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can be exploited to design efficient FIR widely-linear (WL) receiving structures for MC systems operating in the presence of
narrowband interference (NBI). With regard to both cyclic-prefixed and zero-padded transmission techniques, it is shown in this
paper that, with appropriately designed precoders, it is possible to synthesize in both cases WL-ZF universal equalizers, which
guarantee perfect symbol recovery for any FIR channel. Furthermore, it is theoretically shown that the intrinsic redundancy of
the improper symbol sequence also enables WL-ZF equalization, based on the minimum mean output-energy criterion, with
improved NBI suppression capabilities. Finally, results of numerical simulations are presented, which assess the merits of the
proposed precoding designs and validate the theoretical analysis carried out.
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1. INTRODUCTION

Digital transmissions over frequency-selective channels are
adversely affected by intersymbol interference (ISI). Such
an impairment can be perfectly compensated for, or signif-
icantly reduced, by transmitting information-bearing data in
a block-based fashion [1] and, at the same time, by using
block finite-impulse response (FIR) equalizers at the receiver.
Within the family of block-based communication technolo-
gies, the most commonly used schemes are the discrete multi-
tone (DMT) one, which is employed in wireline applications,
such as several digital subscriber line (xDSL) standards [2]
and power line communications standards (HomePlug) [3],
and the orthogonal-frequency-division multiplexing (OFDM)
one, which is adopted in various wireless standards, such as
IEEE 802.11a/g [4] and HIPERLAN2 [5], digital audio, and
video broadcast (DAB/DVB) [6, 7].

Recently, a broad class of multicarrier (MC) block-
oriented transmission schemes, including DMT and OFDM
as special cases, has been introduced in [1, 8, 9] (see Section 2

for the system model). To counteract ISI by means of
low-complexity block processing at the receiver, such MC
schemes rely on linear redundant precoding, which enables
the following two-step equalization procedure: first, ISI be-
tween consecutive blocks, referred to as interblock interference
(IBI), is eliminated and, then, ISI within symbols of a trans-
mitted block, referred to as intercarrier interference (ICI), is
removed. Two redundant precoding schemes [10] for IBI re-
moval are widely considered in the literature. In the first one,
a cyclic prefix (CP), of length Lr larger than or equal to the
channel order L, is inserted at the beginning of each trans-
mitted block; at the receiver, the CP is discarded and the re-
maining part of the MC symbol turns out to be IBI-free. The
second scheme is based on zero padding (ZP), wherein Lr ≥ L
zero symbols are appended to each symbol block; in this case,
IBI suppression is obtained without discarding any portion
of the received signal. If the number of zero symbols is equal
to the CP length, CP- and ZP-based systems exhibit the same
spectral efficiency.
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As regards ICI mitigation, when the channel is quasis-
tationary and channel-state information (CSI) is available
at the transmitter, a sensible approach is to perform joint
transmitter-receiver (transceiver) optimization [8, 9, 11].
However, in some wireless applications, CSI might be too
costly to acquire; moreover, transceiver optimization be-
comes exceedingly complicated if the MC system operates
in the presence of narrowband interference (NBI). Indeed,
NBI is the major expected source of degradation both in
wireless MC systems operating in overlay mode or in non-
licensed band, and in wireline ones subject to crosstalk or
radio-frequency interference. In these cases, a more viable
solution consists of keeping the precoder fixed (e.g., by using
an inverse discrete Fourier transform (IDFT)) and devising
joint ICI and NBI suppression algorithms with manageable
complexity at the receiver side.

Coming to performance limits, it is well-known (see, e.g.,
[8]) that, for CP-based systems, linear FIR (L-FIR) perfect or
zero-forcing (ZF) ICI suppression (in the absence of noise)
is not possible if the channel transfer function exhibits nulls
on (or close to) some subcarriers, no matter how long the
CP is. Even worse, removing the entire CP and imposing the
ZF constraint consume all the available degrees of freedom
in the synthesis of the L-FIR equalizer [12, 13], leading to
the unique solution represented by the conventional receiver,
which, in the given order, performs CP removal, discrete
Fourier transform (DFT) and frequency-domain equaliza-
tion (FEQ). In spite of its simple implementation, such a re-
ceiver lacks any NBI suppression capability [12–15]. On the
other hand, ZP precoding enables universal FIR L-ZF equal-
ization, that is, perfect symbol recovery is guaranteed re-
gardless of the channel-zero locations [8, 9]. Compared with
CP precoding, the price to pay for such an ICI suppression
capability is the slightly increased receiver complexity and
the larger power amplifier backoff. Additionally, since per-
fect IBI suppression is obtained by retaining the entire linear
convolution of each transmitted block with the channel, the
FIR L-ZF solution is not unique in the ZP case, even for a
fixed equalizer order. This nonuniqueness allows one to gain
some degrees of freedom for NBI suppression, which how-
ever might not be sufficient for synthesizing L-ZF equalizers
with satisfactory performance in many NBI-contaminated
scenarios (see Section 5).

Recently, with reference to a CP-based system employing
IDFT precoding, it has been shown in [12] that, by exploit-
ing the possible improper or noncircular [16, 17] nature of
the transmitted symbols, improved NBI suppression capa-
bilities can be attained by adopting widely linear (WL) FIR
block-oriented receiving structures [18]. Specifically, a WL-
ZF block equalizer has been devised in [12], which is able
to gain the additional degrees of freedom needed to miti-
gate, in the minimum mean-output-energy (MMOE) [19]
sense, the effects of the NBI at the receiver output. Exploita-
tion of the noncircularity property has also been proposed
in [12] for achieving blind channel identification. Along the
same research line, the problem of perfectly equalizing FIR
channels in block-based communication systems employing
linear nonredundant precoding at the transmitter has been
tackled in [20]. Many modulation formats of practical in-

terest turn out to be improper [21–23], such as ASK, differ-
ential BPSK (DBPSK), offset QPSK (OQPSK), offset QAM
(OQAM), MSK, and its variant Gaussian MSK (GMSK). In
particular, the main advantage of staggered or offset modu-
lation schemes, such as OQPSK and OQAM, with respect to
their nonoffset counterparts, that is, QPSK and QAM, is the
increased bandwidth efficiency, which motivated their use in
wireless [24, 25] and cable modem systems [26]. Moreover,
offset modulation schemes are employed in pulse-shaping
multicarrier systems [27] for their robustness to carrier fre-
quency offset. It is worth noting that, in the MC context,
noncircularity of the transmitted symbols has also been ex-
ploited to improve multiuser blind channel identification
[28] and blind frequency-offset synchronization [29, 30].

Although the WL-ZF-MMOE equalizer proposed in [12]
assures a significant performance advantage over the con-
ventional L-ZF receiver in CP-based NBI-contaminated sys-
tems, it is not a universal one, since it is not able to perfectly
suppress ICI when the channel transfer function has nulls
on some subcarriers. Furthermore, the NBI suppression ca-
pabilities of the WL-ZF-MMOE equalizer have been tested
only by computer simulations in [12]. Motivated by the im-
portance of universal equalization, this paper builds on [12]
and provides in Section 3 a detailed study of the conditions
assuring WL-FIR perfect symbol recovery in both CP- and
ZP-based systems. In particular, it is shown that, contrary
to L-FIR equalization, universal WL perfect symbol recov-
ery is possible not only in a ZP-based system, but also in
a CP-based one, provided that the precoder satisfies some
channel-independent design rules. Additionally, by gaining
advantage of the results provided in Section 3, we generalize
in Section 4 our previous formulation [12] of the WL-ZF-
MMOE equalizer to both CP- and ZP-based systems and, in
a general framework, we analyze its NBI rejection capabilities
from a theoretical viewpoint. Finally, in Section 5, all the the-
oretical results provided throughout the paper are validated
via numerical simulations, whereas concluding remarks are
pointed out in Section 6.

