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INTRODUCTION

We consider the problem of downlink scheduling for multiuser orthogonal frequency-division multiplexing (OFDM) systems.
Opportunistic scheduling exploits the time-varying, location-dependent channel conditions to achieve multiuser diversity. Previous
work in this area has focused on single-channel systems. Multiuser OFDM allows multiple users to transmit simultaneously over
multiple channels. In this paper, we develop a rigorous framework to study opportunistic scheduling in multiuser OFDM system:s.
We derive optimal opportunistic scheduling policies under three QoS/fairness constraints for multiuser OFDM systems—temporal
fairness, utilitarian fairness, and minimum-performance guarantees. Our scheduler decides not only which time slot, but also which
subcarrier to allocate to each user. Implementing these optimal policies involves solving a maximal bipartite matching problem
at each scheduling time. To solve this problem efficiently, we apply a modified Hungarian algorithm and a simple suboptimal
algorithm. Numerical results demonstrate that our schemes achieve significant improvement in system performance compared
with nonopportunistic schemes.
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less LANs (e.g., 802.16, ETSI HIPERLAN/2), and ultra wide-

Emerging broadband wireless networks which support high-
speed packet data with a different quality of service (QoS)
demand more flexible and efficient use of the scarce spec-
tral resource. In contrast to wireline networks, one of the
fundamental characteristics of wireless networks is the time-
varying and location-dependent channel conditions due to
multipath fading. From an information-theoretic viewpoint,
Knopp and Humblet showed that the system capacity can be
maximized by exploiting inherent multiuser diversity in the
wireless channel [1]. The basic idea is to schedule a single
user with the best instantaneous channel condition to trans-
mit at any one time. The technology has already been im-
plemented in the current 3G systems, that is, 1XEV-DO [2]
and high-speed downlink packet access (HSDPA) [3]. The
idea has also recently been adopted in cognitive radio sys-
tems which are novel intelligent wireless communication sys-
tems providing highly reliable and efficient communications
by exploiting unused radio spectrum [4, 5].

Orthogonal frequency-division multiplexing (OFDM) is
a popular multiaccess scheme widely used in DVB, wire-

band (UWB) systems [6]. It is also a promising modula-
tion scheme of choice proposed for many future cellular
networks such as cognitive radio systems [7, 8]. OFDM di-
vides the total bandwidth into many narrowband orthogo-
nal subcarriers, which are transmitted in parallel, to combat
frequency-selective fading and achieve higher spectral uti-
lization. OFDMA, a multiuser version of OFDM, allows mul-
tiple users to transmit simultaneously on the different sub-
carriers [9].

Good scheduling schemes in wireless networks should
opportunistically seek to exploit the time-varying channel
conditions to improve spectrum efficiency, thereby achieving
multiuser diversity gain. However, the potential to transmit at
higher data rates opportunistically also introduces an impor-
tant tradeoff between wireless resource efficiency and level
of satisfaction among individual users (fairness). For exam-
ple, allowing only users close to the base station to transmit
at high transmission rate may result in very high through-
put, but may sacrifice the transmission of other users. Such a
scheme cannot satisfy the increasing demand for QoS provi-
sioning in broadband wireless networks.
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To solve this problem, Liu et al. described a framework
for opportunistic scheduling to exploit the multiuser di-
versity while at the same time satisfying three long-term
QoS/fairness constraints [10—12]. In that work, only a sin-
gle user can transmit at each scheduling time. The authors of
[1] show that this is optimal for single-channel systems such
as TDMA. However, the same is not the case for multiple-
channel systems.

In this paper, we propose an opportunistic scheduling
framework for multiuser OFDM systems. We build on Liu’s
work by going from the single-channel to the multiple-
channel case. We show how the system performance can be
optimized by serving multiple users simultaneously over the
different subcarriers. We focus on the downlink of an OFDM
system. We derive our opportunistic scheduling policies
under three long-term QoS/fairness constraints—temporal
fairness, utilitarian fairness, and minimum-performance
guarantees, which are similar in form to those of [12], but
adapted to the setting of multiuser OFDM systems. We also
state optimality conditions under each of these constraints.
In particular, our scheduler decides not only which time slot
but also which subcarrier to allocate to each user under the
given QoS/fairness constraints. A stochastic approximation
algorithm is used to calculate the control parameters on-
line in the policies. To search over the optimal user sub-
sets efficiently, we apply a modified bipartite matching algo-
rithm. We also develop an efficient, low-complexity subopti-
mal algorithm—our experimental results illustrate that this
algorithm achieves near-optimal performance.

The remainder of this paper is organized as follows. In
Section 2, we discuss related work on scheduling and fair-
ness for OFDM. The system model is described in Section 3.
In Section 4, we derive opportunistic scheduling policies un-
der various fairness constraints and prove their optimality. In
Section 5, we address some implementation issues, including
control parameter estimation and the assignment problem
that arises in implementing these policies. An optimal algo-
rithm and an efficient suboptimal algorithm are proposed
here. In Section 6, we present the numerical results to illus-
trate the performance of our policies. Finally, concluding re-
marks are given in Section 7.

