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This paper considers a system where one transmitter broadcasts a single common message to two receivers linked by a bidirectional
cooperation channel, which is assumed to be orthogonal to the downlink channel. Assuming a simplified setup where, in particular,
scalar relaying protocols are used and channel coding is not exploited, we want to provide elements of response to several
questions of practical interest. Here are the main underlying issues: (1) the way of recombining the signals at the receivers; (2) the
optimal number of cooperation rounds; (3) the way of cooperating (symmetrically or asymmetrically, which receiver should start
cooperating in the latter case); and (4) the influence of spectral resources. These issues are considered by studying the performance
of the assumed system through analytical results when they are derivable and through simulation results. For the particular choices
we made, the results sometimes do not coincide with those available for the discrete counterpart of the studied channel.
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1. INTRODUCTION

Inthe conventional broadcast channel (BC) introduced by
[1], one transmitter sends independent messages to several
receivers. The channel under investigation in this paper
differs from the original BC for at least two reasons. First, the
receivers can cooperate in order to enhance the overall system
performance. Second, the users want to decode the same
message. We will refer to this situation as the cooperative
broadcast channel (CBC) with a single common message.
For the sake of simplicity, a 2-user CBC will be assumed. Note
that the considered channel is also different from the original
relay channel (RC) defined in [2], because each terminal
not only acts as a relay but also as a receiver, which means
that ultimately the information message has to be decoded
by both terminals. Additionally, the cooperation channel
between the two receivers is assumed to be bidirectional
(versus unidirectional for the RC) and orthogonal to the
downlink (DL) channels. Although their suboptimality,
orthogonal channels are often assumed for practical reasons
(e.g., it is difficult/impossible to implement relay receivers
that receive and transmit at the same time in the same
frequency band).

To the author’s knowledge, the most significant contribu-
tions concerning the situation under investigation are [3–8].

(For example, the authors note that [9, 10] also addressedthe
CBC but did not focus on the common message case.) The
discrete broadcast channel with a bidirectional conference
link and a single common message was originally studied
by Draper et al. in [3]. (The exact original definition of
a conference link is given in [11]. It essentially consists
of a noiseless channel with a finite capacity.) The authors
proposed a way of decoding the message in multiple rounds
and applied their scheme to the binary erasure channel.
The corresponding coding-decoding scheme is based on
the use of auxiliary variables, while a certain form of
channel comparability is assumed through these variables.
(Commenting on this concept is out of the scope of this
paper. For more information, see [12–14]. Example: the
channel p(y1 | x) is said to be less noisy than p(y2 | x) if
for any auxiliary random variable U , I(U ;Y1) ≥ I(U ;Y2).
The main point here is that the achievable rates of [3]
are not derived in the general case but assuming certain
Markov chains.) This channel has also been analyzed by
[8], where the authors essentially proposed achievable rates
based on the use of estimate-and-forward (EF) at both
receivers and two-round cooperation schemes. The Gaussian
counterpart of this channel has been studied in [6]. Showing
the optimality of decode-and-forward for an unidirectional
cooperation, the authors evaluated the exact loss due to
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the channel orthogonalization. For the bidirectional case,
the proposed achievable rate is based on a combination
of EF and decode-and-forward (DF) and shown to always
outperform the pure EF-based solution (always for the 2-
round decoding). Independently, [5] exploited a similar
approach to analyze the Gaussian relay channel with a
bidirectional cooperation. The fading case has been partially
treated in [4]. The diversity-multiplexing tradeoff, achieved
by using a “dynamic” version of decode-and-forward, is
derived for the unidirectional cooperation case.

While the authors of [4, 6, 8] addressed situations, where
only one or two cooperation exchanges (or decoding rounds)
are allowed, this paper focuses on the case where the number
of exchanges is arbitrary. For the erasure channels, [3, 7] have
shown that the higher the number of exchanges, the better
the performance in terms of information rate. However, the
discrete channel analysis (including erasure channels) does
not take into consideration the spectral resources aspect. As
it will be seen, this point is in fact crucial and accounting
for it can lead to markedly different conclusions from [3, 7]
concerning the optimum number of cooperation exchanges.
Additionally, [3, 7] only considered the information rate as
a performance criterion, whereas other criteria of interest
can also be considered. Although assuming special cases of
relaying protocols, this paper aims precisely at taking into
account these two aspects for providing some insights to the
following issues.

(1) The way of recombining the signals at the receivers.
Indeed, the receiver can combine the cooperation
signal with either its downlink signal or the combiner
output from the previous iteration. Also, the choice
of the combining scheme (which depends on the
assumed relaying protocol) will also be discussed.