1.1. Notations

Matrices (vectors) are denoted with upper case (lower case)
boldface letters (e.g., A or a); the field of m×n complex (real)
matrices is denoted as Cm×n(Rm×n), with Cm(Rm) used as a
shorthand for Cm×1(Rm×1); {A}i1i2 indicates the (i1 + 1, i2 +
1)th element of matrix A ∈ Cm×n, with i1 ∈ {0, 1, . . . ,m− 1}
and i2 ∈ {0, 1, . . . ,n−1}; a tall matrix A is a matrix with more
rows than columns; the superscripts ∗, T , H , −1, −, and †
denote the conjugate, the transpose, the Hermitian (conju-
gate transpose), the inverse, the generalized (1)-inverse [31],
and the Moore-Penrose generalized inverse (pseudoinverse)
[31] of a matrix; 0m ∈ Rm denotes the null vector, Om×n ∈
Rm×n the null matrix, and Im ∈ Rm×m the identity matrix;
trace(·) represents the trace of a matrix; for any a ∈ Cn,
‖a‖ denotes the Euclidean norm for any A ∈ Cn×m, rank(A),
N (A), and R(A) denote the rank of A, the null and the col-
umn space of A; A = diag[A11, A22, . . . , App] ∈ C(np)×(mp),
with Aii ∈ Cn×m, is a block diagonal matrix; finally, E[·] and
� denote ensemble averaging and convolution.
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Figure 1: MC transceiver.

2. THEMC TRANSCEIVERMODELWITH LINEAR
PRECODING ANDWL EQUALIZATION

In this paper, we employ the generalized block-based trans-
mit model developed in [8, 9], which encompasses many MC
communication systems, such as OFDM and DMT. At the re-
ceiver side, under the assumption that the transmitted sym-
bols are improper, we resort to the WL block-by-block equal-
izing structure proposed in [12].

2.1. TheMC signal model

Let us consider a multicarrier system with M subcarriers
(see Figure 1), wherein the data stream {s(n)}n∈Z is con-
verted into M parallel substreams sm(n) � s(nM + m) for
m ∈ {0, 1, . . . ,M − 1}. Any block of M consecutive symbols
s(n) � [s0(n), s1(n), . . . , sM−1(n)]T ∈ CM is subject to a lin-
ear redundant transformation ũ(n) = F̃s(n), where ũ(n) �
[ũ0(n), ũ1(n), . . . , ũP−1(n)]T ∈ CP , with P � M + Lr > M,
and F̃ ∈ CP×M is a full-column rank (time-domain) precod-
ing matrix to be designed. The redundancy 0 < Lr � M
introduced for each transmitted block is the key to avoid-
ing IBI at the receiver. Vector ũ(n) undergoes parallel-to-
serial (P/S) conversion, and the resulting sequence feeds a
digital-to-analog converter (DAC), operating at rate 1/Tc =
P/T , where Tc and T denote the sampling and symbol pe-
riod, respectively. After up-conversion, the transmitted signal
propagates through a physical channel modeled as a linear
time-invariant filter, whose (composite) impulse response is
hc(t) (encompassing the cascade of the DAC interpolation fil-
ter, the physical channel, and the analog-to-digital converter
(ADC) antialiasing filter).

Let us assume, without loss of generality, that the nth
symbol block s(n) has to be detected. To this aim, the re-
ceived signal r̃c(t) is sampled, with rate 1/Tc, at time instants
tn,� � nT + �Tc, with � ∈ {0, 1, . . . ,P − 1}, thus yielding
the discrete-time sequence r̃�(n) for � ∈ {0, 1, . . . ,P − 1}.
In the sequel, we set h(m) � hc(mTc) and ṽ�(n) � ṽc(tn,�),
where ṽc(t) represents the additive disturbance (NBI-plus-
noise) at the receiver input, and we assume that the channel
impulse response hc(t) spans L ≤ Lr sampling periods, that
is, hc(t) = 0 for t /∈ [0,LTc]; hence, the resulting discrete time
channel h(m) is a causal FIR filter of order L ≤ Lr, that is,
h(m) = 0 for m /∈ {0, 1, . . . ,L}, with h(0),h(L) /=0. By gather-

ing the samples of the sequence {r̃�(n)}P−1
�=0 into the column

vector r̃(n) � [r̃0(n), r̃1(n), . . . , r̃P−1(n)]T ∈ CP , we obtain
the following vector model [1, 8, 9] for the received signal:

r̃(n) = H̃0F̃s(n) + H̃1F̃s(n− 1) + ṽ(n), (1)

where ṽ(n) � [ṽ0(n), ṽ1(n), . . . , ṽP−1(n)]T ∈ CP is the distur-
bance vector, while H̃0 ∈ CP×P is a Toeplitz lower-triangular
matrix [32] with first column [h(0),h(1), . . . ,h(L), 0, . . . , 0]T

and H̃1 ∈ CP×P is a Toeplitz upper-triangular matrix [32]
with first row (0, . . . , 0,h(L),h(L−1), . . . ,h(1)). In the rest of
the paper, the following additional assumptions are consid-
ered:

(A1) the transmitted symbols {s(n)}n∈Z are modeled as a se-
quence of zero-mean independent and identically dis-
tributed (i.i.d.) random variables, with variance σ2

s �
E[|s(n)|2] > 0 and exhibiting the following property:

s∗(n) = e j2πβns(n) for β ∈ [0, 1),∀n ∈ Z; (2)

(A2) the disturbance ṽc(t) = ṽc,nbi(t) + ṽc,noise(t) is a
zero-mean complex proper [33] wide-sense station-
ary (WSS) random process, statistically independent
of the sequence {s(n)}n∈Z.

A sequence s(n) satisfying assumption (A1) is improper [16],
since E[s2(n)] = σ2

s e
− j2πβn /=0. Signals exhibiting property

(2) are referred to in the literature as conjugate symmet-
ric [34] and are encountered in telecommunications, radar,
and sonar. They include all memoryless real modulation for-
mats (BPSK, m-ASK), differential schemes (DBPSK), off-
set schemes (OQSPK, OQAM), and even (in an approxi-
mate sense) modulations with memory (binary CPM, MSK,
GMSK). For example, real modulation schemes fulfill (2)
with β = 0, that is, s∗(n) = s(n), whereas for complex mod-
ulation schemes, such as OQPSK, OQAM, and MSK, rela-
tion (2) is satisfied [22, 23] if β = 1/2, that is, s∗(n) =
(−1)ns(n). Remarkably, offset modulation schemes are em-
ployed in pulse-shaping multicarrier systems [27, 29, 30] for
their robustness to carrier frequency offset. On the contrary,
proper modulation schemes, such as m-QPSK, m-QAM, or
m-PSK (with m > 2), exhibit E[s2(n)] ≡ 0 and, thus, they do
not belong to the family of modulations satisfying assump-
tion (A1).
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2.2. IBI-freeWL block processing

It has been shown in [12] that the linear dependence (2)
existing between s(n) and s∗(n) might be regarded as an
“intrinsic” redundancy contained in the original symbol se-
quence s(n), which can be suitably exploited for synthesiz-
ing FIR-ZF equalizers with NBI suppression capabilities. This
aim can be obtained by resorting to WL [18] processing of
r̃(n), that is,1

y(n) = G̃1r̃(n) + G̃2r̃∗(n), (3)

where G̃1, G̃2 ∈ CM×P are filtering matrices to be syn-
thesized in order to jointly mitigate IBI, ICI, and distur-
bance. It is worthwhile to observe that, for the considered
improper modulations, one obtains from (2) that s∗(n) =
e j2πβnMJs(n), where J � diag[1, e j2πβ, . . . , e j2πβ(M−1)] ∈
CM×M is a unitary diagonal matrix. When s(n) is real-valued
(β = 0), it results that e j2πβnM ≡ 1; whereas, when s(n) is
complex-valued (β = 1/2), it follows that e j2πβnM = (−1)nM .
In the latter case, without loss of generality, we assume2 that
M is even, thus implying (−1)nM ≡ 1.

