
Hindawi Publishing Corporation
EURASIP Journal on Wireless Communications and Networking
Volume 2008, Article ID 149803, 9 pages
doi:10.1155/2008/149803

Research Article
A Low-Complexity LMMSE Channel EstimationMethod
for OFDM-Based Cooperative Diversity Systems with
Multiple Amplify-and-Forward Relays

Kai Yan, Sheng Ding, Yunzhou Qiu, YingguanWang, and Haitao Liu

Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Road ChangNing 865,
Shanghai 200050, China

Correspondence should be addressed to Kai Yan, yankai@mail.sim.ac.cn

Received 20 January 2008; Accepted 18 May 2008

Recommended by George Karagiannidis

Orthogonal frequency division multiplexing- (OFDM-) based amplify-and-forward (AF) cooperative communication is an
effective way for single-antenna systems to exploit the spatial diversity gains in frequency-selective fading channels, but the
receiver usually requires the knowledge of the channel state information to recover the transmitted signals. In this paper, a
training-sequences-aided linear minimum mean square error (LMMSE) channel estimation method is proposed for OFDM-
based cooperative diversity systems with multiple AF relays over frequency-selective fading channels. The mean square error
(MSE) bound on the proposed method is derived and the optimal training scheme with respect to this bound is also given. By
exploiting the optimal training scheme, an optimal low-rank LMMSE channel estimator is introduced to reduce the computational
complexity of the proposed method via singular value decomposition. Furthermore, the Chu sequence is employed as the training
sequence to implement the optimal training scheme with easy realization at the source terminal and reduced computational
complexity at the relay terminals. The performance of the proposed low-complexity channel estimation method and the
superiority of the derived optimal training scheme are verified through simulation results.

Copyright © 2008 Kai Yan et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. INTRODUCTION

Multiple-input multiple-output (MIMO) wireless commu-
nication systems have attracted considerable interest in the
last few years for their advantages in improving the link
reliability, as well as increasing the channel capacity [1, 2].
Unfortunately, it is not practical to equip multiple antennas
at some terminals in wireless networks due to the cost and
size limits. To overcome these limitations, the concept of
cooperative diversity has been recently proposed for single-
antenna systems to exploit the spatial diversity gains in
wireless channels [3–6]. Utilizing the broadcasting nature
of radio waves, the source terminal can cooperate with the
relay terminals in information transport. In this manner, the
spatial diversity gains can be obtained even when a local
antenna array is not available.

Currently, several cooperative transmission protocols
have been proposed and can be categorized into two
principal classes: the amplify-and-forward (AF) scheme and

the decode-and-forward (DF) scheme. In the AF scheme,
the relay terminals amplify the signals from the source
terminal and forward them to the destination terminal.
In the DF scheme, the relay terminals first decode their
received signals and then forward them to the destination
terminal. Compared with the DF scheme, the AF scheme is
more attractive for its low complexity since the cooperative
terminals do not need to decode their received signals.
Hence, we focus our attention on the AF relay scheme in this
paper.

