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1. INTRODUCTION

Orthogonal frequency division multiplexing (OFDM) is
already used in digital radio (DAB), digital television
(DVB), wireless local area networks (e.g., IEEE 802.11a/g
and HIPERLAN/2), broadband wireless access (e.g., IEEE
802.16), digital subscriber lines (DSL) and certain ultra wide
band (UWB) systems (e.g., MBOA). Recently, it has also
been proposed for future cellular mobile systems [1]. By im-
plementing an inverse fast Fourier transform (IFFT) at the
transmitter and a fast Fourier transform (FFT) at the re-
ceiver, OFDM converts a selective channel, which presents
intersymbol interference (ISI), into parallel flat subchannels,
which are ISI-free, with gains equal to the channel’s fre-
quency response values. To eliminate interblock interference
(IBI) between successive IFFT-processed blocks, a cyclic-
prefix (CP) of length no less than the channel order is in-
serted at each block by the transmitter. This CP converts the
linear channel convolution into circular convolution. At the
receiver, the CP is discarded, which eliminates IBI. The re-
sulting channel convolution matrix is circulant and is diago-
nalized by the IFFT- and FFT-matrices (see, e.g., [2]).

Although OFDM results in simple transmitters and re-
ceivers, enabling simple equalization schemes, it has some
drawbacks, among which we can cite high peak-to-average
power ratio (PAPR), sensitivity to carrier frequency offset,
and the fact that it does not exploit the channel diversity [3]
as the more important ones. To circumvent these problems,
the use of a cyclic-prefixed single-carrier (CP-SC) modula-
tion was proposed to take advantage of, on the one hand,
the simplicity of the OFDM modulation and, on the other
hand, the low PAPR, the frequency offset robustness, and the
inherent exploitation of the channel diversity of the SC mod-
ulation.

Several works compare the performance of OFDM and
CP-SC (e.g., [4–10]). It is worth mention that the long term
evolution (LTE) of the universal mobile telephone system
(UMTS) is considering the use of the OFDM for downlink,
but CP-SC for the uplink, mainly due to PAPR issues [11],
since power amplifiers have a little dynamic range and tend
to saturate signals with high PAPR. These saturations are
harmful to the OFDM signal and, usually, a power back-off
is necessary to control the resulting nonlinear distortion in-
troduced by the power amplifier [12].
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Here, we consider that the transmitter has partial channel
state information (CSI), in terms of the signal-to-noise ratio
(SNR) of each subchannel. In this scenario, it is well known
that for OFDM it is possible to allocate power and bits across
the subchannels in order to maximize the rate [13]. This
solution is the practical implementation of the water-filling
approach, which maximizes the capacity of a frequency se-
lective channel [14]. Indeed, in this case, OFDM exploits the
differences in the SNR across subchannels. Hence, even with-
out coding, the OFDM scheme is able to exploit the channel
diversity, in contrast to the case of no CSI, where COFDM
(coded OFDM) must be employed [15].

Building on our previous work [16], we propose a power
allocation approach to CP-SC transmission, when a lin-
ear zero-forcing (ZF) or a minimum mean-square error
(MMSE) receiver is used. The aim is to benefit from the chan-
nel knowledge at the transmitter while maintaining a low
PAPR in order to reduce necessary power back-off, resulting
in more power available for the transmission. The difference
of the proposed power allocation in this work, in contrast
to [7], is that here we propose power allocation schemes for
the CP-SC schemes, while using a classical power allocation
for OFDM, referred hereafter as cyclic-prefixed multicarrier
(CP-MC) scheme. Moreover, we compare the performance
of both transmission schemes taking into account the PAPR,
in terms of the peak transmission power needed for a given
transmit rate or on a fixed saturation rate with power back-
off, in contrast to [5], where the comparison is performed
taking into account the mean transmit power. Although for
a wide variety of channels the CP-SC schemes outperform
the CP-MC scheme, for highly selective channels the CP-MC
approach leads to a better performance [16].

The main contribution of this work is that we propose a
transmitter/receiver scheme for transmitting either a CP-SC
or a CP-MC signal, with no changes in the transceiver struc-
ture but only changing one matrix at each side. We also show,
for some simulated channels, the optimum point for switch-
ing from one scheme to the other in order to remain optimal
in terms of the peak transmission power needed for a given
transmit rate. Furthermore, for both strategies, we derive the
optimal power allocation to maximize capacity, given a mean
transmit power level.