Accounting for (1), the equalizer output (3) assumes the
form

y(n) = [G̃1H̃0F̃ + G̃2H̃∗
0 F̃∗J

]
s(n)

+
[

G̃1H̃1F̃ + G̃2H̃∗
1 F̃∗J

]
s(n− 1)

+ G̃1ṽ(n) + G̃2ṽ∗(n).

(4)

To eliminate the IBI from the previous block [second sum-
mand in (4)], it can be observed that H̃1 has nonzero ele-
ments only in its L × L upper-rightmost submatrix. Rely-
ing on this fact, to perfectly nullify the IBI for any chan-
nel impulse response, it is sufficient to impose a structure
on F̃, G̃1, and G̃2 so that G̃1H̃1F̃ = G̃2H̃∗

1 F̃∗ = OM×M .
For the sake of simplicity, we will adopt the choice Lr = L,
which allows one to introduce the minimum redundancy
at the transmitter. In this case, the desired structure can be
forced by resorting to the following factorizations: F̃ = TF,
G̃1 = G1R, and G̃2 = G2R, where F ∈ CM×M , G1 ∈ CM×Q,
and G2 ∈ CM×Q are free matrices, with F being nonsingular,
whereas Q ≥ M, T ∈ RP×M , and R ∈ RQ×P must be chosen
such that RH̃1T = RH̃∗

1 T = OQ×M . To this end, two different
strategies [1, 8, 9] are commonly pursued:

(i) ZP case: T = Tzp � [IM , OM×L]T ∈ RP×M , R = Rzp �
IP , with Q = P;

(ii) CP case: T = Tcp � [ITcp, IM]
T ∈ RP×M , R = Rcp �

[OM×L, IM] ∈ RM×P , with Q = M and Icp ∈ RL×M

obtained from IM by picking its last L rows.

1 A FIR block equalizer can jointly elaborate multiple consecutive received
blocks; herein, we focus our attention on the case where the equalizer
elaborates only a single block r̃(n) (zeroth-order block equalizer).

2 If M is odd, a preliminary “derotation” [12, 22, 23] of r̃∗(n) must be per-
formed before evaluating y(n) in (3).

From a unified perspective, the equalizer output (4) can be
rewritten in either cases as

y(n) = [ G1, G2
]︸ ︷︷ ︸

G∈CM×2Q

[
HF

H∗F∗J

]
︸ ︷︷ ︸
H∈C2Q×M

s(n) +
[

G1, G2
]︸ ︷︷ ︸

G∈CM×2Q

[
Rṽ(n)

Rṽ∗(n)

]
︸ ︷︷ ︸

d(n)∈C2Q

= GHs(n) + Gd(n),
(5)

where we have defined the channel matrix H � RH̃0T ∈
CQ×M . For the ZP case, it results that H = Hzp ∈ CP×M is a
Toeplitz [32] matrix having [h(0),h(1), . . . ,h(L), 0, . . . , 0]T as
first column and [h(0), 0, . . . , 0] as first row. For the CP case,
it results that H = Hcp ∈ CM×M is a circulant [32] matrix
having [h(0),h(1), . . . ,h(L), 0, . . . , 0]T as first column.

The matrices F, G1, and G2 must be designed in order to
mitigate ICI and disturbance. In the following section, ne-
glecting for the time being additive disturbance effects, we
provide a procedure for synthesizing these matrices with the
aim to achieve deterministic ICI suppression, regardless of the
multipath channel (so called universal precoding).

3. UNIVERSAL LINEAR PRECODING FOR
FIRWL-ZF EQUALIZATION

In the absence of disturbance (i.e., ṽ(n) = 0P), accounting
for (5), the perfect or ZF symbol recovery condition y(n) =
s(n) leads to the linear matrix equation GH = IM in the
unknown G, which is consistent (i.e., it admits at least one
solution) if and only if the “augmented” matrix H ∈ C2Q×M

is full-column rank, that is, rank(H) = M. It is noteworthy
that since 2Q > M either in the ZP case or in the CP one, the
matrix H is tall by construction. Therefore, if rank(H) =M,
the ZF solution is not unique. Indeed, the general solution of
GH = IM can be written [12, 31] as

Gzf =H†︸ ︷︷ ︸
G(f)

zf

−YΠ︸ ︷︷ ︸
G(a)

zf

= G(f)
zf −G(a)

zf , (6)

where G(f)
zf ∈ CM×2Q represents the minimum-norm (in

the Frobenius sense) solution of GH = IM , the matrix
Y ∈ CM×(2Q−M) is arbitrary, and Π ∈ C(2Q−M)×2Q is the
signal blocking matrix, which is chosen so that the columns
of ΠH constitute an orthonormal basis for R⊥(H), that is,
ΠH = O(2Q−M)×M and ΠΠH = I2Q−M . In Section 4, we
will show how to exploit the remaining free parameters, con-
tained in Y, to mitigate the effects of the disturbance (NBI-
plus-noise).3

Since the full-column rank property of H is both a nec-
essary and a sufficient condition for the existence of the FIR

3 It is worth noticing that the summands G(f)
zf and G(a)

zf are orthogonal, for

any choice of Y, namely, G(f)
zf [G(a)

zf ]
H = OM×M . In this sense, the WL-

ZF solution (6) can be regarded as a generalized sidelobe canceler (GSC)
decomposition [19], which is well known in the array processing context.
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WL-ZF equalizer (6), the first step of our study consists of in-
vestigating whether the condition rank(H) = M is satisfied
regardless of the underlying frequency-selective channel. In
the ZP case, the rank properties of

H =Hzp �
[

HzpF
H∗

zpF∗J

]
∈ C2P×M (7)

are easily characterized, since the Toeplitz matrix Hzp is full-
column rank for any FIR channel of order L [1, 8, 9]. In-
deed, owing to nonsingularity of F and J, it results that
rank(HzpF) = rank(H∗

zpF∗J) = rank(Hzp) = M. Henceforth,
the augmented channel matrix Hzp is always full-column
rank and, thus, channel-irrespective WL-FIR perfect symbol
recovery is possible. It is interesting to note that universal ZF
symbol recovery is also guaranteed [1, 8, 9] for a ZP-based
system by using a simpler L-FIR block equalizer, which can
work either for proper or improper data symbols. However,
as shown by our simulation results in Section 5, compared
with its linear counterpart, a WL-ZF equalizer ensures much
better performance in the presence of disturbance. As regards
the choice of the nonsingular matrix F, different universal
precoders can be built. A simple choice, which is adopted in
wireless OFDM systems, is the following:

F = WIDFT =⇒ F̃IDFT � TzpWIDFT, (8)

where {WIDFT}mp � (1/
√
M)e j(2π/M)mp, for m, p ∈ {0, 1,

. . . ,M − 1}, is the unitary symmetric IDFT matrix, and its
inverse WDFT � W−1

IDFT = W∗
IDFT defines the DFT. In the CP

case, the rank characterization of H is less obvious than in
the ZP one and, thus, is deferred to Section 3.1.