(2) The optimal number of the cooperation rounds. In
contrast to the discrete case, this number will be
shown to be less than or equal to 2 if the cooperation
protocols are properly chosen.

(3) The way of cooperating. The choice between sym-
metric and asymmetric can be made based on a
simple discussion, but it will also be illustrated
by numerical results. Simulations will also indicate
the relative importance of the order in which the
receivers start to cooperate.

(4) The influence of the spectral resources on the three
mentioned issues will be assessed. Two different
assumptions are made: (H1) the total system band-
width is fixed; (H2) only the downlink channel
bandwidth is fixed.

In order to provide elements of response to these
questions we will use a simplified approach. After presenting
the used system model (Section 2), we will evaluate the exact
equivalent signal-to-noise ratio (SNR) in the output of the
maximum ratio combiner (MRC) for each user (Section 3) in
the case where a scalar, memoryless, zero-delay, and amplify-
and-forward protocol (AF) is assumed at both receivers. This
will be done for several cooperation strategies. In order to
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Figure 1: The cooperative broadcast channel with a single common
message (W) and an orthogonal and bidirectional cooperation
channel.

assess the influence of the relaying protocol on the aforemen-
tioned issues, we will also evaluate the system performance
when DF is used at the relay. In this case, a more sophisticated
combiner (namely, a maximum-likelihood detector—MLD),
which is provided in Section 4, has to be used at the receivers.
Based on the choice of different system performance criteria
(Section 5.1), numerical and simulation analyses will be
conducted (Section 5). Concluding remarks and possible
extensions of the present work will be provided in Section 6.

2. SYSTEMMODEL

As mentioned in the previous section, the system under
investigation (see Figure 1) comprises one transmitter
(source) and two receivers (destinations). The transmitted
signal is denoted by X and subject to a power constraint:
E|X2| ≤ P. Its bandwidth is denoted by BDL. For the sake
of simplicity, X will be assumed to be a scalar quantity,
for example, a Gaussian input or a quadrature amplitude
modulation (QAM) symbol. Assuming an additive white
Gaussian noise (AWGN) model for the different links of the
system, the baseband downlink signals write:

Y1 = X + Z1,

Y2 = X + Z2,
(1)

where for all j ∈ {1, 2}, Zj∼CN (0,njBDL), nj is the noise
power spectral density for receiver j, and I(Z1;Z2) = 0. We
will assume that orthogonality between the downlink and
cooperation channels is implemented by frequency division
(FD). The bandwidth allocated to the cooperation channel
between the two receivers is denoted by BC . The cooperation
channel can be divided into several subchannels, each of
them having a bandwidth equal to ΔB. The two receivers
cooperate by applying the same relaying strategy, namely,
either the AF protocol or DF protocol. Using the AF protocol
imposes the condition ΔB = BDL, whereasΔB and BDL can be
chosen independently (or possibly through a compatibility
constraint between the source and relay data rates) when
DF is used for relaying. Regarding the spectral resources
aspect, two different scenarios will be considered. In the first
scenario, we assume that BDL + BC = const. (Assumption
H1). This corresponds to the situation, where the total
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system bandwidth is fixed, which is generally assumed to
fairly compare two systems before implementation. In the
second scenario, we assume that BDL = const. (Assumption
H2), which does not lead to fair comparisons in terms of
bandwidth since the cooperation channel bandwidth can be
chosen arbitrarily. The attention of the reader is drawn to the
fact that, although unfair, this scenario still makes sense in
the real life. For instance, consider the case where one wants
to assess the benefits of cooperation by coupling two existing
communication systems such as a digital video broadcasting
(DVB) system and a cellular system. As modifying the
DVB system, the downlink signal bandwidth would be a
difficult/an impossible task; the second assumption, which
amounts to extending the available bandwidth, is more
appropriate for comparing a DVB system with its terrestrial
cooperation-based counterpart.

At last, we will assume scalar and zero-delay relaying.
In real situations, this can be implemented for instance
by resynchronizing the downlink and cooperation signals
at the receivers. The main advantage for assuming scalar
protocols is that the additional complexity caused by the
cooperation is low; it does not imply large decoding delays
and some analytical results can be derived. As in [8], two
main ways to cooperate are distinguished in this paper: the
symmetric cooperation and asymmetric cooperation. The
main distinction between these cooperation types is that
for the symmetric cooperation the receivers exchange their
cooperation signal simultaneously, while in the asymmetric
cooperation the exchanges are done sequentially, that is, one
receiver sends a cooperation signal at a given time. In the
case where each receiver amplifies and forwards its received
downlink signal, the symmetric cooperation can be seen as a
special case of the asymmetric cooperation.