To take the advantages that cooperative transmission
can offer, accurate channel state information (CSI) is
usually required at the relay and/or destination terminal.
For example, if distributed space-time coding (DSTC) is
applied at the relays, then the accuracy of CSI of all links
at the destination terminal is crucial for the improvement
of the system performance. The training-sequences-aided
method is one of the most widely used approaches to learn
the channel in wireless communication systems due to its
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simplicity and reliability [7]. However, there have been only
a few literatures on training-based AF channel estimation,
and research in this area is still in its infancy. Based on the
assumption of flat-fading channels, [8, 9] propose training-
sequences-aided least square (LS) and linear minimum mean
square error (LMMSE) channel estimators for single-relay-
assisted cooperative diversity systems in cellular networks.
In [10, 11], minimum variance unbiased (MVU) and LS
channel estimators are introduced respectively for orthogo-
nal frequency division multiplexing (OFDM-) based single-
relay-assisted cooperative diversity systems over frequency-
selective fading channels. The channel estimators developed
in these literatures only consider the single-relay-assisted
cooperative communication scenario. Training designs that
are optimal in the scenarios of multiple-relays-assisted
cooperative communication have drawn relatively little
attention. It was investigated for the case of multiple-relays-
assisted AF cooperative networks over frequency-flat fading
channels in [12] using the channel estimation performance
bound as a metric for training design. It was found that
the optimal training can be achieved from an arbitrary
sequence and a set of well-designed precoding matrices for
all relays. In this study, we are interested in the broadband
cooperative communication scenarios, for example, the real-
time video surveillance application in distributed sensor
networks [13]. As the broadband applications demand high-
speed data transmission, the frequency-flat channels become
time-dispersive when the transmission bandwidth increases
beyond the coherence bandwidth of the channels. Thus, how
to obtain the accurate CSI in a low-complexity manner for
multiple AF-relays-assisted broadband cooperative diversity
systems could be a challenge problem and has not been
satisfactorily addressed, which motivates our present work.

In this paper, we propose a training-sequences-aided
LMMSE channel estimation method for OFDM-based
cooperative diversity systems with multiple AF relays over
frequency-selective block-fading channels. First, the mean
square error (MSE) bound on the proposed method is
computed. Then, the optimal training scheme with respect to
this bound is derived. By exploiting the inherent orthogonal
characteristic of the optimal training scheme, we utilize the
optimal training sequence as the singular vector to decom-
pose the channel correlation matrix and then introduce an
optimal low-rank channel estimator based on singular value
decomposition (SVD) [14, 15]. Since we avoid the matrix
inverse operation, the computational complexity at the
destination terminal is reduced significantly. Furthermore,
the Chu sequence is employed as the training sequence at
the source terminal to achieve the minimum MSE estimation
performance while avoid the complex matrix multiplication
operation at the relay terminals. Simulation results verify
the performance of the low-complexity channel estimation
method in the multiple AF relays-assisted broadband coop-
erative communication scenario. And the superiority of the
derived optimal training scheme is also confirmed.

This paper is organized as follows. Section 2 describes
the channel and system model. We introduce the low-
complexity LMMSE channel estimation method in Section 3.
In Section 4, we design the optimal training scheme. Simula-
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Figure 1: Multiple AF-relays-assisted cooperative diversity systems.

tion results and discussions are given in Section 5, followed
by our conclusions in Section 6.

Notations

(·)−1, (·)T , (·)H , (·)N , �, and ⊗ denote inverse, transpose,
Hermitian transpose, modulo-N , element-wise production,
and convolution operation, respectively. diag(x) stands for
a diagonal matrix with x on its diagonal. �K� denotes
an arbitrary nonminus integer less than K . E[·] denotes
expectation, tr[·] denotes the trace of a matrix, [·]k denotes
the kth entry of a vector. IK denotes the identity matrix of
size K , and 0m×n denotes all-zero matrix of size m × n. Bold
uppercase letters denote matrices and bold lower-case letters
denote vectors.

2. CHANNEL AND SYSTEMMODEL

2.1. Channel model

As shown in Figure 1, the wireless cooperative diversity sys-
tems we consider consist of N + 2 terminals which are placed
randomly. We assume that all the terminals are equipped
with only one antenna and work in the half-duplex mode,
that is, they cannot receive and transmit simultaneously.
Introduce the variables, ρSRi, i ∈ ( 1 · · ·N ), ρRiD, and ρSD,
to depict the large-scale path loss of the links S→Ri, Ri→D,
and S→D. Let GSRi = ρSRi /ρSD and GRiD = ρRiD /ρSD be
the geometric gains of the link S→Ri and Ri→D relative to
the direct transmission link S→D. The small-scale channel
impulse response of each wireless link l is modeled as a
tapped delay line with tap spacing equal to the sample
duration ts:

hl(t)=
Rl−1∑

r=0

hrl (t)δ
(
t−rts

)
, l=SRi,RiD, i∈( 1 · · ·N ),

(1)

where Rl represents the number of resolvable paths for the
link l and hrl denotes the channel gain of the path r of the
link l. hrl is described by a zero-mean complex Gaussian
random process, which is independent for different paths
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with variance σ2
r,l. We normalize the channel by letting