3.1. Full-column rank property ofH for
a CP-based system

With reference to a CP-based system, let us study the rank
properties of

H =Hcp �
[

HcpF
H∗

cpF∗J

]
(9)

whose characterization is more cumbersome than that of
Hzp, since, unlike Hzp, the circulant matrix Hcp turns out
to be singular for some FIR channels. Preliminarily, observe
that, by resorting to standard eigenstructure concepts [1, 32],
one has Hcp = WIDFTAcpWDFT, where the diagonal entries of
Acp � diag[αcp(0),αcp(1), . . . ,αcp(M − 1)] ∈ CM×M are the

values of the channel transfer function H(z) �
∑ L

�=0
h(�)z−�

evaluated at the subcarriers zm � ei(2π/M)m, that is, αcp(m) =
H(zm), for all m ∈ {0, 1, . . . ,M−1}. Henceforth, one obtains
from (7) that

Hcp =
[

WIDFT OM×M
OM×M W∗

IDFT

]
︸ ︷︷ ︸

wIDFT∈C2M×2M

[
Acp OM×M

OM×M A∗cp

]
︸ ︷︷ ︸

Acp∈C2M×2M

[
Bcp

B∗cpJ

]
︸ ︷︷ ︸
Bcp∈C2M×M

=wIDFTAcpBcp,
(10)

where we have defined the nonsingular matrix Bcp �
WDFTF ∈ CM×M , which will be referred to as the frequency-
domain precoding matrix. As a first remark, note that,
since wIDFT is nonsingular, it follows that rank(Hcp) =
rank(AcpBcp). Moreover, since Bcp is nonsingular, the
matrix Bcp turns out to be full-column rank, that is,
rank(Bcp) = M. It is apparent that, contrary to the ZP case,
nonsingularity of the (time-domain) precoding matrix F or,
equivalently, nonsingularity of the frequency-domain pre-
coding matrix Bcp, does not ensure by itself the full-column
rank property of Hcp, that is, the existence of FIR WL-ZF
solutions. However, if H(z) has no zeros on the subcarriers,
that is, αcp(m) /=0, for all m ∈ {0, 1, . . . ,M − 1}, it results
that Acp is nonsingular and, consequently, rank(AcpBcp) =
rank(Bcp) =M. In other words, for a CP-based system, only
if H(z) has no zeros on the used subcarriers, the nonsingu-
larity of the precoding matrix F implies the full-column rank
property of Hcp. As a matter of fact, if Acp is nonsingular,
the existence of ZF solutions is also guaranteed [1] for a CP-
based system by using a simpler L-FIR block equalizer. How-
ever, the following theorem shows that, unlike L-FIR equal-
ization, the presence of channel zeros on some subcarriers
does not prevent perfect WL symbol recovery.

Theorem 1 (Rank characterization of Hcp). If the channel
transfer function H(z) has 0 ≤ Mz ≤ L distinct zeros on
the subcarriers zm1 = ei(2π/M)m1 , zm2 = ei(2π/M)m2 , . . . , zmMz

=
ei(2π/M)mMz , withm1 /=m2 /=· · · /=mMz ∈ {0, 1, . . . ,M−1}, the
augmented channel matrixHcp is full-column rank if and only
of

rank
[(

I2M − SzS
T
z

)
Bcp

] =M, (11)

where Sz � diag[Sz, Sz] ∈ R2M×2Mz and Sz � [1m1 , 1m2 ,
. . . , 1mMz

] ∈ RM×Mz are full-column rank matrices, with 1m

denoting the (m + 1)th column of IM .

Proof. See Appendix A.

First of all, it should be observed that Theorem 1 gener-
alizes the results of [20], which are targeted at nonredundant
precoding, to the more general case of CP-based redundant
precoders. Theorem 1 should be good news to system design-
ers since it states that, for a CP-based transmission, perfect
WL symbol recovery is possible even when the channel trans-
fer function has zeros on the used subcarriers, that is, Mz /=0.
In this case, however, the condition to be fulfilled is that the
matrix (I2M−SzST

z )Bcp ∈ C2M×M must be full-column rank.
It can be verified by direct inspection that all the 2Mz rows of
(I2M − SzST

z )Bcp located in the positions

Im1,m2,...,mMz
�
{
m1 + 1,m2 + 1, . . . ,mMz + 1,

m1 + M + 1,m2 + M + 1, . . . ,mMz + M + 1}
(12)

are zero (all the entries are equal to zero), whereas the 2(M−
Mz) remaining ones coincide with the corresponding rows
of Bcp. Consequently, fulfillment of condition (11) necessar-
ily requires that 2(M − Mz) ≥ M, which imposes that the
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number of subcarriers must be greater than or equal to 2Mz,
that is, M ≥ 2Mz. In the worst case when Mz = L, that is,
all the channel zeros are located at the subcarriers, the mini-
mum number of subcarriers is equal to 2L. This is a very mild
condition, which is satisfied by many systems of practical in-
terest. Besides the channel-zero configuration, the existence
of FIR WL-ZF solutions depends on the precoding strategy
employed at the transmitter. It is interesting to consider the
case of an IDFT precoding, that is, F = WIDFT, which is the
precoder considered in [12]. We recall that this kind of pre-
coding, typically used in OFDM wireless systems, is universal
for both L- and WL-FIR perfect symbol recovery in ZP-based
systems. In this case, it results that Bcp = IM and, hence, one
has

Bcp =
[

IM
J

]
. (13)

Let M ≥ 2Mz, it is readily verified that, when Bcp assumes
the form given by (13), the matrix (I2M−SzST

z )Bcp has rank
equal to M−Mz, for any {m1,m2, . . . ,mMz} ⊂ {0, 1, . . . ,M−
1}. In other words, as in the case of FIR L-ZF equalization,
when an IDFT precoding is used, perfect WL-FIR symbol
recovery is possible in a CP-based system if and only if the
channel transfer function has no zeros on the used subcar-
riers, that is, Mz = 0. This result is in accordance with [12,
Lemma 2].

Theorem 1 evidences that, in contrast with ZP-based sys-
tems, even when the frequency-domain precoding matrix Bcp

is nonsingular, the full-column rank property of Hcp ex-
plicitly depends on the presence of channel zeros located at
the subcarriers {zm}M−1

m=0 , whose number Mz and locations
m1,m2, . . . ,mMz are unknown at the receiver. Remarkably,
Theorem 1 additionally allows us to provide universal code
designs, which assure that Hcp is full-column rank for any
possible configuration of the channel zeros. First of all, we
observe that, although Mz is unknown, it is upper bounded
by L, that is, 0 ≤ Mz ≤ L. Thus, by virtue of Theorem 1, we
can infer that the augmented matrix Hcp is full-column rank
for any FIR channel of order (smaller than or equal to) L if
and only if

rank
[(

I2M − SunivS
T
univ

)
Bcp

] =M,

∀{m1,m2, . . . ,mL
} ⊂ {0, 1, . . . ,M − 1}, (14)

where Suniv � diag[Suniv, Suniv] ∈ R2M×2L and Suniv � [1m1 ,
1m2 , . . . , 1mL] ∈ RM×L are full-column rank matrices. Con-
dition (14) necessarily requires that M ≥ 2L. Relying on the
fact that the matrix (I2M − SunivS

T
univ)Bcp is obtained from

Bcp by setting to zero all the entries of its 2L rows located in
the positions Im1,m2,...,mL (see (12) with Mz = L), we can state
the following necessary and sufficient condition for universal
precoding design.

Condition Ucp (universal precoding for CP-based systems)

Let ζTm � [ζ (m)
1 , ζ (m)

2 , . . . , ζ (m)
m ] ∈ C1×M denote the (m + 1)th

row of Bcp = WDFTF, with m ∈ {0, 1, . . . ,M − 1}; when M ≥
2L, for any subset of distinct indices {m1,m2, . . . ,mM−L} ⊂

{0, 1, . . . ,M−1}, there exists M linearly independent vectors
from the total set {ζm1

, ζm2
, . . . , ζmM−L , Jζ∗m1

, Jζ∗m2
, . . . , Jζ∗mM−L}.