3. THE CASE OF AMPLIFY-AND-FORWARD

3.1. Selected combining scheme

Let us consider the first cooperation round for the symmetric
cooperation. Each receiver (e.g., Receiver 1) amplifies and
forwards his received downlink signal (Y1 for Receiver 1) to
his partner (Receiver 2). This is done simultaneously. Then,
each receiver (say Receiver 2) has to combine its downlink
signal with the cooperation signal received from his partner

(Y (1)
12 = a(1)

12 Y1 + Z(1)
12 ). To combine these signals we chose

the MRC. The motivation for this choice is threefold. First,
one of the features of the MRC is that it is simple. The
MRC has also two properties. By definition, it maximizes
the equivalent SNR at its output. As shown in Appendix A,
it also maintains the mutual information constant. The
data processing theorem indicates that the MI between X
and the MRC output has to be less than or equal to the
MI between X and its (vector) input. It turns out that
for the choice of weights maximizing the equivalent SNR,
there is no loss of MI. At last, an additional motivation
for the MRC is that it can be proved that using a more
advanced combiner such as the MMSE will bring nothing
more by taking into account the structure and statistics of the
different signals. Now, consider the second iteration of the

cooperation procedure. Each receiver has at least two choices
in terms of cooperation signals to be sent: it can continue
to send its original downlink signal (Strategy S2), or it can
send the MRC output from the previous iteration (Strategy
S1). The first (S1) strategy is the counterpart of the strategy
presented in [8] for the discrete CBC. Normally, this strategy
is intended to be better than the second one (S2) since the
receiver can “denoise” or remove some wrong information
bits from the estimated data flow. Here, in our simplified
setup (channel decoding is not exploited), the goal is to prove
the intuition that sending to your partner what you received
from him cannot improve the performance, which ultimately
means that the second strategy is better than the first one.

3.2. Received signals

Consider the case of the symmetric cooperation. To denote
the signals of interest for a given cooperation round or
iteration i, with i ∈ {1, . . . ,Ks}, we will use the following
notations:

Y (i)
I = α(i)

I X + Z(i)
I ,

Y (i)
II = α(i)

II X + Z(i)
II ,

Y (i)
12 = a(i)

12Y
( j)
I + Z(i)

12 ,

Y (i)
21 = a(i)

21Y
( j)
II + Z(i)

21 ,

(2)

where Y (i)
I (resp., Y (i)

II ) corresponds to the MRC output at
iteration i and Receiver 1 (resp., Receiver 2), a(i)

12 , a(i)
21 are the

scalar AF protocol amplification gains, which are determined
by the total cooperation powers available: P12 at Receiver

1 and P21 at Receiver 2. At last, Y (0)
I = Y1, Y (0)

II = Y2,
j = i − 1 for the strategy S1 and j = 0 for the strategy
S2. For the asymmetric cooperation, we will keep the same
notations for the signals of interest as in the symmetric
case. However, in contrast to the symmetric cooperation,
combining operations take place at Receiver 2 for odd indices
i only, and at Receiver 1 for even indices i only (under the
assumption that Receiver 1 starts relaying).

Whereas the notations are identical for the
asymmetric cooperation and symmetric cooperation,
the bandwidth of the cooperation channel is defined
differently. If one denotes by Ks the number of pairs of
cooperation exchanges in the case of symmetriccooperation,
we have

ΔB =

⎧⎪⎪⎨⎪⎪⎩
B

2Ks + 1
, when BDL + BC = const. � B,

B, when BDL = const. � B,
(3)

and if one denotes by Ka the number of cooperation
exchanges in the case of asymmetric cooperation, we have

ΔB =

⎧⎪⎪⎨⎪⎪⎩
B

Ka + 1
, when BDL + BC = const. � B,

B, when BDL = const. � B,
(4)
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3.3. Equivalent SNR analysis

The purpose of this section is to evaluate analytically the
equivalent SNR at the MRC output after an arbitrary number
of cooperation rounds for the two mentioned strategies. This
allows us not only to compare them in terms of the SNR,
but also to use this knowledge to evaluate other performance
criteria presented in Section 5.1.