∑Rl
r=0σ

2
r,l = 1. Denote the Rl × 1 channel power vector of link

l as σ2
l . Since the spacing between each terminal is generally

larger than the coherent distance, all the signals transmitted
from different terminals and received at different terminals
are assumed to undergo independent fades. We assume that
the channel hl remains constant over the transmission of a
frame but varies independently from frame to frame, and
then drop the time index for brevity in the following sections.

2.2. Systemmodel

In this paper, a simple bandwidth-efficient two-hop AF
protocol is adopted for communications in the cooperation
systems. Specifically, the source terminal S broadcasts the
blockwise information to the N relay terminals Ri, where
i = 1, . . . ,N , in the first time slot. Then these relays perform
DSTC via multiplying their received blockwise signals with
local matrix and forward the coded signals to the destination
terminal D simultaneously in the second time slot [16–20].
Since the channel between terminal S and terminal D is
the conventional single-input single-output (SISO) one and
can be separately estimated in the first time slot, the direct
transmission link S→D is omitted in our discussion. Later,
it will be shown that the training sequence employed by this
channel estimation method can also achieve the optimal esti-
mation performance for this direct SISO link. For combating
the intersymbol interference from multipath channels, cyclic
prefixes (CPs) at the source terminal and relay terminals are
added to the information and the length of CPs should be
more than the maximum number of multipath to undergo in
each time slot. As OFDM can turn frequency-selective fading
channel into several parallel frequency-flat ones, cooperative
communication in time-dispersive channels is applicable by
extending some DSTC methods, for example, the work in
[20], to corresponding subcarriers at each relay in a form
of OFDM symbol blockwise transmission. Since multiplying
OFDM symbol in the time domain is equal to multiplying
each subcarrier in the frequency domain, the requirement
of DFT and IDFT operation at the relay terminals can be
relaxed. Then terminal D requires the knowledge of channel
frequency responses of N concatenation links, S→Ri→D, i =
1, . . . ,N , to decode the received signals. Equivalently in the
time domain, terminal D needs to know hSRi ⊗ hRiD, where
i = 1, . . . ,N , which will be discussed in the next section.

3. LOW-COMPLEXITY LMMSE CHANNEL
ESTIMATIONMETHOD

3.1. LMMSE channel estimationmethod

This subsection proposes a training-based method for chan-
nel estimation of multiple AF-relays-assisted cooperative
diversity systems in the simple bandwidth-efficient two-hop
protocol. Suppose the time-domain training sequence with
unit power, which is transmitted from the source terminal S
in the first time slot, is denoted by the K ×1 vector x0. Before
transmission, this vector is preceded by a CP with length
μCP1. We assume that μCP1 ≥ max(RSRi), where i = 1, . . . ,N .

After removing the CP, the received K × 1 vector by relay
terminal Ri can be written as

rRi = HSRix0
√
ρSRi + nRi, (2)

where HSRi is a circulant matrix with the first column
given by [hTSRi01×(K−RSRi)]

T
; nRi is the complex additive white

Gaussian noise (AWGN) at terminal Ri with zero-mean and
variance σ2

n . As performing DSTC in the data transmission
section, terminal Ri is also assumed to forward a linear
function of its received signal vector in the training section
that is given by

yRi =MirRiαi, (3)

where Mi is a K × K linear transformation unitary matrix to
ensure channel identifiable, as explained later; αi is the relay
amplification factor to meet the power constraint for each
relay terminal and is given by