Condition Ucp shows that channel-irrespective FIR WL-
ZF equalization is possible not only in a ZP-based system, but
also in a CP-based one. It is worthwhile to observe that con-
dition Ucp does not uniquely specify Bcp (or, equivalently, F)
and, thus, different universal precoders can be built. For in-
stance, condition Ucp can be satisfied by imposing that each
row of Bcp be a Vandermonde-like vector. Specifically, let us
select M ≥ 2L nonzero numbers {ρm}M−1

m=0 and build the vec-
tors ζm as

ζm =
1√χm
[
1, ρm, ρ2

m, . . . , ρM−1
m

]T
, ∀m ∈ {0, 1, ...,M − 1},

(15)

where normalization by 1/√χm is introduced to ensure that

‖ζm‖2 = 1, which in its turn implies that trace(FHF) = M.
In this case, it is important to observe that Jζ∗m is again a
Vandermonde-like vector, since it follows that

Jζ∗m =
1√χm
[
1,
(
ρ∗me

j2πβ), (ρ∗me j2πβ)2
, . . . ,

(
ρ∗me

j2πβ)M−1]T
,

∀m ∈ {0, 1, ...,M − 1}.
(16)

Relying on the properties of Vandermonde vectors [32], it
is not difficult to prove that condition Ucp is satisfied if one
imposes the following two conditions:

(C1) ρ� /=ρm, for all �,m ∈ {0, 1, . . . ,M − 1};
(C2) ρ� /=ρ∗me j2πβ, for all �,m ∈ {0, 1, . . . ,M − 1}.
Condition (C1) imposes that the numbers ρ0, ρ1, . . . , ρM−1
be distinct; this assures that the sets of vectors {ζm1

, ζm2
,

. . . , ζmM−L} and {Jζ∗m1
, Jζ∗m2

, . . . , Jζ∗mM−L} are linearly indepen-
dent. In addition, condition (C2) imposes that, given the
linearly independent set {ζm1

, ζm2
, . . . , ζmM−L}, the extended

set of vectors, obtained by adding the linearly independent
vectors Jζ∗m1

, Jζ∗m2
, . . . , Jζ∗mM−L , is again linearly independent.

Observe that, if the numbers ζm are chosen equispaced on
the unit circle, by setting ρm = e− j(2π/M)m, for all m ∈
{0, 1, . . . ,M − 1}, one obtains a DFT frequency-domain pre-
coding, that is, Bcp = WDFT, which leads to an identity time-
domain precoder, that is, F = WIDFTBcp = IM . Such a pre-

coder is not universal since the numbers {e− j(2π/M)m}M−1
m=0 ful-

fill condition (C1) but do not satisfy condition (C2); indeed,
in this case, condition (C2) ends up to the following one:

� + m

M
+ β /=h, ∀�,m ∈ {0, 1, . . . ,M − 1},∀h ∈ Z (17)

which is violated either when β = 0 or when β = 1/2. A
similar result holds for an IDFT frequency-domain precod-
ing,that is, when ρm = e j(2π/M)m, for all m ∈ {0, 1, . . . ,M−1}.
To obtain a set of M complex-valued parameters {ρm}M−1

m=0
equispaced on the unit circle, which satisfy condition (C2),
it is sufficient to introduce a suitable rotation by setting
ρm = e− j((2π/M)m−θ), for all m ∈ {0, 1, . . . ,M − 1} and
θ ∈ (0, 2π). In this latter case, the frequency-domain pre-
coding matrix assumes the form Bcp = WDFTΘ, where Θ �
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diag[1, e jθ , e j2θ , . . . , e j(M−1)θ] ∈ CM×M , which leads to the
time-domain precoding matrix

F = WIDFTBcp = Θ =⇒ F̃RMIC � TcpΘ, (18)

which will be referred to as redundant modulation-induced
cyclostationarity (RMIC) precoder. To fulfill condition (C2),
the angle rotation θ must obey the condition

θ /= π

M
(� + m) + πβ + hπ,

∀�,m ∈ {0, 1, . . . ,M − 1},∀h ∈ Z.
(19)

The precoder specified by (18)-(19) satisfies condition Ucp

and, hence, it represents a first simple example of precoding
ensuring universal WL perfect symbol recovery in CP-based
systems. It is important to observe that MIC precoding tech-
niques were originally proposed [35, 36] for nonredundantly
precoded systems. In comparison with redundant precoding
techniques, the drawback of nonredundant MIC-based ap-
proaches is the lack of FIR L-ZF equalizers for FIR channels.
As shown in [20], such a shortcoming can be avoided by re-
sorting to WL-FIR block processing at the receiver.

Finally, a remark regarding computational complexity is-
sue for both the ZP and CP cases is in order. For a ZP-
based system, the synthesis of the WL-ZF equalizer (6) re-

quires evaluation of G(f)
zf , which turns out to be equal to

H†
zp = (HH

zpHzp)−1HH
zp. Therefore, in this case, the compu-

tational complexity of the minimum-norm WL-ZF equalizer
is essentially dominated by the inversion of the M ×M ma-
trix HH

zpHzp, which cannot be precomputed offline, since the
matrix to be inverted depends on the channel impulse re-
sponse. A similar problem also arises in the case of FIR L-ZF
equalization for ZP-based systems [10], where the pseudoin-
verse of Hzp has to be evaluated, which again involves inver-
sion of an M ×M matrix. On the other hand, for a CP-based
system, synthesis of the WL-ZF equalizer (6) requires evalu-

ation of G(f)
zf , which is given by H†

cp = (AcpBcp)†wDFT =
(BH

cpA
H
cpAcpBcp)−1BH

cpA
H
cpwDFT, where wDFT � w∗

IDFT.
Similar to the ZP case, inversion of the M × M matrix
BH

cpA
H
cpAcpBcp cannot be precomputed offline since the

matrix to be inverted depends on the channel transfer func-
tion. Roughly speaking, evaluation of the minimum-norm
WL-ZF equalizer approximately requires the same computa-
tional burden in either the ZP or the CP case. However, CP
precoding is fully compatible with existing MC-based stan-
dards (e.g., IEEE 802.11a and HIPERLAN/2) and involves a
smaller power backoff than ZP transmission techniques [10].

4. WL-ZFMMOE DISTURBANCEMITIGATION

The unified form (6) of the WL-ZF equalizer, which encom-
passes both ZP- and CP-based systems, shows the existence
of free parameters, embodied in matrix Y, which can be ex-
ploited for further optimization in the presence of distur-
bance. Towards this aim, the matrix Y is chosen here so as to
minimize the mean-output-energy (MOE) at the output of

the WL-ZF equalizer, which, by substituting (6) in (5), can
be written as

y(n) = GzfHs(n) + Gzfd(n) = s(n) +
(
G(f)

zf −YΠ
)

d(n).
(20)

Therefore, mitigation of the disturbance contribution at the
equalizer output amounts to choosing Y as the solution of
the following unconstrained quadratic optimization prob-
lemml:

Ymmoe = arg min
Y∈CM×(2Q−M)

E
[∥∥(G(f)

zf −YΠ
)

d(n)
∥∥2]

, (21)

whose solution is given [12] by

Ymmoe = GzfRddΠ
H(ΠRddΠ

H)−1
, (22)

where Rdd � E[d(n)dH(n)] ∈ C2Q×2Q is the autocorrelation
matrix of the augmented disturbance vector d(n). By substi-
tuting (22) in (6), the WL-ZF-MMOE equalizer is explicitly
characterized by

Gzf-mmoe = G(f)
zf −YmmoeΠ, (23)

and, after some straightforward algebraic manipulations, the
corresponding (minimum) mean-output-energy of the dis-
turbance is given by

Pd,min � E
[∥∥(G(f)

zf −YmmoeΠ
)

d(n)
∥∥2]

= trace
[
G(f)

zf Rdd
(
G(f)

zf

)H]
− trace

[
G(f)

zf RddΠ
H(ΠRddΠ

H)−1
ΠRdd

(
G(f)

zf

)H]
.