The rest of this paper is organized as follows. Section 2
presents the proposed transmit and receiver schemes, includ-
ing the generation, equalization, and the derivation of the
obtained SNR for the single-carrier schemes and the mul-
ticarrier scheme. The optimum power allocation for these
schemes is derived in Section 3, where we also derive the
achievable bit rate obtained with this allocation. We assess
the performance of each scheme in Section 4 by means of nu-
merical simulations. Conclusions are drawn in Section 5.

Notations

Bold upper (lower, resp.) letters denote matrices (vectors,
resp.); (·)H denotes the Hermitian transpose (conjugate
transpose); A(i, j) denotes the (i, j) entry of the matrix A;
and tr{A} denotes the trace of the matrix A. We always index
matrix and vectors entries starting from 1.

2. TRANSMISSION SCHEMES

The transmit scheme used in this work is shown in Figure 1.
We note that this is a flexible transmit scheme in the sense
that it can be used to generate a CP-SC signal as well as a
CP-MC signal by changing the transmit switch matrix Q.
Moreover, this scheme also includes a power allocation ma-
trix P, which is responsible for allocating power to the trans-
mit symbols carried by different subcarriers in the CP-MC
case and for conforming the pulses that will carry the trans-
mit symbols in the CP-SC case.

Figure 2 shows the receiver scheme, composed of an
FFT, a linear frequency-domain equalizer W, and the receive
switch matrix. Once again, this scheme allows the reception
of both waveforms by correctly choosing the receive switch
matrix Z.

In the sequel, we show how to choose Q and Z in order
to generate either a CP-SC or a CP-MC signal and we also
obtain the equalizer W for each scheme.

2.1. Single-carrier transmission

In order to generate a CP-SC signal, we use the transmit
scheme shown in Figure 1, with the transmit switch matrix
Q equal to the FFT matrix F. The transmitted signal vector x,
before the cyclic extension, can be written as

x = FHPQs = FHPFs, (1)

where F is the orthonormal1 DFT (discrete Fourier trans-
form) matrix of size N , s is the (length N) vector of transmit-
ted symbols, and the power allocation matrix P is a diagonal
N ×N matrix.

Note that the transmit matrix given by T = FHPF is,
by construction, a circulant matrix, which implies that each
transmit symbol s(n) is carried by a circulant-delayed ver-
sion of the same transmit pulse (given by any column of T),
in exactly the same manner as in a classical SC modulation.
Moreover, this is an adaptive scheme, since the transmit pulse
can be changed by changing the power allocation matrix P.

The received signal, after removing the cyclic prefix and
FFT, can be written as

r = FHFHPFs + Fn, (2)

where H represents the effect of the composite channel re-
sulting from the cascade of the analog transmission chain
and the physical channel, and n is the additive noise vector at
the receiver, assumed to be zero-mean, Gaussian, and white
with power σ2

n. Thanks to the insertion of the cyclic prefix at
the transmitter and its removal at the receiver, the channel H
is given by a circulant matrix with its first column given by
the composite channel impulse response (appended by zeros

1 The orthonormal DFT matrix of size N is defined by its elements as
F(n, k) = (1/

√
N)e− j2π[(k−1)(n−1)/N], for n = 1, . . . ,N and k = 1, . . . ,N ,

and it has the following properties FHF = I and FFH = I.
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Figure 2: Receiver scheme.

if needed). Recalling that the DFT matrix diagonalizes any
circulant matrix [2], we can write

C = FHFH , (3)

where C is a diagonal matrix composed of the DFT of the
composite channel impulse response, which is equivalent to
the frequency response of the composite channel at the fre-
quencies of the different subcarriers. Hence (2) simplifies to

r = CPFs + Fn. (4)

In the receiver, the receive switch matrix is set to be the
IFFT matrix, so that Z = FH and the estimated signal vector
at the receiver is given by

ŝ = FHWHr = FHWHCPFs + FHWHFn, (5)

where W is a diagonal N×N matrix. At this point, we are able
to compute the equalizer W. In the sequel, we analyze two
different criteria to obtain this equalizer, namely the zero-
forcing (ZF) criterion and the minimum mean-square error
(MMSE) criterion.