αi = pi√
ρSRi + σ2

n

, (4)

where Pi is the transmission power at terminal Ri. The
factor αi considered in this paper does not depend on the
instantaneous channel realization [21, 22], thus no channel
estimation is required at the relay terminals. In the second
time slot, each relay terminal appends a CP with length
μCP2 to yRi and transmits it to the destination terminal D.
It is assumed that μCP2 ≥ max(RRiD), where i = 1, . . . ,N .
Terminal D collects signals from N relay terminals, and the
received K×1 vector after removing the CP can be written as

yD =
N∑

i=1

HRiDyRi
√
ρRiD + nD

=
N∑

i=1

HRiDMiHSRix0
√
ρSRiρRiDαi

+
N∑

i=1

HRiDMinRi
√
ρRiDαi + nD,

(5)

where HRiD is a circulant matrix with the first column
given by [ hTRiD 01×(K-RRiD) ]

T
; nD is the complex AWGN at

terminal D with zero-mean and variance σ2
n . Introduce the

variable Ni = H−1
SRiMiHSRi and let xi = Nix0

√
ρSRiρRiDαi be

the training sequence of terminal Ri. Then, (5) becomes

yD =
N∑

i=1

HRiDHSRixi +
N∑

i=1

HRiDMinRi
√
ρRiDαi + nD

=
N∑

i=1

HSRiDxi + n,

(6)

where HSRiD is a circulant matrix with the first column given

by [ (hSRi ⊗ hRiD)T 01×(K−RSRi−RRiD+1) ]
T

; the effective noise

term
∑N

i=1HRiDMinRi
√
GRiDαi + nD is denoted by n. Denote

the K × (RSRi+RRiD−1) circulant training matrix of terminal
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Ri as Xi whose first column is equal to xi, then (6) can be
rewritten as

yD = Xh + n, (7)

where X = [X1 · · · XN ] and h = [(hSR1 ⊗ hR1D)T

· · · (hSRN ⊗ hRND)T]
T

.
Note that, the channel vector h is identifiable if and only

if X has full column rank, which occurs when

K ≥
N∑

i=1

(
RSRi + RRiD

)−N. (8)

If terminal Ri only forwards a untransformed version of its
received signals, or equivalently Mi = IK , the columns of
X are in proportion which would cause the column rank
of X deficient and then channel vector h is unidentifiable.
Consequently, the unitary transformation matrix Mi is
necessary for each relay terminal in the training section.
This explains those channel estimators in [10, 11] designed
for broadband AF cooperative communication cannot be
extended straightforwardly to the multiple relays scenario in
the two-hop protocol.

Each concatenation channel hSRi ⊗ hRiD, where i =
1, . . . ,N , has RSRi + RRiD − 1 taps. Denote the channel tap
number of all concatenation links

∑N
i=1(RSRi + RRiD) − N as

T . It is found from (8) that the training length should not be
less than the channel tap number of all concatenation links;
otherwise, the channel vector h would be unidentifiable. On
the other hand, given a specific training length K , we can
use (8) to determine the maximum relay number N that this
channel estimator can supply.

The simplest algorithm for the channel estimation using
(7) is the LS estimator, which does not exploit a priori
knowledge of channel statistics and noise power and has
worse estimation performance relative to the MMSE esti-
mator. However, it is intractable to perform MMSE channel
estimation for the AF channel because the total channel
h is non-Gaussian. Therefore, we focus our attention on
the suboptimal LMMSE channel estimator. The analysis
and simulation results shown in later sections indicate that
our low-complexity channel estimation method provides
satisfactory performance.

Exploiting the noncorrelation property of channels of a
different link l, we can obtain the autocorrelation matrix of
the channel vector h:

Ch = E
[
hhH

] = diag
([

σ2
SR1 ⊗ σ2

R1D · · · σ2
SRN ⊗ σ2

RND

])
.