(24)

Synthesis of the WL-ZF-MMOE equalizer (23) requires the
disturbance autocorrelation matrix Rdd to be consistently es-
timated from the augmented version z(n) ∈ C2Q of the IBI-
free received vector r(n) � Rr̃(n) ∈ CQ, which, accounting
for (1) and (5), assumes the form

z(n) �
[

r(n)
r∗(n)

]
=Hs(n) +

[
v(n)

v∗(n)

]
︸ ︷︷ ︸

d(n)

=Hs(n) + d(n),

(25)

with v(n) � Rṽ(n) ∈ CQ. The estimate of Rdd is compli-
cated by the fact that z(n) contains also the contribution of
the MC signal. However, the WL-ZF-MMOE equalizer can
also be expressed in terms of the autocorrelation matrix of
z(n), which, under assumptions (A1) and (A2), is given by

Rzz � E
[

z(n)zH(n)
] = σ2

sHHH + Rdd. (26)

By virtue of the signal blocking property of Π, it results that
ΠRzz = ΠRdd. Consequently, the solution (22) of the opti-
mization problem (21) can be equivalently written as

Ymmoe = GzfRzzΠ
H(ΠRzzΠ

H)−1
, (27)
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where the matrix Rzz can be estimated from the received data
more easily than Rdd.

The aim of this section is to provide a theoretical analy-
sis of the NBI suppression capabilities of the WL-ZF-MMOE
equalizer given by (23), whose merits have experimentally
been tested in [12] with reference only to a CP-based sys-
tem with IDFT precoding. To this end, we recall that v(n)
is composed of two terms v(n) = vnbi(n) + vnoise(n), where
vnbi(n) and vnoise(n) account for NBI and noise, respectively.
In addition to assumption (A2), we assume that

(A3) the first Rnbi � Q eigenvalues of the NBI autocorrela-
tion matrix Rnbi � E[vnbi(n)vH

nbi(n)] are significantly
different from zero, whereas the remaining ones are
vanishingly small;

(A4) the vector vnoise(n) is a white random process, statisti-
cally independent of vnbi(n), with autocorrelation ma-
trix Rnoise � E[vnoise(n)vH

noise(n)] = σ2
vIQ.

It is worth noticing that, by invoking some results [37]
regarding the approximate dimensionality of exactly time-
limited and nominally band-limited signals, assumption
(A3) is well verified for reasonably large values of Q, with
Rnbi = �QTcWnbi� + 1, where Wnbi is the (nominal) band-
width of the continuous-time NBI process. In the case of
NBI, it happens in practice that, compared with the band-
width of the MC system, the bandwidth Wnbi is significantly
smaller, that is, TcWnbi � 1, and, thus, it turns out that
Rnbi � Q. Under assumption (A3), the NBI autocorrelation
matrix can be well modeled by the following full-rank factor-
ization (see [38]) Rnbi = LLH , where the matrix L ∈ CQ×Rnbi

is full-column rank, that is, rank(L) = Rnbi. By virtue of as-
sumptions (A2), (A3), and (A4), the autocorrelation matrix
of the augmented disturbance vector d(n) can be expressed
as

Rdd =LLH + σ2
vI2Q, (28)

where

L �
[

L OQ×Rnbi

OQ×Rnbi L∗
]
∈ C2Q×2Rnbi (29)

is a full-column rank matrix. As a first remark, it is inter-
esting to observe that, in the absence of NBI, that is, L =
OQ×Rnbi , it results that Rdd = σ2

vI2Q, which can be substituted
in (22), thus obtaining

Ymmoe = GzfΠ
H = OM×(2Q−M), (30)

where the second equality is a consequence of the fact that
ΠH = O(2Q−M)×M . Henceforth, in the absence of NBI, the
WL-ZF-MMOE equalizer (23) boils down to the minimum-
norm solution G(f)

zf = H† of the ZF matrix equation GH =
IM . The following theorem characterizes the NBI suppression
capability of the WL-ZF-MMOE equalizer, in the high signal-
to-noise ratio (SNR) regime, by evaluating the disturbance
mean-output-energy Pd,min as σ2

v approaches to zero.

Theorem 2 (NBI suppression analysis). Assume that the fol-
lowing conditions hold:

(C3) 2Q −M ≥ 2Rnbi;
(C4) H is full-column rank, that is, rank(H) =M;
(C5) R(H)∩R(L) = {02Q}.
In the limiting case of vanishingly small noise, the WL-ZF-

MMOE equalizer (23) assures perfect NBI suppression, that is,
lim σ2

v→0Pd,min = 0.

Proof. See Appendix B.

It is noteworthy that the proof of Theorem 2 is similar
in spirit with that reported in [13, 15] in the case of a CP-
based system employing linear block equalization, moreover
it allows one to obtain clear insights about the effects of sys-
tem parameters on the performance of the WL-ZF-MMOE
equalizer. Specifically, for a ZP-based system (Q = P), condi-
tion (C3) assumes the form

Rnbi ≤ M

2
+ L, (31)

whereas, for a CP-based system (Q =M), it becomes

Rnbi ≤ M

2
. (32)

Thus, in both cases, condition (C3) poses an upper bound
on the rank Rnbi (i.e., the bandwidth Wnbi) of the NBI signal
to be rejected. Roughly speaking, condition (32) means that,
when employed in a CP-based system, the WL-ZF-MMOE
equalizer is able to suppress NBI signals whose bandwidth
Wnbi can be as wide as half the bandwidth of the MC signal,
provided that conditions (C4) and (C5) are fulfilled. Observe
that, in the case of linear ZF equalization, when all the M
subcarriers are used (i.e., there are no virtual carriers) and
complete CP removal is performed at the receiver, perfect
NBI suppression cannot be achieved with the L-ZF-MMOE
equalizer [13], even in the absence of noise. On the other
hand, comparing (31) with (32), when employed in a ZP-
based system, it is seen that the WL-ZF-MMOE equalizer can
completely reject, in the high SNR region, interfering signals
with a wider bandwidth than in the CP case. This result stems
from the fact that ZP precoding performs IBI suppression
without discarding any portion of the received signal, that
is, without decreasing the dimensionality of the observation
space as in the CP case. Condition (C4) has been deeply dis-
cussed in Section 3. Finally, condition (C5) is a pure techni-
cal condition, which is not easily interpretable. It essentially
imposes that the two subspaces R(H) and R(L) must be
nonoverlapping or disjoint, which is less restrictive [39] than
simple orthogonality between the same subspaces. On the
basis of our simulation results, we can state that, if condi-
tions (C3) and (C4) hold, it is very unlikely that condition
(C5) is violated in practice.