2. RELATED WORK

Wireless scheduling has attracted a lot of recent attention.
The authors of [13, 14] extend the scheduling policies for
wireline networks to wireless networks to provide short-term
and long-term fairness bounds. However, they model a chan-
nel as being either “good” or “bad,” which may be too sim-
ple in some situations. In [15-17], the authors study wire-
less scheduling algorithms when both delay and channel con-
ditions are taken into account. Scheduling with short-term
fairness constraints is also discussed in [10, 18].

In [19, 20], the authors present a scheduling scheme for
the Qualcomm IS-856 (also known as HDR (high data rate))
system. Their scheduling scheme exploits time-varying chan-
nel conditions while satisfying a certain fairness constraint
known as proportional fairness [21]. Although there has been
considerable recent efforts on proportional fairness schedul-

ing [22-24], to the best of our knowledge, there is currently
no work considering multiuser OFDM systems with the three
QoS fairness constraints we mentioned above. So in this pa-
per we will focus on these three fairness constraints.

Opportunistic scheduling exploits the channel fluctua-
tions of users. In [22], the authors use multiple “dumb” an-
tennas to “induce” channel fluctuations, and thus exploit
multiuser diversity in a slow fading environment. The au-
thors of [25] show that with multiple antennas, transmit-
ting to a carefully chosen subset of users has superior per-
formance.

The resource management problem in OFDM systems
has attracted a lot of research interest [26, 27]. In [26], the au-
thors propose an algorithm to minimize the total transmis-
sion power with minimum-rate constraints for users. Specif-
ically, the algorithm allocates a set of subcarriers to each
user and then determines the number of bits and transmis-
sion power on each subcarrier. In [27], the authors study
the problem of dynamic subcarrier and power allocation
with the objective to maximize the minimum of the users’
data rates subject to a total transmission power constraint.
All these studies show that dynamic resource allocation (in
terms of bit, subcarrier, and power) schemes can achieve sig-
nificant performance gains over traditional static allocations
(such as TDMA-OFDM and FDMA-OFDM). However, none
of the schemes described above exploit multiuser diversity.
For delay-insensitive data service, we can expect to reap long-
term performance benefits by exploiting multiuser diversity.

OFDM has been used in several applications in cognitive
radio. To enhance spectrum efficiency, the spectrum pooling
system allows a license owner to share underutilized licensed
spectrum with a secondary wireless system during its idle
times [8]. A preferred transmission mode of the secondary
system is OFDM due to its inherent flexibility. In [28], the
authors discuss the desired properties in designing physical
layers of cognitive radio systems and claim that the modula-
tion scheme based on OFDM is a natural approach that sat-
isfies the desired properties.

Recently, there has been significant interest in oppor-
tunistic scheduling and fairness issues for multiple-channel
systems [29-33]. In [31], the authors consider a total-
throughput maximization problem with deterministic and
probabilistic constraints for multiple-channel systems. In
[33], the authors consider opportunistic fair scheduling in
downlink TDMA systems employing multiple transmit an-
tennas and beamforming.

In [34], the authors introduce cross-layer optimization
for OFDM wireless networks. The interaction between the
physical layer and media access control (MAC) layer is ex-
ploited to balance the efficiency and fairness of wireless re-
source allocation. The authors consider proportional and
max-min fairness.

3. SYSTEM MODEL

In this section, we describe the system model, assumptions,
notation, and formulation of the scheduling problem.

The architecture of a downlink data scheduler for a
single-cell multiuser OFDM system is depicted in Figure 1.
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There is a base station (transmitter) with a single antenna
communicating with N mobile users (receivers). Each user
has different channel conditions over different subcarriers.
By inserting pilot symbols in the downlink, the users can
effectively estimate the channels. Every user should report
its channel-state information over every subcarrier to the
base station. All the channel-state information is sent to
the subcarrier and bit allocation scheduler in the base sta-
tion through feedback channels from all mobile users. The
scheduling decision made by the scheduler is conveyed to
the OFDM transmitter. The transmitter then assigns differ-
ent transmission rates to scheduled users on corresponding
subcarriers. The scheduler makes decisions once every time
slot based on the channel-state information and the control
parameters for fairness guarantees.

We assume that the base station knows the perfect
channel-state information for each user over each subcar-
rier. The channel conditions for different users are usu-
ally independently varying in a multiuser system. Owing to
frequency-selective fading, one user may experience deep
fading in some subcarriers, but relatively good in other sub-
carriers. By dynamically assigning users to favorable sub-
carriers, the overall performance of the network can be in-
creased from the multiuser diversity. In practice, requir-
ing “perfect” channel-state information results in significant
feedback overhead burden, which might be difficult to imple-
ment. We can view our current work as providing fundamen-
tal performance bounds on what is achievable with channel
feedback.