2.2. ZF receiver

The ZF criterion aims to completely cancel the ISI intro-
duced by the channel. The ZF receiver is performed by mul-
tiplying the received signal by the inverse of the overall chan-
nel in the frequency domain to compensate for the frequency
selectiveness, leading to an ISI-free signal at the receiver. By
inspection of (5), we have that the zero-forcing equalizer is
given by

WH
ZF = (CP)−1 = P−1C−1 = C−1P−1, (6)

where the second equality comes from the fact that both C
and P are diagonal matrices.

Using this equalizer, the estimated signal vector at the re-
ceiver reads

ŝZF = s + FHWH
ZFFn = s + FHC−1P−1Fn. (7)

The transmitted signal is then perfectly recovered (with-
out ISI), but the noise that corrupts the decision has a covari-
ance matrix given by

RZF
n = σ2

nFHP−1P−HC−1C−HF. (8)

It appears that this is a circulant matrix and thus the vari-
ances of the noise (given by the diagonal elements of RZF

n )
that corrupts each symbol in the block are the same and are
given by

σ2
n, ZF = σ2

n
1
N

tr
{

FHP−1P−HC−1C−HF
}

= σ2
n

1
N

tr
{

P−1P−HC−1C−H
}

= σ2
n

1
N

N∑
i=1

1
pici

,

(9)

where the second equality comes from the matrix property
tr{AB} = tr{BA}, pi = |P(i, i)|2 is the power allocated to the
ith subcarrier and ci = |C(i, i)|2 is the squared channel gain
at subcarrier i.

Hence, we can write the decision SNR for the ZF receiver
as

SNRZF = σ2
s

σ2
n

(
1
N

N∑
i=1

1
pici

)−1

, (10)

where σ2
s is the power of the transmitted symbols s(n).
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2.3. MMSE receiver

The use of the MMSE criterion is justified by the fact that
minimizing the mean-square error (MSE) leads to the max-
imization of the decision SNR, which is inversely propor-
tional to the bit error rate (BER). Hence, by minimizing the
MSE, one should expect to decrease the BER. The optimum
MMSE solution is then given by the Wiener solution [17]

WMMSE = R−1
rr Prs, (11)

where Rrr is the correlation matrix of the received signal r
and Prs is the cross-correlation matrix between the received
signal r and the desired signal vector s, where each column of
Prs corresponds to the cross-correlation vector between the
received signal and the respective element of the desired sig-
nal.

By using (4), we can write the correlation matrix Rrr as

Rrr = E
{

rrH
}

= E
{

CPF ssHFHPHCH
}

+ E
{

FnnHFH
}

= σ2
s CCHPPH + σ2

nI,

(12)

where we have used the fact that the transmitted symbols are
i.i.d. with power σ2

s , that is, E{ssH} = σ2
s I.

The cross-correlation vector is given by

Prs = E
{

rsH
} = CPF E

{
ssH
}

+ F E
{

nsH
} = σ2

s CPF, (13)

since the noise n and the signal s are independent.
Inserting (12) and (13) into (11), we can compute the

MMSE equalizer, given by

WMMSE = R−1
rr Prs

= σ2
s

(
σ2
s CCHPPH + σ2

nI
)−1

CPF.
(14)

We note that this equalizer depends on the channel
(through its frequency response C) and on the transmit
pulse, which depends on P.

By replacing WMMSE in (5) with (14), the estimated sym-
bols are given by

ŝMMSE = As + Bn, (15)

where A = σ2
s FHCCHPPH(σ2

s CCHPPH + σ2
nI)

−1
F and B =

σ2
s FHPHCH(σ2

s CCHPPH + σ2
nI)

−1
F.

From (15) we can compute the desired signal power and
the equivalent noise and ISI power. First, let us consider only
the influence of the desired signal. It appears that the gain
between s and its estimation ŝ is given by the diagonal ele-
ments of the matrix A, which is a circulant matrix. Hence, all
diagonal elements of A are equal and can be written as

A(i, i) = 1
N

tr
{
σ2
s FHCCHPPH

(
σ2
s CCHPPH + σ2

nI
)−1

F
}

= 1
N

tr
{
σ2
s CCHPPH

(
σ2
s CCHPPH + σ2

nI
)−1
}

= 1
N

N∑
i=1

σ2
s pici

σ2
s pici + σ2

n
.