5. SIMULATION RESULTS

In this section, we present Monte Carlo computer simula-
tions aimed at corroborating the theoretical results provided
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in Sections 3 and 4. In all the experiments, the following sim-
ulation setting is assumed. The CP- and ZP-based MC sys-
tems employ OQPSK improper signaling. Both systems use
two different precoding strategies: (i) the IDFT precoder, that
is, F = WIDFT; (ii) the RMIC precoder, that is, F = Θ, with
θ = π/32. The discrete-time NBI signal ṽnbi(n) � ṽc,nbi(nTc)
is modeled as a Gaussian random process, with autocorrela-
tion function

rnbi(m) � E
[
ṽnbi(n)ṽ∗nbi(n−m)

] = σ2
nbia

|m|e j2πmν0 , (33)

where σ2
nbi is the NBI power, ν0 is the NBI carrier frequency-

offset and, after some straightforward calculations, a can be
related to the 3-dB NBI bandwidth by

Wnbi = 1
2π

arccos
(

4a− a2 − 1
2a

)
, 0.172 ≤ a < 1. (34)

The parameters a and ν0 are set to 0.99 (corresponding to
Wnbi ≈ 0.0016) and 3.5/M, respectively. The SNR is defined
as4

SNR � σ2
s trace

(
F̃F̃H

)
Mσ2

w
(35)

and, unless otherwise specified, is set to 20 dB. The SIR is
defined as

SIR � σ2
s trace

(
F̃F̃H

)
Mσ2

nbi
(36)

and, unless otherwise specified, is set to 10 dB. All the consid-
ered equalizers5 are synthesized by assuming perfect knowl-
edge of both the channel and the autocorrelation matrix of
the disturbance vector.6 Finally, as performance measure, we
adopt the average bit-error rate (ABER), defined as ABER �
(1/M)

∑M−1

m=0
BERm, where BERm is the output bit-error rate

(BER) at the mth subcarrier. For each Monte Carlo run
(wherein, besides the channel impulse response, indepen-
dent sets of noise, NBI and data sequences were randomly
generated), an independent record of Kaber= 104 MC sym-
bols, which correspond to (M·Kaber) OQPSK symbols, was
considered to evaluate the ABER.

4 Herein, the SNR is defined as the ratio between the average energy per

symbol E[‖ũ(n)‖2]/M = [σ2
s trace (F̃F̃H )]/M expended by the transmit-

ter and the noise variance σ2
w , and it should not be confused with the SNR

at the receiver input.
5 In the sequel, for notational convenience, a particular equalizer, which

operates in a system employing a given precoding technique, will be syn-
thetically referred to through the acronym of the equalizer followed by
the acronym of the precoder enclosed in round brackets, for example,
the notation “WL-ZF-MMOE (IDFT)” means that the WL-ZF-MMOE
equalizer is used at the receiver and, at the same time, IDFT precoding is
employed at the transmitter.

6 With reference to linear processing, it is theoretically shown in [13] that,
when the second-order statistics of the received data are estimated on the
basis of a finite sample size, the L-ZF-MMOE equalizer turns out to be
considerably robust against estimation errors. A similar analysis and con-
clusion can be also inferred for the WL counterpart of the L-ZF-MMOE
receiver.

5.1. Environment 1: MC system employingM = 16
subcarriers with ZP/CP length Lr = 3

In this environment, the CP- and ZP-based MC systems em-
ploy M = 16 subcarriers, with Lr = 3. Observe that, in this
case, it results that Wnbi ≈ 0.025/M, that is, the NBI band-
width is about 2.5% of the subcarrier spacing. The baseband
discrete-time multipath channel {h(m)}Lm=0 is a random FIR
filter of order L = 3, whose transfer function is given by

H(z) = (1− ζ1z
−1)(1− ζ2z

−1)(1− ζ3z
−1), (37)

where the group (ζ1, ζ2, ζ3) of its three zeros assumes a dif-
ferent configuration in each Monte Carlo run. During the
first 16 runs, we set ζ1 = ei(2π/M)m1 (one zero on the subcar-
riers), where, in each run, m1 takes on a different value in
{0, 1, . . . ,M − 1}, whereas the magnitudes and phases of ζ2

and ζ3, which are modeled as mutually independent random
variables uniformly distributed over the intervals (0, 2) and
(0, 2π), respectively, are randomly and independently gener-
ated from run to run. During the subsequent

(
16
2

) = 120
runs, we set ζ1 = ei(2π/M)m1 and ζ2 = ei(2π/M)m2 (two zeros
on the subcarriers), where, in each run, m1 and m2 take on a
different value in {0, 1, . . . ,M−1}, with m1 /=m2, whereas the
magnitude and phase of ζ3, which are modeled as mutually
independent random variables uniformly distributed over
the intervals (0, 2) and (0, 2π), respectively, are randomly and
independently generated from run to run. During the last(

16
3

) = 560 runs, we set ζ1 = ei(2π/M)m1 , ζ2 = ei(2π/M)m2 ,
and ζ3 = ei(2π/M)m3 (three zeros on the subcarriers), where,
in each run, m1, m2, and m3 take on a different value in
{0, 1, . . . ,M − 1}, with m1 /=m2 /=m3. In this way, one obtains
16 + 120 + 560 = 696 independent channel realizations and,
thus, 696 Monte Carlo runs.

5.1.1. ABER versus SNR

In this experiment, we evaluated the performances of the
considered equalizers as a function of the SNR ranging from
0 to 30 dB. In Figure 2, we considered a CP-based system per-
forming either linear7 or WL block processing at the receiver.
In this case, it is apparent from Figure 2 that the curves of
the “L-ZF (RMIC),” “L-ZF (IDFT),” and “WL-ZF-MMOE
(IDFT)” equalizers level off in the high SNR region, which
is the natural consequence of the fact that these receivers do
not ensure perfect ICI and NBI suppression when the chan-
nel transfer function exhibits zeros located on the subcarri-
ers. On the other hand, when the RMIC precoding is used,
perfect WL symbol recovery in the absence of noise is guar-
anteed regardless of the channel zero locations. In fact, the
“WL-ZF-MMOE (RMIC)” equalizer exhibits satisfactory ICI
suppression capabilities, as well as a strong robustness against

7 When complete CP removal is performed at the receiver, the ZF constraint
leads to a unique solution irrespectively of the adopted precoding strategy;
in this case, hence, the L-ZF equalizer cannot be further optimized (e.g.,
in the MMOE sense).
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Figure 2: ABER versus SNR (Environment 1, CP-based system,
SIR = 10 dB).
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Figure 3: ABER versus SNR (Environment 1, ZP-based system,
SIR = 10 dB).

NBI, assuring in particular a huge performance gain with re-
spect to the “WL-ZF-MMOE (IDFT)” receiver.

The results of Figure 3 were obtained instead by consid-
ering a ZP-based system. In this scenario, both IDFT and
RMIC precoding assure the existence of L- and WL-ZF so-
lutions for any FIR channel of order less than or equal
to L. It can be seen that, notwithstanding their channel-
irrespective ICI suppression capabilities, the “L-ZF-MMOE
(RMIC)” and “L-ZF-MMOE (IDFT)” equalizers are not able
to achieve satisfactory NBI rejection, achieving ABER of only
about 10−2 for SNR = 30 dB. In contrast, both the “WL-
ZF-MMOE (IDFT)” and “WL-ZF-MMOE (RMIC)” equal-
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Figure 4: ABER versus SIR (Environment 1, CP-based system,
SNR = 20 dB).

izers not only assure perfect ICI suppression, but also ex-
hibit a remarkable robustness against the NBI. In particu-
lar, note that, except for very high values of the SNR, the
“WL-ZF-MMOE (RMIC)” equalizer outperforms the “WL-
ZF-MMOE (IDFT)” one.

5.1.2. ABER versus SIR

In this experiment, we evaluated the performances of the
considered equalizers as a function of the SIR ranging from
0 to 30 dB. With reference to a CP-based system, results of
Figure 4 further corroborate the good NBI suppression ca-
pabilities of the “WL-ZF-MMOE (RMIC)” equalizer, which
largely outperforms the “L-ZF (IDFT),” “L-ZF (RMIC),” and
“WL-ZF-MMOE (IDFT)” equalizers, for all the considered
values of the SIR. On the other hand, it can be seen from
Figure 5 that, for a ZP-based system, both WL equalizers al-
low one to achieve a significant performance gain with re-
spect to their linear counterparts, by working well even in
the presence of strong NBI signal. Specifically, with respect to
the “WL-ZF-MMOE (IDFT)” receiver, the “WL-ZF-MMOE
(RMIC)” equalizer remarkably saves about 14 dB in trans-
mitter power, for a target ABER of 2·10−4. This evidences
that adoption of the RMIC precoder is important not only
for perfect WL symbol recovery in the absence of distur-
bance, but also for improved NBI suppression.