The OFDM signaling is time slotted. The length of a time
slot is fixed and the channel does not vary significantly dur-
ing a time slot. The length of a time slot in the scheduling
policy can be different from an actual time slot in the physi-
cal layer. It depends on how fast the channel conditions vary
and how fast we want to track such changes.

We assume that there is always data for each user to re-
ceive, that is, the system has infinite backlogged data queues.
We also assume that the transmission power is uniformly al-
located to all subcarriers. In principle, performance can be
improved further by allocating a different power level to each
subcarrier. In a system with a large number of users, this
improvement could be marginal because of statistical effects
[22].

In this paper, we will focus on scenarios with large num-
bers of users, or heavy-traffic systems, where the number of
users is greater than the number of available OFDM subcar-
riers. These scenarios can be regarded as an extreme situation
for OFDM. But it is important to determine the impact of a
large number of users, such as in [22]. Our goal is to max-
imize the system performance by exploiting the time-varying
and frequency-varying channel conditions while maintaining
certain QoS/fairness constraints.

Leti = 1,...,N be the index of users, and k = 1,...,K
the index of subcarriers. Following [12], let ], be the in-
stantaneous performance value that would be experienced
by user i if it were scheduled to transmit over subcarrier k
at time slot £. The w{; comprise an N x K matrix, denoted as
w’. Usually, the better the channel condition of user i over
subcarrier k, the larger the value of w{;. Throughput (in

terms of data rate bits/sec) is the most straightforward form
of a time-varying and channel-condition-dependent perfor-
mance measure. For convenience, the reader can think of
throughput as the performance measure in this paper. How-
ever, our formulation applies in general.

Let A = (A, As,...,Ax) represent a scheduling action,
which is a vector of the indices of the users scheduled over
all K subcarriers. The decision rule 7*(-), which is a func-
tion of w’, specifies which action should be chosen, that is,
() = A= (AL, AS,..., Ak), where the value of A} is the
index of the user scheduled over subcarrier k at time ¢. We
call 7(+) = {n'(-), 7*(+),..., 7' (+),...} € Il a policy, where
IT is the set of all scheduling polices. Note that a policy may
involve a time-varying rule for deciding scheduling actions.
We are only interested in the so-called feasible policies, those
that satisfy specific QoS/fairness requirements (described in
the next section).

Let U/ () be the average throughput of user i up to time
T, and R} (1) the average resource consumption of user i up
to time T, that is,

T K
1 .
UiT(T[):?Z Z“’?,kl{A%i}’ i=1,..., N,
t=1 k=1
T oK (1)
Rf (n) = fz D lu—y, i=1,...,N,

t

Il
—
=~

l
—_

where 1, is the indicator function of the event A, that is, 14
takes value 1 if A occurs, and is 0 otherwise.

Let UT(n) = SN, UM (n), that is, UT(x) is the average
overall throughput up to time T. Then we define

U(r) = limsup U (n), (2)
T—oo
which can be considered as the asymptotic best-case system
performance of policy 7.

Using the above notation, our goal can be formally stated
as follows: find a feasible policy m that maximizes the sys-
tem performance U(m) while maintaining certain QoS/fairness
constraints. In the following section, we derive optimal poli-
cies for three categories of scheduling problems, each with a
unique QoS/fairness requirement.

4. OPPORTUNISTIC SCHEDULING UNDER
VARIOUS FAIRNESS CONSTRAINTS

Good scheduling schemes should be able to exploit the time-
varying channel conditions of users to achieve higher uti-
lization of wireless resources, while at the same time guar-
antee some level of fairness among users. Fairness is cen-
tral to scheduling problems in wireless systems. Without
a good fairness criterion, the system performance can be
trivially optimized, but might prevent some users from ac-
cessing the network resource. In this section, we will study
scheduling problems under three fairness criteria for mul-
tiuser OFDM systems—temporal fairness, utilitarian fair-
ness, and minimum-performance guarantees. These cate-
gories of fairness are adopted from [12] and are extended to
multiuser OFDM systems. It turns out that the form of the
optimal policies here bear a resemblance to those of [12].
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F1Gure 1: Downlink scheduling over multiuser OFDM system.

4.1. Temporal fairness scheduling

A natural fairness criterion is to give each user a certain
long-term fraction of time because time is the basic resource
shared among users. The problem of multiuser OFDM
scheduling with temporal fairness can be expressed as

max U(z) subject to liminf RiT(T[) > 71
mell T—oc0 (3)

i=1,...,N,

where r; denotes the minimum time fraction that should be
assigned to user i, with ; = 0 and zfilri < 1. Recall that
R (r) is the average resource consumption of user i up to
time T. The r;s are predetermined and serve as the prespec-
ified fairness constraints. The value of r; denotes the mini-
mum fraction of time that user i should transmit over all the
subcarriers in the long run, which is usually determined by
the user’s class, the price paid by the user, and so forth.
Define the policy 7* as follows:

N K
m*(w) = arg max {Z Z zk+V l{Aii}}a (4)
a' i=1 k=1

where the control parameters v; are chosen such that

(1) v = 0, for all ;;
(2) lim infTHooR,»T(r[*) > r;, forall 4
(3) ifliminfr_ R} (m*) > r;, then vj* = 0, for all i.