3.3.1. The case of the strategy S1

In this case, it turns out that it is not possible, in general,
to express the equivalent SNR as a function of the sole
channel parameters (P,P12,n1, . . .). In fact, the equivalent
SNR has to be determined recursively. The purpose of
Theorem 1 (see Appendix B) is precisely to provide this
relationship, both for the asymmetric and the symmetric
cooperation types. Before providing this theorem and the
two underlying propositions, we need to mention and detail
one important point regarding the interest in these results.
First, let us consider the case where the system bandwidth
is fixed. Imposing ΔB = B/(K + 1) (with K = Ka or
K = 2Ks depending on the context) allows us to perform
fair comparisons in terms of spectral resources whatever
the value for K . However, the cases K = 0, K = 1 and
K = 2 do never correspond to fair comparisons in terms
of power since they, respectively, correspond to (P,P12 =
0,P21 = 0), (P,P12,P21 = 0), and (P,P12,P21). For K ≥ 2, the
comparisons are spectrally fair because the total cooperation
powers are kept fixed.

Theorem 1 (general expression for the equivalent SNRs).
Assume that n1 < n2 and Receiver 2 performs the MRC task
in the first place if asymmetric cooperation is considered. For
iteration i ∈ {1, . . . ,K}, the corresponding weights are denoted
by w(i)

2 (weighting the MRC output at iteration i− 1) and w(i)
12

(weighting the cooperation signal). For Receiver 1 the weights

are denoted by w(i)
1 , w(i)

21 . Denote by Y
(i)
I = α(i)

I X + Z(i)
I (resp.,

Y (i)
II = α(i)

II X + Z(i)
II ) the signal at MRC output for Receiver

1 (resp., Receiver 2) and iteration i, with Z(i)
I ∼N (0,N (i)

I )

(resp., Z(i)
II ∼N (0,N (i)

II )). Let ρ(i)
I (resp., ρ(i)

II ) be the signal-to-

noise ratio associated with the signal Y (i)
I (resp., Y (i)

II ). The

SNRs ρ(i)
I � S(i)

I /T (i)
I and ρ(i)

II � S(i)
II /T

(i)
II can be determined

recursively as follows:

S(i)
II = α(i−1)

I α(i−1)
II

(
e(i−1) + e(i−1),∗)ρ(i−1)

I ρ(i−1)
II ρ12

−(α(i−1)
I α(i−1)

II

)2
P
[
ρ(i−1)
II

(
1+ρ(i−1)

I

)
+ρ12

(
ρ(i−1)
I +ρ(i−1)

II

)]
,

T (i)
II = e(i−1)e(i−1),∗

P
ρ(i−1)
I ρ(i−1)

II ρ12 −
(
α(i−1)
I α(i−1)

II

)2
P
(
1 + ρ12

)
− (α(i−1)

I

)2
N (i−1)

II ρ(i−1)
I ρ(i−1)

II ,
(5)

where ρ12 = P12/n12ΔB, k is a constant depending on the
cooperation scheme (asymmetric or symmetric), (·)∗ denotes

the conjugate, e(0) = 0, N (0)
I = N1, N

(0)
II = N2, ρ

(0)
I =

P/N1, ρ
(0)
II = P/N2, α

(0)
I = α(0)

II = 1. The amplification

gains are defined by a(i)
12 =

√
P(i)

12 /((α(i−1)
I )2P + N (i−1)

I ), a(i)
21 =√

P(i)
21 /((α(i−1)

II )2P + N (i−1)
II ), and P(i)

12 , P(i)
21 are the available

cooperation powers per subchannel. For the SNR ρ(i)
I do the

following changes for the indices: I↔II and 1↔2.

The expressions of the signals coefficients α(i)
I , α(i)

II ,

the cooperation powers per subchannel P(i)
12 , P(i)

21 and the
equivalent noise powers N (i)

I , N (i)
II depend on the cooperation

type. Expressing these quantities is the purpose of the
following two propositions.

Proposition 1 (MRC weights for the symmetric coopera-
tion). For the symmetric cooperation the MRC weights can be
shown to be

w(i)
12 = a(i)

12α
(i−1)
I N (i−1)

II − a(i)
12α

(i−1)
II e(i−1),

w(i)
2 = [(a(i)

12

)2
N (i−1)

I + N (i)
12

]
α(i−1)
II − (a(i)

12

)2
α(i−1)
I e(i−1),∗,

w(i)
21 = a(i)

21α
(i−1)
II N (i−1)

I − a(i)
21α

(i−1)
I e(i−1),∗,

w(i)
1 = [(a(i)

21

)2
N (i−1)

II + N (i)
21

]
α(i−1)
I − (a(i)

21

)2
α(i−1)
II e(i−1),

(6)

where

(i) e(i−1) � E[Z(i−1)
I Z(i−1),∗

II ] with

e(i) = w(i)
12a

(i)
12w

(i)
1 N (i−1)