(16)

Then, the power of the desired signal at any instant is
given by

Pd = σ2
s

(
1
N

N∑
i=1

σ2
s pici

σ2
s pici + σ2

n

)2

. (17)

We can also compute the power of the estimated signal
(Pe), defined as the power of the desired signal (Pd) plus the
power of the ISI (PISI). The power of the estimated signal is
given by the diagonal elements of the covariance matrix of
the estimated signal, which, due to the fact that it is also a
circulant matrix, is given by

Pe = Pd + PISI = 1
N

tr
{

E
[

AssHAH
]}

= σ2
s

1
N

tr

{[
σ2
s CCHPPH

(
σ2
s CCHPPH + σ2

nI
)−1
]2
}

= σ2
s

1
N

N∑
i=1

(
σ2
s pici

σ2
s pici + σ2

n

)2

.

(18)

Finally, we can compute the power of the noise that cor-
rupts the desired signal, given by the diagonal elements of the
covariance matrix of the equivalent noise. From (15), we can
write the equivalent noise covariance matrix as

RMMSE
n = σ2

n

(
σ2
s

)2
FHCCHPPH

(
σ2
s CCHPPH + σ2

nI
)−2

F.

(19)

which is also a circulant matrix. Therefore, it allows to ex-
press the variance of the equivalent noise by

Pn = 1
N

tr
{

RMMSE
n

} = σ2
n

1
N

N∑
i=1

(
σ2
s

)2
pici(

σ2
s pici + σ2

n

)2 . (20)

Once the quantities Pe = Pd + PISI and Pn have been de-
fined, we can express the signal to signal-plus-interference-
plus-noise ratio (SSINR) of the estimated signal as

SSINRMMSE = Pd
Pd + PISI + Pn

= Pd
Pe + Pn

. (21)

As shown in the appendix, this SSINR is given by

SSINRMMSE = 1
N

N∑
i=1

σ2
s pici

σ2
s pici + σ2

n
. (22)

The equivalent decision SNR for the MMSE receiver is
given by

SNRMMSE = SSINRMMSE

1− SSINRMMSE

=
[(

1
N

N∑
i=1

σ2
s pici

σ2
s pici + σ2

n

)−1

− 1

]−1

.

(23)
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2.4. Multicarrier transmission

To generate a CP-MC signal, we simply set the transmit
switch matrix equal the identity matrix, Q = I, so that the
transmit symbols s(n) are directly carried by the different
subcarriers, after power allocation.

The transmitted signal vector x, before the cyclic exten-
sion, is then given by

x = FHPQs = FHPs. (24)

The received signal, after removing the cyclic prefix and
FFT, reads

r = CPs + Fn. (25)

At the receiver, we set Z = I and the estimated signal vec-
tor is given by

ŝ = WHr = WHCPs + WHFn. (26)

Each subcarrier is then independently equalized by ap-
plying the gain W(i, i)∗ at the receiver. This gain can be ob-
tained either by using a ZF or an MMSE criterion, resulting
in the same performance. So, considering the ZF criterion,
we have that

WH
OFDM = C−1P−1, (27)

and the estimated signal reads

ŝOFDM = s + C−1P−1Fn. (28)

The resulting SNR at subcarrier i is then given by

SNROFDM
i = σ2

s pici
σ2
n

. (29)

3. POWER ALLOCATION

The goal of this section is to find the optimal power alloca-
tion matrix P to maximize the achievable rate subject to a
constant transmit power and a given scheme. The constraint
on the transmit power is related to the values of the coeffi-
cients pi and can be expressed as

N∑
i=1

pi = N. (30)

This constraint implies that the power of the transmit-
ted signal x(n) is the same of the symbols s(n), given by σ2

s .
The coefficients pi are only responsible for distributing this
transmit power across the subcarriers.

In the next two sections, we derive the optimum power
allocation for the CP-SC ZF and MMSE receivers obtained
in Section 2, and in the following section, we consider the
CP-MC case.

3.1. CP-SC-ZF scheme

For the CP-SC schemes, maximizing the achievable bit rate
implies the maximization of the decision SNR. From (10) we
see that, in order to maximize the SNR for the ZF receiver, we
only need to minimize the term between parentheses, which
is the noise enhancement inherent to the ZF receiver. Hence,
we can write the power allocation problem as

min
pi

N∑
i=1

1
pici

s.t.
N∑
i=1

pi = N.