Similar to [10], we can think of v* = (v{,...,v{) in
(4) as an “offset” or “threshold” to satisty the temporal fair-
ness constraints. Under this constraint, the scheduling pol-
icy schedules the “relatively best” subset of users to transmit.
The subset of users selected by action A'is “relatively best”
if > ZIX ,Ile (wf,k + 1)1y At=jj is maximum over all actions.
If v > 0, then user i is an “unfortunate” user, that is, the
channel conditions it experiences over all subcarriers are rel-
atively poor. (e.g., it is far from the base station.) Hence, it has
to take advantage of other users (e.g., users with v;* = 0) to

satisfy its fairness requirement. But to maximize the over-
all system performance, we can only give the “unfortunate”
users their minimum time-fraction requirements, hence
condition 3.

The policy 7n* defined in (4), which represents our op-
portunistic scheduling policy, is optimal in the following
sense.

Theorem 1. If lim 7~ RY (7*) exists for all i for n*, then the
policy w* is an optimal solution to the problem defined in (3),
that is, it maximizes the average OFDM system performance
under the temporal fairness constraints.

Proof. Let m be a policy satisfying the temporal fairness con-
straints, and let v;* satisfy conditions 1-3. Hence, we have

N
U(n) < U(m) + Z v (liI%linfRiT(n) - ri)

< lim su ielial=i
T—oo t=1i=1 k=1
1 N K N
+lim1nfTZ Z ZVI*I{A;{:,} — ZVI 1i
= I S k2 i=1
(5)
| I N K
sllmsuprZZ( et l{A Zv T
T—oo Tt:l i=1 k=1
(6)
By the definition of 7*, we have
N K N K
D0 2 (@l Vi) Ly < X0 D (@l +v) Ljage—iy (7)

I
—
Il
—

i=1 k=1 i=1 k=1
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Thus,

(8)

Therefore,

. | I N K
U(r) < limsup ?Z Z Z (wiy + vf‘)l{(A;)*:,—}Z vEr

T—oo t=1i=1 k=1 i=1

< U(n*) +hmsuva*RT(n*) - z v
T—oeo -1 i=1

9)
N
< U(n*)+ z v} (limsupRiT(n*) - r,-). (10)

i=1 T—co

Since limr_R!(7*) exists, limsup,_  Rf(7*) =

liminf 7 R} (7*). Thus,

U(r) < U(r™) + Z (hmlnfRT(r[*) - rl)
gt (11)

=U(r*),

where the second part of (11) equals zero because of condi-
tion 3 on v/". O

Inequalities (5), (6), (9), and (10) follow from the follow-
ing properties of limsup and liminf [40]. If {x,} and {y,}
are real sequences, we have

lirIl inf x,, + lirn_ inf y, < lim inf (X0 + Yn)

< limsupx, + hm 1nf Vn
< limsup (x, + y,) (12)

n—oo

< lim sup x, + lim sup y,.

n—oo n—oo

It is possible that the optimal policy is confronted with a
tie between two or more users. When ties occur in the argmax
in the policy, they can be broken arbitrarily.

4.2, Utilitarian fairness scheduling

In the last section, we studied the opportunistic scheduling
problem for multiuser OFDM with temporal fairness con-
straints. In wireline networks, when a certain amount of re-
source is assigned to a user, it is equivalent to granting the
user a certain amount of throughput. However, the situa-
tion is different in wireless networks, where the performance
value and the amount of resource are not directly related.
Therefore, a potential problem in wireless network is that the
temporal fairness scheme has no way of explicitly ensuring
that each user receives a certain guaranteed fair amount of
utility. Hence, in this section, we will describe an alternative

scheduling problem that would ensure that all users get at
least a certain fraction of the overall system performance.
The problem of multiuser OFDM scheduling with utili-
tarian fairness can be expressed as
max U(m) subject to lijl}lglf UiT(n) > q;U(m),
(13)
i=1,..., N,

where a; denotes the minimum fraction of the overall average
throughput required by user i, with a; > 0 and SN oa < 1.
Recall that U/ (n) is the average throughput of user i up
to time T using policy 7, and U(n) is the average overall
throughput. The a;’s are predetermined fairness constraints
here. This constraint requires long-term fairness in terms
of performance value (throughput) instead of resource con-
sumption (time) as in Section 4.1.
We define the policy 7* as follows:

N K

7* (') = arg max {Z > (k+yF) lkl{Atk_,»}}, (14)
'y i=1 k=1

wherek = 1 - 3N 1aiy, and the control parameters y; are

chosen such that

(1) y¥ =0, forall 5
(2) liminfr .o Ul (7*) = a;U(n*), for all i;
(3) ifliminfr_ UT (%) > a;U(n*), then y¥ =0, foralli.