(9)

We assume that the relative distances among all terminals are
far enough to ensure local noise nRi and nD to be uncor-
related. Using MiMH

i = IK , the statistical autocorrelation
matrix of the effective noise term n can be written as

Cn = E
[
nnH

] =
( N∑

i=1

ρRiDα
2
i E
[
HRiDHH

RiD

]
+ IK

)
σ2
n . (10)

Since hrRiD are assumed to be uncorrelated for different paths
r ∈ [1 · · · RRiD], we can obtain

E
[
HRiDHH

RiD

] = IK . (11)

By substituting (11) into (10), the statistical Cn can be
rewritten as

Cn = E
[
nnH

] =
( N∑

i=1

ρRiDα
2
i + 1

)
σ2
nIK . (12)

The autocorrelation matrix of a received signal yD is

CyD = E
[
yDyHD

] = XChXH + Cn. (13)

Based on the LMMSE criterion [23], the estimated channel
can be written as

ĥ = ChXHC−1
yD yD. (14)

And the autocorrelation matrix of estimation error is

Ce = E
[
eeH

] = (C−1
h + XHC−1

n X
)−1

. (15)

When Ch is rank deficient, a small value can be added to the
diagonal of Ch. Therefore, the average MSE of the LMMSE
channel estimator can be represented as

Je = 1
∑N

i=1

(
RSRi + RRiD

)−N
tr
[
Ce
]

= 1
∑N

i=1

(
RSRi + RRiD

)−N
tr
[(
C−1
h + XHC−1

n X
)−1]

.

(16)

Lemma 1. For positive definiteM ×M matrix A with its mth
diagonal element given by am, the following inequality holds:

tr
[
A−1] ≥

M∑

m=1

1
am

, (17)

where equality holds if and only if A is diagonal.

Proof (see [23, page 65]). Based on this lemma, the mini-
mum of (16) is achieved if and only if XHX is diagonal.
Therefore, the optimal training scheme is

XH
i Xi = ρSRiρRiDα

2
i KI(RSRi+RRiD−1) ∀i ∈ (1, . . . ,N)

XH
mXn = 0(RSRm+RRmD−1)×(RSRn+RRnD−1) ∀m,n ∈ (1, . . . ,N),

with m /= n.
(18)

By substituting (9), (12), and (18) into (16), we obtain the
MSE bound of this channel estimation method

Je = 1
T

N∑

i=1

RSRi+RRiD−1∑

j=1

×
([
σ2
SRi ⊗ σ2

RiD

]−1
j +

ρSRiρRiDα
2
i K

(
∑N

i=1ρRiDα
2
i + 1)σ2

n

)−1

.

(19)
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3.2. Low-complexity LMMSE channel estimator

The LMMSE channel estimator (14) is of considerable
complexity since a matrix inversion is involved. To simplify
this estimator, we exploit the optimal training scheme (18)
to get an optimal low-complexity LMMSE channel estimator
based on SVD in this subsection [14, 15].

Lemma 2. If V1 ∈ Cn×r has orthonormal columns, then there
exists V2 ∈ Cn×(n−r) such that V = [V1 V 2] is orthogonal.

Proof (see [24, page 69]). Based on this lemma, there exists
K × (K − T) matrix W to make K × K matrix U = [X W]
ensure UHU = diag(μ), because the training matrix X shown
in (18) has orthonormal columns. Denote the diagonal entry
of XHX, Ch, and Cn as ε, α, and γ. Introduce the K ×1 vector
β = [α 01,(K−T)]. Then, the Hermitian matrix XChXH can be
rewritten as

XChXH = Udiag(β)UH

= Fdiag(
√
μ)diag(β)diag(

√
μ)FH

= Fdiag(μ� β)FH ,

(20)

where F is a unitary matrix from U. Substituting (20) into
C−1
yD yields

C−1
yD =

(
Fdiag(μ� β)FH + Fdiag(γ)FH

)−1

= Fdiag
(
(μ� β + γ)−1)FH.

(21)

Lemma 3. Using (20) and (21), LMMSE channel estimator
(14) can be rewritten as

ĥ = diag

(
α(

ε � α + [γ]1:T

)
)
XHyD. (22)

Proof. See the appendix.