(31)

This problem can be solved by the use of Lagrange mul-
tipliers. The Lagrange cost function is then given by

JZF =
N∑
i=1

1
pici

+ λ

(
N −

N∑
i=1

pi

)
, (32)

where λ is the Lagrange multiplier.
The optimum solution is obtained by setting the deriva-

tive of JZF (with respect to pi) to zero. These derivatives are
given by

∂JZF

∂pi
= − 1(

pi
)2
ci
− λ. (33)

And thus, by making ∂JZF/∂pi = 0, we find

pi = − 1√
λ

1√
ci
. (34)

The value of λ can be computed so that the constraint of
constant transmit power is respected

N∑
i=1

pi = − 1√
λ

N∑
i=1

1√
ci
= N , (35)

leading to

− 1√
λ
= N

( N∑
i=1

1√
ci

)−1

. (36)

The optimum power allocation for the ZF receiver is then
given by

p
opt,ZF
i =

(
1
N

N∑
i=1

1√
ci

)−1√
1
ci
. (37)

By replacing the optimal powers pi in (10), we obtain the
optimum decision SNR for the ZF receiver as

SNR
opt
ZF =

σ2
s

σ2
n

(
1
N

N∑
i=1

1√
ci

)−2

. (38)

In possession of this SNR, we can readily obtain the achiev-
able bit rate per transmitted symbol for the ZF receiver
scheme, given by

C
opt
ZF = log2

⎡⎣1 +
σ2
s

σ2
n

(
1
N

N∑
i=1

1√
ci

)−2⎤⎦ . (39)
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3.2. CP-SC-MMSE scheme

It is straightforward to see that maximizing the SNR of the
estimated symbols after the MMSE receiver is equivalent to
maximize the SSINR of these symbols, given by (22).

The constrained maximization of the SSINR can thus be
written as

max
pi

SSINR =
N∑
i=1

σ2
s pici

σ2
s pici + σ2

n

s.t.
N∑
i=1

pi = N ,

(40)

which can also be solved by using Lagrange multipliers. The
Lagrange cost function is given by

JMMSE =
N∑
i=1

σ2
s pici

σ2
s pici + σ2

n
+ λ

(
N −

N∑
i=1

pi

)
, (41)

where λ is the Lagrange multiplier.
The derivative of JMMSE with respect to the powers pi is

∂JMMSE

∂pi
= σ2

s ciσ
2
n(

σ2
s pici + σ2

n

)2 − λ, (42)

and the optimum powers pi can be found by making
∂JMMSE/∂pi = 0 as follows:

∂JMMSE

∂pi
= σ2

s ciσ
2
n(

σ2
s pic

2
i + σ2

n

)2 − λ = 0. (43)

After some manipulations, we can rewrite (43) as

pi =
[

1√
λ

√√√ σ2
n

σ2
s ci
− σ2

n

σ2
s ci

]+

, (44)

where [a]+ is equal to a if a ≥ 0 and is equal to 0 otherwise.
Equation (44) shows that the optimal powers pi follow

a water-filling principle [13, 14]. These optimal values can
thus be obtained by adjusting the water-level 1/

√
λ to respect

the power constraint and then computing the optimal pow-
ers using (44). It is important to highlight that, since we are
dealing with powers, the values pi must all be nonnegative,
which explains the use of the operator [·]+.

If we assume that all terms between brackets in (44) are
nonnegative, that is, all subcarriers are used in the transmis-
sion, we can obtain the value of λ analytically as

√
λ =

∑ N
i=l
√
σ2
n/σ2

s ci

N +
∑ N

i=l
(
σ2
n/σ2

s ci
) , (45)

and the optimal powers read

p
opt, MMSE
i =

(
N +

∑ N
i=l
(
σ2
n/σ

2
s ci
)∑ N

i=l
√
σ2
n/σ2

s ci

)√√√ σ2
n

σ2
s ci
− σ2

n

σ2
s ci

. (46)

Nevertheless, if some pi are negative, the optimum solu-
tion is obtained by dropping the subcarriers where pi < 0 and

computing (46) again for this new subset of subcarriers. This
process is repeated until all powers are nonnegative and the
final subset of used subcarriers is called Ω. It is worth high-
lighting that both summations of (46) are now carried on the
subset Ω.