Analogous to v* in the last section, y = (yf,...,y%) in
(14) can be considered as a “scaling” to satisty the utilitar-
ian fairness constraints. The scheduling policy always sched-
ules the “relatively best” subset of users to transmit. Here,
the subset of users selected by action A'is “relatively best” if
> fil > sz1 (k+ypf )wf,kl{A;{:i} is maximum over all actions. If
y¥ > 0, then user i is an “unfortunate” user, and its average
performance value equals its minimum requirement.

The policy 7* defined in (14), which represents our op-
portunistic scheduling policy, is optimal in the following
sense.

Theorem 2. If lim y_., UJ (n*) exists for all i for n* defined
in (14), then the policy * is an optimal solution to the problem
defined in (13), that is, it maximizes the average OFDM system
performance under the utilitarian fairness constraints.

Proof. Let m be a policy satisfying the utilitarian fairness con-
straints, and let y* satisfy conditions 1-3. Hence, we have

U(n) < U(n) + Z y; (liminf Uf(r) -~ a;U ()

i=1

= lim sup Z kUL (m) + Z yl*hm 1nf Ul(r) (15)

T—oo =1 i=1
N
<limsup > (x+y/)U (n),
T—eo =1
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where x =1 -3 ﬁlaiﬁ. By the definition of 7*, we get

N N
D (k+yH)U () < D (k+yH)UF (%), (16)

i=1 i=1
Therefore,

N
U(r) < limsup Z (k+y*) UL (n*)
e o]
N (17)
< U(n*) + Yy} (liminf U/ (%) — a,U ("))
i=1 o

=U(r*),

where the second part of (17) equals zero because of condi-
tion 3 on p¥. Similar to the proof of Theorem 1, the proper-
ties of limsup and liminf are applied here. O

4.3. Minimum-performance guarantee scheduling

So far, we have discussed two optimal multiuser OFDM
scheduling policies that provide users with different fair-
ness guarantees. However, while they satisfy a relative mea-
sure of performance (e.g., fairness), they do not consider
any absolute measures such as data rate. This motivates the
study of a category of scheduling problems with minimum-
performance guarantees [11, 35].

The problem to maximize the OFDM system perfor-
mance while satisfying each user’s minimum performance
requirement can be stated as

max U(mr) subject to liminf UZ-T(T[) > G,
nell T—oo
(18)
i=1,..., N,

where C = {C1,Cy,...,Cy} is a feasible predetermined
minimum-performance requirement vector. Feasible here
means that there exists some policy that solves (18).

The QoS constraints here offer users a more direct service
guarantee. For example, a user requires a minimum data rate
guarantee, then the performance measure here can be data
rate. Every user is guaranteed a minimum data rate, which
may be more appealing from the user viewpoint. However,
it can be quite difficult in practice to apply because of the
difficulty to determine if a requirement vector is feasible.

Suppose C = {Cy,Cs,...,Cy} is feasible. We define the
policy * for the problem in (18) as follows:

i=1 k=1

N K
n*(w') = arg maX{Z Z ﬁ?wikl{f\,’(—i}}’ (19)
Zt

where the control parameters 3; are chosen such that
(1) /31* > 1, for all 4;
(2) liminf 7. U,»T(rr) > C;, for all i;
(3) ifliminf TaooUiT(n) > C;, then [3,* =1, forall i.

Note that the parameter ﬁ* = (B,...,Bx) “scales” the
performance values of users, and the scheduling policy al-
ways schedules the “relatively best” subset of users to trans-
mit. Here, the subset of users selected by action A’ is “rel-
atively best” if ¥ N, 3 5, B; @} 1a_sy is maximum over all
actions. If ﬁl* > 1, then user i is an “unfortunate” user, and it
is granted only its minimum-performance requirement.

The policy 7* defined in (19), which represents our op-
portunistic scheduling policy, is optimal in the following
sense.

Theorem 3. If lim 1., UL (n*) exists for all i for the 7* de-
fined in (19), then the policy n* is an optimal solution to
the problem defined in (18), that is, it maximizes the average
OFDM system performance under the minimum-performance
guarantee constraints.

Proof. Let 7 be a policy satistying the minimum-perform-
ance guarantee constraints, and let 3 satisfy conditions 1-
3. Hence, we have

N
UGn) < UGn) + 3. (8 - 1) (timinf U7 (n) - G,)

i=1

Ny N (20)
< lim sup Zﬁf UiT(T[) - Z (/51* -1)C,.
T—eo =] i=1
By the definition of 7%, we get
N N
S BUT () < 3B U ("), @
i1 i1
Therefore,
N N
U(n) < limsupZ/S;k Ul(n*) - Z (/5:'< -1G;
T—eo =g i=1
N (22)
< U+ (BF - 1) (lix%ainf U (%) — ci)

i=1

=U(r*),

where the second part of (22) equals zero because of condi-
tion 3 on f3;". Similar to the proof of Theorem 1, the proper-
ties of lim sup and liminf are applied here. O

5. IMPLEMENTATION ISSUES

In this section, several implementation issues including pa-
rameter estimation and efficient policy search methods will
be considered. An optimal algorithm and a low-complexity
suboptimal algorithm are developed here for policy search.

