed codebooks can be upper and lower bounded
by some multiplicative factors of the distortion of optimal
quantizers. These factors were shown to be close to one for
fading channels whose channel covariance matrix has small
to moderate condition numbers. Numerical and simulation
results were presented, which confirms the tightness of the
theoretical distortion bounds.

APPENDIX

A. PROOF OF PROPOSITION 2

Proof. First, in the high-SNR regimes, distortion bounds

˜D
H-dim,H-SNR
c-tr-Low and ˜D

H-dim,H-SNR
c-tr-Upp can be represented as

˜D
H-dim,H-SNR
c-tr-Low =

(

(t − 1)·∣∣Σh

∣

∣

1/(t−1)·β2

ln 2·t

)

·2−B/(t−1)

≈ ˜D
H-dim,H-SNR
c-Low,1 ,

(A.1)

˜D
H-dim,L-SNR
c-tr-Upp ≤

(

(t − 1)·∣∣Σh

∣

∣

1/(t−1)·β3

ln 2·t

)

·2−B/(t−1)

=
(

β3·β−t/(t−1)
2

)

· ˜DH-dim,H-SNR
c-Low,1 ,

(A.2)
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where coefficients β2 and β3 can be expressed as the expected
powers of the ratios of Gaussian quadratic variables, which
are given by

β2 = E

[

hHΣ−1
h h

hHh

]

, β3 = E

[

(

hHΣ−1
h h

hHh

)2
]

. (A.3)

The moments of ratios of random variables, including cen-
tral quadratic forms in normal variables, were investigated
in [28], and the results can be described by the following
integrals:

E

[

(

X

Y

)n
]

= Γ(n)−1
∫∞

0
vn−1M(n)

X ,Y (0,−v)dv, (A.4)

where MX ,Y (u, v) is the joint moment generating function

(m.g.f.) of random variables X and Y , and M(n)
X ,Y (0,−v)

stands for ∂nMX ,Y (u,−v)/∂vn evaluated at u = 0. Therefore,
by setting X = hHΣ−1

h h and Y = hHh, the joint m.g.f. of
variables X and Y can be represented as

MX ,Y (u, v) = 1
det
(

I − (u·I + v·Σh
))

=
( t
∏

k=1

(

1− u− v·λh,k
)

)−1

.

(A.5)

By substituting the joint m.g.f. given by (A.5) into the
integral in (A.4) with n = 1, the coefficient β2, after some
manipulations, has the following closed-form expression:

β2 = (t − 1)
t
∑

i=1

(

ln λh,i
)

/λh,i
∏

k /=i
(

1− λh,k/λh,i
) . (A.6)

Finally, by substituting (A.6) into (A.1), equality (a) of (46)
is proven. With similar reasoning, by substituting the joint
m.g.f. (A.5) into (A.4) with n = 2, coefficient β3 is obtained.
Correspondingly, a closed-form expression of the coefficient

c1 = β3·β−t/(t−1)
2 , given by (48), can also be obtained, and

inequality (b) of (46) is proven.
Similarly, in low-SNR regimes, distortion bounds

˜D
H-dim,L-SNR
c-tr-Low and ˜D

H-dim,L-SNR
c-tr-Upp have the following forms:

˜D
H-dim,L-SNR
c-tr-Low =

(

(t − 1)·∣∣Σh

∣

∣

1/(t−1)·β4·ρ
ln 2

)

·2−B/(t−1)

= β4· ˜D
H-dim,L-SNR
c-Low,1 ,

˜D
H-dim,L-SNR
c-tr-Upp ≤

(

(t − 1)·∣∣Σh

∣

∣

1/(t−1)·β5·ρ
ln 2

)

·2−B/(t−1)

= β5· ˜D
H-dim,L-SNR
c-Low,1 ,

(A.7)

where the coefficients β4 and β5 are given by

β4 = E

[

hHΣ−1
h h
t

]

, β5 = E

[(

hHΣ−1
h h

)2

t·hHh

]

. (A.8)

From (A.8), it is evident that β4 = 1, and hence the equality
(a) of (47), can be proven. Moreover, by extending the
results of the moments of the quadratic forms provided in
[28], the following expectation can be obtained after some
manipulations:

E

[

X2

Y

]

=
∫∞

0

∂2MX ,Y (u,−v)
∂u2

∣

∣

∣

∣

u=0
dv. (A.9)

Therefore, by setting X = hHΣ−1
h h and Y = hHh, and

substituting the joint m.g.f. given by (A.5) into the integral
in (A.9), the coefficient β5 can be obtained. It is equivalent to
coefficient c2 given by (49), and hence the inequality (b) of
(47) can be proven.
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