Since the optimal low-rank LMMSE channel estimator
(22) avoids the matrix inverse calculation, the computation
complexity is significantly reduced compared with (14).
Building upon a similar deduction of minimizing MSE, we
find condition (18) is also the optimal training scheme for
LS channel estimator. Thus, we can see that the performance
of the LMMSE channel estimator (22) is equal to the
Wiener-filtered LS channel estimator. When the second-
order channel statistics α and the noise power γ are not
available at the destination terminal, we can resort to the
LS channel estimator to obtain initial channel estimates and
then use these estimates to estimate α and γ.

4. OPTIMAL TRAINING

4.1. Design of the optimal training scheme

In this subsection, we employ the Chu sequence to imple-
ment the optimal training scheme (18). The Chu sequence

is a kind of perfect N-phase sequences which have a
constant magnitude in both the time domain and the fre-
quency domain [25]. The constant time-domain magnitude
property of the Chu sequence precludes peak-to-average
power ratio (PAPR) problem in implementation while the
constant frequency-domain magnitude property makes the
Chu sequence invaluable in the design of the optimal training
scheme of many communication systems. A length-K Chu
sequence is defined as

x(k) =
⎧
⎨
⎩
e jπlk

2/K , for even K ,

e jπlk(k+1)/K , for odd K ,
(23)

where k ∈ (0, . . . ,K − 1) and l are relatively prime to K . It
should be noted that the Chu sequence can be realized with
compact direct digital synthesis (DDS) devices.

To implement the optimal training scheme (18), a
length-K Chu sequence is employed by the source terminal S
as the training sequence x0. Terminal S appends a length-μCP1

CP to x0 and then broadcasts it to N-relay terminals in the
first hop. Define a K × 1 vector mi, where i = 2, . . . ,N , with
the

∑i−1
j=1(RSRj +RRjD−1)+1th entry to be 1 and other entries

to be 0. Let Mi, where i = 2, . . . ,N , be a circulant matrix with
the first column to be mi and let M1 be IK . After discarding
CP, terminal Ri, where i = 1, . . . ,N , multiplies their received
signal vectors with local unitary matrix Mi to get the signal
vector yRi. Then, these relay terminals forward their signal
vectors yRi preceded with length-μCP2 CPs to the destination
terminal D simultaneously in the next hop. Finally, terminal
D receives signal vector yD after removing the CP and obtains
CSI via the low-complexity LMMSE channel estimator (22).

4.2. Optimality of the proposed training scheme

This subsection will prove the optimality of the training
scheme proposed in the last subsection. For the direct SISO
link S→D, the Chu sequence employed by this training
scheme can achieve the optimal estimation performance in
the first time slot, owing to its constant magnitude in the
frequency domain. In the following, the optimality for the
concatenation links will be proved.

Since both HSRi and Mi, where i = 1, . . . ,N , are circulant
matrices, the following relation holds:

MiHSRi = HSRiMi. (24)

With this relation, the training sequence xi of terminal Ri can
be rewritten as

xi =Mix0
√
ρSRiρRiDαi. (25)

Using MiMH
i = IK and perfect impulse-like autocorrelation

property of x0, to prove that xi satisfies the first condition of
(18) is straightforward. The proposed Mi ensures that xm(k)
and xn((k − �RSRn + RRnD − 1�)K ) are orthogonal, and xn(k)
and xm((k − �RSRm + RRmD − 1�)K ) are orthogonal, where
k = 0, . . . ,K − 1, m,n = 1, . . . ,N , and m /= n. Thus, the
second condition of (18) can be satisfied. Besides, according
to the definition of Mi and the above discussion, to make sure
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Figure 2: Impact of geometric gains on the MSE performance.

that Mi exists for all relay terminals, the following inequality
is required for the extreme case m = 1, n = N or m =
N , n = 1:

N−1∑

j=1

(
RSRj + RRjD − 1

)
+ 1 ≤ K + 1− (RSRN + RRND − 1

)

(26)

which is equivalent to (8). Therefore, under the premise that
h is identifiable, Mi exist for all relays. Moreover, since the
Chu sequence exists for any finite length, we conclude that
for any finite number of total channel taps T , this training
scheme can always achieve the minimum MSE estimation
performance.