5.1. Control parameter estimation
The opportunistic scheduling policies described in Section 4
involve some control parameters to be estimated online: v*

Sk

. . X . s . . .

in temporal fairness, y  in utilitarian fairness, and § in the
minimum-performance guarantee policy. Those parameters
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Input:
Step 1:

an N x K nonnegative matrix [ci].
initialization:

Step 2:
Step 3:
intersection of lines. Go to Step 2.

Step 4:

move to the next assignment.

(a) Append (N — K) all-zero columns to the matrix.

(b) In each row, subtract the smallest entry from every entry in that row. In each column,
subtract the smallest entry from every entry in that column.

cover all zeros with the minimum number of (horizontal and/or vertical) lines. If the
minimum number = N, go to Step 4.

subtract the smallest uncovered entry from every uncovered entry; add it to every

make the assignment at zeros. If any row or column has only one 0, make that
assignment. Cross out the corresponding row and column, and

ArcgoriTHM 1: Modified Hungarian algorithm.

are determined by the distribution of performance value ma-
trix {w'} and the predetermined constraints. In practice, the
distribution is unknown, and hence we need to estimate the
control parameters.

In [12], Liu et al. give a practical stochastic approximation
technique to estimate such parameters. The basic idea is to
find the root of a unknown continuous function f(x). We
approach the root by adapting the weighted observation er-
ror. For example, for user i in temporal fairness scheduling,
the base station updates the parameter v**! using a stochastic
approximation algorithm

K
Vf“ - vf — €t<z l{A‘kzi} - ri>, (23)
k=1

where, for example, the step size €’ = 1/t. The initial esti-

mate v can be set to 0 or some value based on the history
information.

Using standard methods, it can be shown that v* con-
verges to v* with probability 1 [36]. The computation bur-
den above is O(N) per time slot, where N is the number of
users, which suggests that the algorithm is easy to implement
online. For our OFDM scheduling schemes, we have found
that this stochastic approximation algorithm also works well.
For the detailed procedure, we refer the reader to [12].

5.2. Optimal user subset search methods

In our optimal OFDM policies (e.g., in the temporal fairness
policy), all the “relative performance values” (w}; + v;"), de-
noted ¢ for convenience, comprise an N X K matrix [ci].

Therefore, the operator arg maxy: is to find an action A’ that
indicates which K elements in [cjx] have the maximal sum
over all K selected elements. This operator is obviously dif-
ferent from the arg max; in [12], which simply returns the
index of the largest element from a vector.

It is straight forward to compute the arg max if no hard
physical limitations are considered. The operator can sim-
ply select the largest K elements. However, a common phys-
ical constraint is that in any time slot, the scheduler cannot
assign two users to the same subcarrier, or two subcarriers

to the same user. Mathematically, at any time slot ¢, for any
two subcarriers j and k, j#k & A%#Aj. When this physi-
cal constraint is considered, the computation of the arg max
in the optimal policy is nontrivial. A brute-force approach
is exhaustively searching over the (¥ ) possible assignments,
which obviously has very high computational complexity.
Since this optimal user subset search operation should be
performed online at each slot, we need to use more efficient
algorithms.

It turns out that the problem of computing the arg max
can be posed as an integer linear program (ILP) [37]:

N K N
maximize Z Z cik xit ~ subject to ink =1,
i=1k=1 i=1

k=1, ..., K, (24)

K
Dxx<l, i=1..,N,
k=1

Xik € {0)1}) Cik = 0) N > K)

where the decision variables x;; indicate which elements to
choose, and the weights cj; are relative performance values
defined above. This problem is called the maximal weighted
bipartite matching problem in graph theory, or the assignment
problem in combinatorial optimization [38].

It is interesting to see that the arg max operator in opti-
mal multiuser OFDM scheduling problem can be interpreted
as a graph problem (U, S, E, w), where U represents the set of
all users, S represents the set of all subcarriers, and E rep-
resents the set of all the feasible choices for specific users to
select specific subcarriers. Each choice in E is weighted by a
function w(E). The problem is to find a matching M € E for
U and S that maximizes the sum of the weights over all edges
in M.

The Hungarian algorithm is one of many algorithms that
have been devised to solve the assignment problem in poly-
nomial time (O(N?) when N = K) [39]. We modify the Hun-
garian algorithm to solve our general unbalanced (N = K)
problem here by introducing a number of slack variables to
convert the ILP problem into standard form. Note that the
standard form ILP with the slack variables is algebraically
equivalent to the original problem [41]. It is proven in [39]
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that the Hungarian algorithm can always find the maximum
assignment, that is, it is an optimal solution to this problem.