By using these optimal powers in (23), we obtain the op-
timum decision SSINR for the MMSE receiver as

SSINR
opt
MMSE =

NΩ

N
−

(1/N)

(∑
i∈Ω
√
σ2
n/σ2

s ci

)2

N +
∑

i∈Ω
(
σ2
n/σ2

s ci
) , (47)

where NΩ is the cardinality of Ω. Hence, after some manipu-
lation, the achievable bit rate per transmitted symbol for the
MMSE receiver scheme is given by

C
opt
MMSE

= log2

⎡⎢⎢⎢⎢⎢⎣
N +

∑
i∈Ω

σ2
n

σ2
s ci(

N−NΩ
)(

1+
1
N

∑
i∈Ω

σ2
n

σ2
s ci

)
+

1
N

(∑
i∈Ω

√
σ2
n

σ2
s ci

)2

⎤⎥⎥⎥⎥⎥⎦.
(48)

3.3. CP-MC scheme

In the case of CP-MC transmission, the optimum power al-
location to maximize the achievable rate is given by the well
known water-filling solution [13, 14]. Following the same al-
gorithm for finding the subset of used subcarriers Ψ, the op-
timal CP-MC power allocation is given by

p
opt, CP-MC
i =

(
N

NΨ
+

1
NΨ

∑
k∈Ψ

σ2
n

σ2
s ci

)
− σ2

n

σ2
s ci

∀i ∈ Ψ, (49)

where NΨ is the cardinality of Ψ.
The achievable bit rate per transmitted symbol2 for the

CP-MC scheme is given by

C
opt
CP-MC

= 1
N

log2

⎡⎣∏
i∈Ψ

((
N/NΨ

)
+
(
1/NΨ

)∑
i∈Ψ
(
σ2
n/σ

2
s ci
))
σ2
s ci

σ2
n

⎤⎦ .
(50)

4. SIMULATION RESULTS

We consider the proposed transmit and receive schemes,
shown in Figures 1 and 2, with N = 256 subcarriers. In or-
der to assess the performances of the proposed technique,
we consider a first-order FIR channel, described by one zero
placed at α. This channel is normalized so that its energy is
unitary, resulting in

h(z) = 1− αz−1
√

1 + α2
. (51)

2 Here symbol denotes each one of the N samples in the block and not the
global CP-MC symbol (the block itself).
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Figure 3: Mean transmit power needed to transmit 4 bits/symbol
as a function of the selectiveness of the channel α.

In the following, we first compare the performance of the
single-carrier schemes (CP-SC-ZF and CP-SC-MMSE) with
that of the more classical water-filled CP-MC as a function of
the selectiveness of the channel, expressed by the parameter
α. For each channel, we compute the optimum power alloca-
tion to achieve a given normalized rate (in bits/symbol) for
a target BER of 10−3. We have limited the modulation cardi-
nality to 30 bits/symbol. We observe that the CP-MC scheme
is able to achieve any rate from 0 to 30 bits/symbol, whereas
the CP-SC schemes can only achieve integer rates.

In order to understand the behavior of the schemes as a
function of the selectiveness of the channel, we have plotted
the mean transmit power needed to transmit 4 bits/symbol as
a function of the parameter α, shown in Figure 3. It is worth
noting that the value of 4 bits/symbol was chosen to present
the graphics, but the analysis and conclusions are the same
for any other chosen value. We can see in 3 that both CP-SC
schemes perform very close to the CP-MC scheme for low
values of α (low selectivity) and present a power loss that in-
creases with the parameter α. Moreover, we see that the CP-
SC-ZF scheme degrades quicker than the CP-SC-MMSE for
α > 0.9 due to the noise enhancement inherent to the ZF
receiver.