5. SIMULATION RESULTS ANDDISCUSSION

5.1. System parameters

The performance of the proposed LMMSE channel esti-
mation method and the superiority of the derived optimal
training scheme in the multiple AF-relays-assisted cooper-
ative communication scenario are evaluated by computer
simulations. We consider an OFDM cooperation system
where each relay terminal utilizes the coding method as in
[20] to perform DSTC in data transmission section. This
type of DSTC is chosen because it obtains the optimal
diversity-multiplexing gain (D-MG) performance of the
considered orthogonal AF protocol, but other types of DSTC
are also applicable since we are only interested in the
performance of the proposed channel estimation method.
The modulation mode is set 4-QAM and the maximum-
likelihood decoder is applied for each subcarrier at the
destination terminal. The MSE bound of the proposed
channel estimation method shown in (19) is related with
the power delay profile of the channel, thus it varies
with different channel models. However, to verify that our

optimal training scheme indeed attains the MSE bound
deduced in theory, selecting a typical channel model through
the Monte Carlo simulation is enough. Here, the typical
urban (TU) twelve-path channel model [26], which is
widely used in the community, is adopted to generate
the multipath Rayleigh fading channels between each two
terminals. The power delay profile of the channel model
is set with tap mean power −4, −3, 0, −2, −3, −5,
−7, −5, −6, −9, −11, and −10 dB at tap delays 0.0,
0.2, 0.4, 0.6, 0.8, 1.2, 1.4, 1.8, 2.4, 3.0, 3.2, and 5.0 μs.
The entire channel bandwidth is 5 MHz and is divided
into 256 tones. CPs of 6.4- μs duration are appended in
source terminal and relay terminals to eliminate the effect
of multipath fading. Perfect synchronization among relay
terminals is assumed to observe the channel estimation
performance alone. The transmission power at the source
terminal is normalized to unity. The unitary matrices Mi

of relay terminals in the training section, mentioned in
Section 4, are adopted to ensure channel identifiable in the
simulation.

5.2. Simulation results

Figure 3 illustrates the MSE of the proposed LMMSE channel
estimation method for different numbers of relay terminals
when both length-256 Chu and random sequences are
used. To observe the effect of the number of relays on the
MSE and bit error rate (BER) performance alone, these
relays are assumed to be distributed in a symmetrical way,
for example, the geometric gains GSRi and GRiD for all
relays are set 5 dB and 0 dB, respectively. The effect of the
geometric gains on the MSE performance will be shown
later. The unit transmission power in the second hop is
equally divided among these relays. In the case of the
unequal geometric gains, the Matlab function “fmincon”
can be used for optimizing the power allocation of these
relay terminals with respect to the MSE bound given by
(19). Figure 3 also illustrates the MSE bound. We can see
that the optimal training scheme mentioned in Section 4
indeed attains the MSE bound and outperforms substantially
random training sequences. Besides, the MSE bound is below
10−3 in moderate to high SNR (10∼ 35 dB), indicating good
channel estimation performance.

Figure 4 plots the BER performance corresponding to the
length-256 optimal and suboptimal training schemes when
different numbers of relays are employed. As expected from
the MSE performance comparison results, a substantial BER
performance gain of the optimal training scheme over the
suboptimal one is observed. The BER performance of perfect
CSI is also given as a benchmark. From the figure, we can see
that the BER performance of the optimal training scheme
is very close to the perfect CSI case when only two relays
are employed, which confirms the accuracy of the proposed
channel estimation method, while the performance gap
increases when another two relays are involved. This can
be explained by the fact depicted in Figure 3 that the MSE
performance decreases as the number of relays increases.
However, since spatial diversity is dominant in the BER
performance relative to the channel estimation error, four
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Figure 3: MSE performance comparison of the proposed channel
estimation method using different training sequences.
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Figure 4: BER performance comparison of the proposed channel
estimation method using different training sequences.

relays provide better BER performance than two relays in
moderate to high SNR (10∼ 35 dB).