Algorithm 1 is our modified Hungarian algorithm.

Ideally, the OFDM scheduler should repeat the above
procedure at every scheduling slot. However, this still poses a
heavy computational burden on the base station. Hence sub-
optimal algorithms with lower complexity are of interest for
practical implementation.

We develop a suboptimal algorithm called “max-max”
to perform the above argmax operation with much lower
complexity. This algorithm is a variation of the “min-min”
method for task mapping in heterogeneous computing [42].
The basic idea is this: first, find the overall maximal element
in the matrix [ci], then assign the corresponding subcarrier
to the corresponding user. Next, remove the newly assigned
user-subcarrier pair from the selection table. In other words,
the corresponding row and column are removed from the
matrix. Continue to repeat the above procedure on the re-
duced matrix until all subcarriers are assigned. In the sim-
ulations in the next section, the suboptimal scheme shows
near-optimal performance with a lower complexity.

6. SIMULATION RESULTS

In this section, we present numerical results to illustrate the
performance of the various OFDM scheduling schemes de-
veloped in this paper. For the purpose of comparison, we also
simulate two special scheduling policies. Round-robin [43]
is a nonopportunistic scheduling policy that schedules users
over all subcarriers in a predetermined order. It is simple but
lacks flexibility. The round-robin policy can serve as a perfor-
mance benchmark to measure how much gain results from
using our opportunistic scheduling policies. The other pol-
icy for comparison is a greedy scheduling scheme that always
selects the user with the maximum performance to transmit
for each subcarrier at each time slot. The greedy policy will
in general violate the QoS/fairness constraints, but provide
an upper bound on the system performance. It is used here
to expose the tradeoff between the QoS constraints for in-
dividual users and the overall system throughput. The more
relaxed the fairness constraints, the higher the overall achiev-
able throughput, therefore, the closer to what we will get to
the performance of the greedy scheme.

In our simulation, we consider the downlink of a heavy-
traffic single-cell OFDM system with fixed 64 subcarriers.
There is one base station serving all the users in the cell.
Each user suffers from multipath Rayleigh fading with the
bad-urban (BU) scenario of the COST 259 channel model
[44, 45], and we assume a path-loss exponent of four. Every
user is assumed to be stationary or slowly moving so that the
maximum Doppler shift is 20 Hz. The performance value,
used by different users usually is a nondecreasing function
of their SINR, and can be in various forms, such as linear
functions, step functions, or S-shape functions. For simplic-
ity, here we take all the performance values as linear functions
of users’ SINR (in dB). We assume that the physical limita-
tion on scheduling discussed in Section 5.2 applies: at each
time slot, no two users can be scheduled on the same subcar-
rier and each user is scheduled exactly one subcarrier.

System throughput gain (%)

. —_—
64 96 128 160 192 224 256
Number of users

—o— Greedy
—*— Hungarian
—4— Max-max

FIGURE 2: System throughput gain in the temporal fairness schedul-
ing.

6.1. Performance gain

First, we assume the locations of all users are distributed uni-
formly in the cell, and examine the impact of the number of
users on the average system throughput. We use the round-
robin policy as the baseline, and define the system through-
put gain as (Us — Ur)/Ug, where Us and Uy denote the aver-
age system throughput of a given scheduling policy and the
round-robin policy, respectively.

Figure 2 shows the system through put gain relative to
round-robin from the different policies in the temporal fair-
ness scheduling simulations. For the purpose of simulation,
we assume the time-fraction assignment is done using fair
sharing, that is, the total resources are evenly divided among
the users. Therefore, if there are N users in the cell, we set
ri = 1/N for all users. From Figure 2, it is evident that the
system throughput gain increases with the number of users.
This is reflective of the multiuser diversity gain. For 64 users,
our optimal policy (Hungarian) achieves about 46% over-
all throughput gain, while the greedy policy has an improve-
ment of 101%. This is not surprising since the greedy pol-
icy achieves the highest overall performance at the cost of
unfairness among the users. The suboptimal policy (max-
max) shows surprisingly near-optimal performance. Its per-
formance gap with the optimal policy is less than 1-2%, and
even smaller when we increase the number of users.

Figure 3 shows the system throughput gain relative to
round-robin from the different policies in the utilitarian fair-
ness scheduling simulations. We also assume fair sharing
in the throughput-fraction assignment. This means we set
a; = 1/N for all users in an N-user system. As expected,
the increasing trend similar to Figure 2 can be also seen here.
For 64 users, our optimal policy (Hungarian) achieves about
32% overall throughput gain, while the greedy policy has an
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FIGURE 3: System throughput gain in the utilitarian fairness
scheduling.

improvement of 102%. The suboptimal policy (max-max)
also improves the system performance by 27%.