However, as discussed earlier, the mean transmit power
is not the only performance indicator and the PAPR must
be taken into account for a better analysis of the overall
system performance. In order to characterize the behavior of
the PAPR of each scheme, we consider the complementary
cumulative distribution function (ccdf) of the transmit
power for the proposed schemes, as shown in Figure 4 for
some representative values of α. Note that the value of
the ccdf for a given PAPR is equivalent to the probability
that the transmit signal is above this PAPR, which can be
seen as the probability of saturation given a back-off equal
to this PAPR. We observe that both CP-SC schemes have

CP-SC-MMSE
CP-SC-ZF

CP-MC

−10 −5 0 105 15 20

10−4
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10−1

100

(c
cd

f)
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α = 0 α = 0.3

α = 0.7

α = 0.9

α = 0.999

Figure 4: Complementary cumulative distribution function (ccdf)
of the transmit power for 4 bits/symbol.

similar PAPR distribution for values of α up to 0.9, but
the CP-SC-ZF scheme presents higher PAPR with high
probability with respect to the CP-SC-MMSE scheme, since
the CP-SC-ZF optimum power allocation generated higher
allocated powers in the subcarriers with low gain. On the
other hand, when compared to the multicarrier scheme, the
CP-SC-MMSE scheme shows significant gains in terms of
PAPR for the whole range of values of α. This gain increases
when the selectiveness of the channel decreases and also
when the saturation probability decreases.

Figure 5 shows the value of the PAPR as a function of the
selectiveness of the channel for no saturation and a proba-
bility of saturation of 1%. We can see that, for the CP-MC
scheme, the PAPR is roughly constant and does not change
with the selectiveness of the channel. When we consider the
maximum transmit power (the no saturation case), this PAPR
is of 256 (24 dB), which is the size of the FFT. However, prac-
tical systems work with a given saturation rate, which is ad-
missible without incurring in significant performance loss.
If we consider a probability of saturation of 1%, the CP-MC
PAPR decreases to 6.5 dB, remaining independent of α. The
CP-SC schemes start from a PAPR of 0 dB for the flat channel
(α = 0) and present an increase of this PAPR as a function α,
which is higher for the no saturation case, as expected. Once
again, we see that the CP-SC-ZF scheme exhibits a higher
PAPR than CP-SC-MMSE, being comparable or higher than
that of CP-MC for high values of α. Finally, we note that the
PAPR of CP-SC-MMSE is always lower than that of CP-MC
for both the considered cases.

By taking the PAPR into account, Figure 6 shows the
performance in terms of the peak transmit power for no
saturation and a probability of saturation of 1%. We ob-
serve that the CP-MC scheme demands a roughly con-
stant peak power, regardless of the channel selectivity and
that, by allowing a probability of saturation of 1%, one
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Figure 5: PAPR for (a) no saturation and (b) 1% of saturation as a function of the selectiveness of the channel α for 4 bits/symbol. Note that
the PAPR-axis values are different.
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Figure 6: Peak transmit power needed to transmit 4 bits/symbol as a function of the selectiveness of the channel α for (a) no saturation and
(b) 1% of saturation.

can gain more than 15 dB. On the other hand, the CP-
SC schemes demand an exponential increase of the peak
power to maintain the same transmit rate for more selec-
tive channels. This behavior comes from both the increase
of the mean transmit power needed to achieve the same
rate and from the increase in the PAPR for higher values
of α. Nevertheless, the CP-SC schemes outperform the CP-

MC scheme for a wide range of less selective channels, that
is, for the no saturation case, CP-SC-MMSE is always bet-
ter than CP-MC and CP-SC-ZF is better for values of α
lower than about 0.98, and for the more practical case of a
probability of saturation of 1%, the CP-SC schemes are ap-
proximately equivalent, being better than CP-MC for α <
0.77.
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Figure 7: Threshold αth for switching from a single-carrier scheme
to a multicarrier one as a function of the number of transmit
bits/symbol and different saturation rates. Below this threshold, the
CP-SC schemes outperforms the CP-MC scheme.

Hence, we see that the CP-SC schemes are advantageous
over the CP-MC scheme for a wide range of channels, with
the exact threshold α depending on the acceptable satura-
tion rate. The proposed hybrid transmission scheme is based
on the choice of the transmission scheme between a single-
carrier and a multicarrier scheme in order to make better
use of the available transmission peak power. Figure 7 shows
this threshold as a function of the normalized transmit rate
for different saturation rates. As expected, the CP-SC-MMSE
outperforms the CP-SC-ZF scheme for small data rates and
both schemes are equivalent for large data rates, since the re-
quired SNR for large data rates is high, decreasing the influ-
ence of the noise. Also, as expected, the threshold increases
with the decrease of the saturation rate, favoring the CP-
SC schemes over the CP-MC one. We note the asymptotic
behavior of the threshold, which can be used as a rule of
thumb in the design of practical systems using a hybrid trans-
mission scheme.