Figure 5 displays the impact of the relay number on the
MSE performance of the length-256 and length-512 optimal
training. Note that the longer training sequences lead to the
higher MSE performance for the same relay number. This
is expected from (19) since the transmitting energy in the
training section is linear with the training length K . From
this figure, it is seen that increasing the relay number would
degrade the MSE performance though the training energy
in the cooperation system remains the same. This is because
the apportioned training energy for each relay decreases
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Figure 5: Impact of the relay number on the MSE performance.

while the variance of the effective noise at the destination
remains unaltered. It is also seen from this figure that the
length-256 channel estimator would not work when the relay
number increases beyond 5. The reason for this phenomenon
is because the relay number that can be supplied by this
channel estimator is bounded by (8). Thus, to avoid this
phenomenon, it is crucial to make the training length K not
less than the channel tap number of all concatenation links.

Figure 2 shows roughly the impact of geometric gains
on the MSE performance bound with length-256 training.
The geometric gains GSRi for all two relay terminals are set
equal but varied from 0 dB to 15 dB with a step of 5 dB,
while the geometric gains GRiD are fixed to 0 dB. Note that
the larger geometric gains GSRi lead to the higher accuracy
of channel estimation, resulting in a higher performance of
the cooperation system. Numerical results show that GSRi =
10 dB is larger enough to achieve the best channel estimation
performance with negligible loss compared to the case of
larger GSRi.

5.3. Complexity analysis

The description of the proposed channel estimation method
in Section 3 shows that the overall complexity comes from
complex matrix operations in the relay terminals and the
destination terminal. Since multiplication operation of the
unitary matrices Mi of relay terminals given in the optimal
training scheme is equivalent to circular shifting operation,
the complex matrix multiplication operation in the relay
terminals can be avoided. Besides, we exploit the optimal
training scheme to derive a low-rank LMMSE channel
estimator (22) based on SVD, where the performance is
essentially preserved. Therefore, the complex matrix inverse
calculation in the destination terminal can be avoided. To
conclude, only (K + 1)T complex multiplications and (K −
1)T complex additions are required to obtain the accurate
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time-domain CSI in the cooperation system with multiple
AF relays.

6. CONCLUSIONS

In this paper, a training-sequences-aided LMMSE channel
estimation method has been proposed for OFDM-based
cooperative diversity systems with multiple AF relays over
frequency-selective block-fading channels. To obtain the
minimum MSE of the proposed channel estimation method
in the simple bandwidth-efficient two-hop AF protocol,
the circulant training matrices of relay terminals must
be orthogonal. Then, we exploit the inherent orthogonal
characteristic of the optimal training scheme to simplify the
LMMSE channel estimator based on SVD and introduce
a low-complexity one where the performance is essentially
preserved. In addition, the Chu sequence is employed as the
training sequence to achieve the minimum MSE estimation
performance while avoid the complex matrix multiplication
operation at the relay terminals. The simulation results have
verified the performance of the proposed low-complexity
channel estimation method in the multiple AF-relays-
assisted broadband cooperative communication scenario.

APPENDIX

PROOF OF LEMMA 3

Substituting (20) and (21) into (14) yields

ĥ = ChXHC−1
yD yD

= (XHX
)−1

XHXChXHFdiag
(
(μ� β + γ)−1)FHyD

= (XHX
)−1

XHFdiag(μ� β)FHFdiag
(
(μ� β + γ)−1)FHyD

= (XHX
)−1

XHUdiag

(
1√
μ

)
diag(μ� β)FHFdiag

× ((μ� β + γ)−1)diag

(
1√
μ

)
UHyD

= (XHX
)−1

XHUdiag

(
β

(μ� β + γ)

)
UHyD

= (XHX
)−1

XHXdiag

(
α(

ε � α + [γ]1:T

)
)
XHyD

= diag

(
α(

ε � α + [γ]1:T

)
)
XHyD.

(.27)

This completes the proof.
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