Next, we investigate the performance of the opportunis-
tic scheduling schemes with minimum-performance guaran-
tees. First, we run the simulation for 1,000,000 time slots
using the round-robin policy, where the resource (time)
is equally distributed among all users. Then, we compute
an average performance value and use it as the minimum-
performance requirement for each user. It is easy to see
that this minimum-performance requirement vector is fea-
sible. Figure 4 shows the system throughput gain relative to
round-robin from the different policies in the minimum-
performance guarantee scheduling simulations. For 64 users,
our optimal policy (Hungarian) achieves about 31% overall
throughput gain, while the greedy policy (which violates the
minimum-performance requirements) has an improvement
of about 100%. The suboptimal policy (max-max) also per-
forms well with 24% overall gain.

6.2. Fairness

Using the temporal fairness scheduling scenario as an exam-
ple, we study the fairness among the users by applying the
different policies. We use the same single-cell system with
64 subcarriers, and there are 128 users in the system. The
users are divided into three “distance” groups. Users 1-48
belong to the “far” group, users 49—80 belong to the “mid-
dle” group, and users 81-128 belong to the “near” group.
Obviously a user in the “near” group has a much higher
probability to get a strong SINR than a user in the “far”
group. We set all users to have the same minimum time-
fraction requirement. Specifically, each user has a resource
(time) requirement r; = 2/(3N) for an N-user system, where
> iti = 2/3 < 1. Therefore, the system has the freedom to as-
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FIGURE 4: System throughput gain in the minimum-performance
guarantee scheduling.

sign the remaining 1/3 portion of the resource to some “bet-
ter” users (beyond their minimum requirements) to further
improve the system performance.

Figure 5 indicates the amount of resource consumed by
selected users in the temporal fairness scheduling simula-
tions. The first bar represents that of round-robin, where the
resource is equally shared by all users. The second bar repre-
sents our optimal policy (Hungarian). The third bar is the
greedy policy. The rightmost bar shows the minimum re-
quirements of user. The second bar is higher than the fourth
bar for all the users, which indicates that our temporal fair-
ness optimal scheduling policy meets the minimum time-
fraction requirements for all users. In the greedy policy, users
1, 16, and 32 get very little resource (far below the minimum
requirement line) while users 88, 96, and 128 have very large
shares. As expected, the greedy algorithm is heavily biased
though it achieves the highest overall performance.

In the following, we simply check the fairness among the
users with utilitarian fairness and minimum-performance
guarantee scheduling. We use the same cellular system and
user group settings as temporal fairness.

In Figure 6, we show the average performance val-
ues of selected users in the utilitarian fairness schedul-
ing simulations. The preset performance requirements of
the selected users 1, 16, 32, 56, 64, 88, 96, and 128
are [0.001,0.002,0.001,0.003,0.003, 0.004, 0.005, 0.005]. The
values represent the minimum fraction of overall average
performance for individual users.

In Figure 7, we show the average performance values
of selected users in the minimum-performance guarantee
scheduling simulations. Similar to the previous section, we
first run a round-robin simulation, then use the obtained av-
erage performance as minimum-performance requirement
for each user. From the figure, we see that our optimal
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scheduling.

scheduling policy (Hungarian) meets all the requirements
and outperforms round-robin policy everywhere.

In summary, the simulation results show that using
our OFDM opportunistic scheduling policies, the system
can achieve significant performance gains over the nonop-
portunistic round-robin policy while satisfying the various
QoS/fairness requirements. Also, the low-complexity subop-
timal policy shows near-optimal performance in every sce-
nario.

6 7

Average performance value
w
1

96 128
User ID
Round-robin 3 Greedy
EE Hungarian [ Required

FIGURE 7: User average performance in the minimum-performance
guarantee scheduling.

7. CONCLUSIONS

Opportunistic transmission scheduling is a promising tech-
nology to improve spectrum efficiency by exploiting time-
varying channel conditions. We investigated the applica-
tion of opportunistic scheduling in multiuser OFDM sys-
tems, which dynamically allocates resource in both temporal
and spectral domains. Optimal scheduling policies were pre-
sented and proven to be optimal under the temporal fairness,
utilitarian fairness, and minimum-performance QoS con-
straints. We developed optimal and suboptimal algorithms
to implement these optimal policies efficiently. The simula-
tion showed that the schemes achieve improvements of about
30%-140% in network efficiency compared with a schedul-
ing scheme that does not take into account channel condi-
tions.

Scheduling problems with multiple mixed QoS/fairness
constraints will be interesting to tackle as future work and is
definitely of practical interests. For example, a user might ask
for both minimum temporal fraction and minimum perfor-
mance guarantees. Or a user might be constrained by both
maximum and minimum requirements of wireless resource.
We also plan to investigate the significant feedback overhead
involved in assuming perfect channel-state information feed-
back in OFDM systems, especially in fast fading channels.
Scenarios with relatively small numbers of users in the system
will also be explored. That means two or more subcarriers
could be available for each user. The effects of finite-length
data arrival queues or explicit delay requirement for cer-
tain users also will be studied. The application of multiple-
channel opportunistic scheduling for MAC layer QoS control
in cognitive radio systems will be considered in our future
work.
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