4.1. Capacity results

By using the capacity results from Section 3 and the PAPR
levels obtained by simulation in the first part of this section,
we can now compare the achievable bit rate per transmitted
symbol of the proposed schemes subject to the same satura-
tion rates. To do so, we compute the capacity of each scheme
using a suitable power back-off to respect the desired satura-
tion rate.

Figure 8 shows the capacity of both CP-SC schemes with
respect to the CP-MC scheme, in percentage, for a mild chan-
nel (α = 0.7). We observe that, as expected from the analy-
sis of Figure 7, the CP-SC-MMSE scheme outperforms the
CP-MC one for all saturation rates except for 10%. Also, as
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Figure 8: Relative capacity of the CP-SC schemes (with respect to
the CP-MC scheme) as a function of the SNR for different degrees of
saturation for α = 0.7. The value between parenthesis is the differ-
ential back-off between the CP-MC scheme and the CP-SC schemes.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−40

−20

0

40

20

60

80

0.01%
saturation

0.1%
saturation

1% saturation
10% saturation

α

CP-SC-MMSE
CP-SC-ZF

Δ
C
=

(S
C

-M
C

)/
M

C
(%

)

Figure 9: Relative capacity of the CP-SC schemes (with respect to
the CP-MC scheme) as a function of the selectiveness of the channel
α for an SNR of 20 dB.

expected, the CP-SC-ZF scheme performs poorly in the low
SNR region due to the noise enhancement and is equivalent
to the CP-SC-MMSE for high SNR. For this channel, the CP-
SC-MMSE scheme achieves from 20% to more than 80% ca-
pacity gain in the low SNR region for saturation rates equal
or lower than 1%. The gain for a typical application varies
from 10% to 25% for 20 dB and saturation rates equal or
lower than 1%. The higher gains obtained in the low SNR
region are due to the fact that, in this region, the power
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gain due to a lower back-off becomes more advantageous
than the better immunity to selective channels of the CP-
MC.

We now consider a typical condition, namely SNR of
20 dB, and assess the capacity gain as a function of the se-
lectiveness of the channel, as shown in Figure 9. We ob-
serve gains from 20% up to 90% for flat channels by using
a single-carrier scheme instead of multicarrier in this case,
when taking the PAPR into account. From this figure, we
can also obtain the thresholds αth for switching from one
scheme to another as 0.64, 0.79, 0.84, and 0.87 for saturation
rates of 10%, 1%, 0.1%, and 0.01%, respectively. We observe
an agreement between these values and the asymptotic ones
from Figure 7.

5. CONCLUSION

We have proposed a flexible transmission scheme which eas-
ily allows to switch between cyclic-prefixed single-carrier
(CP-SC) and cyclic-prefixed multicarrier (CP-MC) trans-
missions by changing a matrix at the transmitter and one
at the receiver. This scheme takes advantage of the best
characteristic of each scheme, namely the low PAPR of
the CP-SC scheme and the robustness to channel selec-
tivity of the CP-MC scheme. Moreover, we have derived
the optimum power allocation for the CP-SC transmission
considering a zero-forcing (ZF) and a minimum mean-
square error (MMSE) receiver. By doing so, we were able
to make a fair comparison between CP-MC and CP-SC
when the transmitter has partial channel state information
(CSI).

By taking the PAPR into account for a better analysis
of the overall system, the simulations results show the ad-
vantage of the CP-SC schemes, in particular of the CP-SC-
MMSE scheme for flat and mild selective channels due to
their low PAPR. On the other hand, the CP-MC scheme is
more advantageous for a narrow range of channels with se-
vere selectivity.

We have also derived the capacity of the proposed
schemes with optimal power allocation. The simulation re-
sults show typical gains of about 20% to 50% when switching
to the CP-SC-MMSE scheme for channels that do not present
a high selectivity.

APPENDIX

From (21), the MMSE SSINR can be expressed as
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By simplifying the term σ2
s , we can rewrite (A.1) as fol-

lows
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By converting the two terms in the denominator of (A.2)
to the common denominator, we have
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