5.2. Environment 2: MC system employingM = 256
subcarriers with ZP/CP length Lr = 16

In this environment, the CP- and ZP-based MC systems em-
ploy M = 256 subcarriers, with Lr = 16. Observe that, in
this case, it results that Wnbi ≈ 0.4/M, that is, the NBI band-
width is about 40% of the subcarrier spacing. The baseband
discrete-time multipath channel {h(m)}Lm=0 is a random FIR
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Figure 5: ABER versus SIR (Environment 1, ZP-based system,
SNR = 20 dB).

filter of order L = 16, whose taps are modeled as i.i.d. zero-
mean unit-variance complex proper Gaussian random vari-
ables, independently varying over 103 Monte Carlo runs.

5.2.1. ABER versus SNR

In this experiment, we evaluated the performances of the
equalizers compared in the Environment 1, as a function of
the SNR ranging from 0 to 30 dB. Figure 6 reports the results
for a CP-based, whereas Figure 7 refers to a ZP-based system.
Basically, Figures 6 and 7 show the same performance trends
of Figures 2 and 3, by further corroborating the effectiveness
of the proposed RMIC precoding strategy. It is interesting to
observe that, in general, the full-column rank property of the
channel matrix H does not necessarily mean that the inver-
sion of the matrix HHH , which is needed to calculate H† in
(6), is nicely conditioned. In particular, it might happen that,
for a large number of subcarriers, the condition number of
HHH may be too large and, consequently, the ZF constraint
GH = IM might not be satisfied exactly.8 Interestingly, re-
sults of Figures 6 and 7 show that this problem does not occur
for the RMIC precoder, which not only guarantees that H is
full-column rank for any FIR channel of order L ≤ Lr, but ad-
ditionally assures that channel inversion is well-conditioned
even when a large number of subcarriers is used.

6. CONCLUSIONS

We considered the problem of deriving mathematical con-
ditions guaranteeing WL-FIR perfect symbol recovery in

8 If HHH is near to be singular, matrix H† is the minimal norm least-
square solution of the ZF constraint GH = IM .
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Figure 6: ABER versus SNR (Environment 2, CP-based system,
SIR = 10 dB).
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Figure 7: ABER versus SNR (Environment 2, ZP-based system,
SIR = 10 dB).

the absence of noise for either CP-based or ZP-based
MC systems. The conditions derived herein are channel-
independent and are expressed in terms of relatively sim-
ple design constraints on the linear precoder. Specifically,
we have shown that, for both CP- and ZP-based systems,
FIR WL-ZF equalization can be guaranteed even when the
channel transfer function exhibits nulls on some subcarri-
ers. Moreover, the NBI rejection capabilities of the WL-ZF-
MMOE equalizer have been analyzed in the high SNR region,
by providing conditions that assure perfect NBI suppres-
sion. Finally, in this paper, the proposed universal precoders
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were not optimized and the channel impulse response was
assumed to be exactly known at the receiving side; the inter-
esting extensions of jointly optimal transceiver optimization
and blind subspace-based channel estimation are the topic of
our current research and will be addressed in a forthcoming
paper.

APPENDICES

A. PROOF OF THEOREM 1

Let us consider the case where the channel transfer func-
tion H(z) has 0 ≤ Mz ≤ L distinct zeros on the subcarri-
ers zm1 = ei(2π/M)m1 , zm2 = ei(2π/M)m2 , . . . , zmMz

= ei(2π/M)mMz ,
with m1 /=m2 /=· · · /=mMz ∈ {0, 1, . . . ,M − 1}. In this case,
one has αcp(m1) = αcp(m2) = · · · = αcp(mMz) = 0 and,
thus, the diagonal matrix Acp is singular with rank(Acp) =
2(M−Mz). Since Bcp and J are nonsingular, the matrix Bcp is
full-column rank by construction. Thus, the matrix AcpBcp

is full-column rank if and only if [31] N (Acp)∩R(Bcp) =
{02M}. The null space of Acp can be readily characterized:
an arbitrary vector μ = [μT1 ,μT2 ]T ∈ C2M , with μ1,μ2 ∈ CM ,
belongs to N (Acp) if and only if μ1 ∈ N (Acp) and μ∗2 ∈
N (Acp). It is easily seen that μ1 ∈ N (Acp) if and only if
there exists a vector β1 ∈ CMz such that μ1 = Szβ1. In the
same manner, it can be proven that μ∗2 ∈ N (Acp) if and
only if there exists a vector β2 ∈ CMz such that μ2 = Szβ2.
Consequently, we can infer that μ ∈ N (Acp) if and only
if there exists a vector β = [βT1 ,βT2 ]T ∈ C2Mz such that
μ = Szβ. Hence, an arbitrary vector μ ∈ N (Acp) also be-
longs to the subspace R(Bcp) if and only if there exists a
vector α ∈ CM such that Szβ = Bcpα. As a consequence,
condition N (Acp) ∩ R(Bcp) = {02M} holds if and only
if the system of equations Bcpα − Szβ = 02M admits the
unique solution α = 0M and β = 02Mz . It can be seen
[32] that this happens if and only if and only if the matrix
[Bcp,Sz] ∈ C2M×(M+2Mz) turns out to be full-column rank.
Furthermore, since it results [40] that rank([Bcp,Sz]) =
rank(Sz) + rank[(I2M − SzS−z )Bcp], with rank(Sz) = 2Mz

and S−z = ST
z [31], it follows that rank[Bcp,Sz] = M + 2Mz

holds if and only if rank[(I2M − SzST
z )Bcp] =M.

B. PROOF OF THEOREM 2

When σ2
v→0, evaluation of Pd,min is complicated by the fact

that Rdd becomes singular and, thus, the inverse (ΠRddΠ
H)
−1

does not exist. Accounting for (24) and resorting to the limit
formula for the Moore-Penrose inverse [38], one has

lim
σ2
v→0

Pd,min = trace
[
G(f)

zf LLH
(
G(f)

zf

)H]
− trace

[
G(f)

zf L(ΠL)†ΠLLH
(
G(f)

zf

)H]
= trace

{
G(f)

zf L
[

I2Rnbi − (ΠL)†(ΠL)
]︸ ︷︷ ︸

PN (ΠL)∈C2Rnbi×2Rnbi

LH
(
G(f)

zf

)H}

= trace
{
G(f)

zf LPN (ΠL)L
H
(
G(f)

zf

)H}
.

(B.1)

Observe that the matrix PN (ΠL) defined in (B.1) represents
the orthogonal projector on the subspace N (ΠL). Under
condition (C3), the matrix ΠL ∈ C(2Q−M)×2Rnbi turns out
to be tall and, thus, the dimension of its null space is equal
to the number 2Rnbi of columns minus rank(ΠL). Due to
the fact that ΠH = O(2Q−M)×M , the columns of H belong
to N (Π), that is, R(H) ⊆ N (Π); however, if condition
(C4) holds, the subspace R(H) has the same dimension M
of N (Π), thus obtaining R(H) = N (Π) which, together
with condition (C5), implies that N (Π) ∩R(L) = {02Q}.
This last relation is equivalent [38] to rank(ΠL) = 2Rnbi,
which means that the dimension of N (ΠL) is zero, imply-
ing thus PN (ΠL) = O2Rnbi×2Rnbi , hence lim σ2

v→0Pd,min = 0.
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