I + w(i)
21a

(i)
21w

(i)
2 N (i−1)

II

+
[
w(i)

1 w(i)
2 + w(i)

12a
(i)
12w

(i)
21a

(i)
21

]
e(i−1);

(7)

(ii) for all i ∈ {1, . . . ,Ks} the useful signal coefficients are
given by

α(i)
I = w(i)

21a
(i)
21α

(i−1)
II + w(i)

1 α(i−1)
I ,

α(i)
II = w(i)

12a
(i)
12α

(i−1)
I + w(i)

2 α(i−1)
II ;

(8)

(iii) the cooperation powers per subchannel are for all i ∈
{1, . . . ,Ks} given by

P(i)
12 =

P12

Ks
,

P(i)
21 =

P21

Ks
;

(9)

(iv) the equivalent noise powers N (i)
I , N (i)

II are determined
through

Z(i)
I = w(i)

21a
(i)
21Z

(i−1)
II + w(i)

21Z
(i)
21 + w(i)

1 Z(i−1)
I ,

Z(i)
II = w(i)

12a
(i)
12Z

(i−1)
I + w(i)

12Z
(i)
12 + w(i)

2 Z(i−1)
II ;

(10)

(v) for all i ∈ {1, . . . ,Ks}: N (i)
12 = n12ΔB and N (i)

21 =
n21ΔB;

(vi) the constant k of Theorem 1 equals (2Ks + 1)/Ks.



E. V. Belmega et al. 5

Proposition 2 (MRC weights for the asymmetric coopera-
tion). For the asymmetric cooperation, the MRC weights can
be shown to coincide with that of Proposition 1, where

(i) e(i−1) � E[Z(i−1)
I Z(i−1),∗

II ] with

e(i) =

⎧⎪⎨⎪⎩
w(i)

1 e(i−1) + w(i)
21a

(i)
(21)N

(i−1)
II for i even,

w(i)
2 e(i−1) + w(i)

12a
(i)
(12)N

(i−1)
I for i odd;

(11)

(ii) the useful signal coefficients are given by

α(i)
I =

⎧⎪⎨⎪⎩
w(i)

21a
(i)
21α

(i−1)
II + w(i)

1 α(i−1)
I for i even,

α(i−1)
I for i odd,

α(i)
II =

⎧⎪⎨⎪⎩
α(i−1)
II for i even,

w(i)
12a

(i)
12α

(i−1)
I + w(i)

2 α(i−1)
II for i odd;

(12)

(iii) the cooperation powers per subchannel are for all i ∈
{1, . . . ,Ka}:

P(i)
12 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
2P12

Ka
for Ka even,

2P12

Ka + 1
for Ka odd,

P(i)
21 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
2P21

Ka
for Ka even,

2P21

Ka − 1
for Ka odd, Ka ≥ 3;

(13)

(iv) the equivalent noise powers N (i)
I , N (i)

II are determined
through

Z(i)
I =

⎧⎪⎨⎪⎩
w(i)

21a
(i)
21Z

(i−1)
II + w(i)

21Z
(i)
21 + w(i)

1 Z(i−1)
I for i even,

Z(i−1)
I for i odd,

Z(i)
II =

⎧⎪⎨⎪⎩
Z(i−1)
II for i even,

w(i)
12a

(i)
12Z

(i−1)
I + w(i)

12Z
(i)
12 + w(i)

2 Z(i−1)
II for i odd;

(14)

(v) for all i ∈ {1, . . . ,Ka}: N (i)
12 = n12ΔB and N (i)

21 =
n21ΔB, the constant k of Theorem 1 equals 1.

The theorem and propositions provided here are proved
in Appendices B, C, and D.

3.3.2. The case of the strategy S2

As the strategy S2 consists in always sending to the other
receiver the downlink signal, it can be easily checked that the
performance of the symmetric case with a number of pairs of
cooperation rounds equal to Ks is the same as the asymmetric
case with 2Ks cooperation rounds. As the symmetric case is

easier to exposeand the derivations in both cases are similar,
we restrict our attention to the symmetric case here. The
received signals are particularly simple to express in the case
of strategy S2:

Y (i)
I =

(
w1 +

Ks∑
i=1

w(i)
21a

(Ks)
21

)
X + Z1 +

Ks∑
i=1

w(i)
21Z2 + Z(i)

21 ,

Y (i)
II =

(
w2 +

Ks∑
i=1

w(i)
12a

(Ks)
12

)
X + Z2 +

Ks∑
i=1

w(i)
12Z1 + Z(i)

12 ,

(15)

where it can be checked that w1 = 1/N1, w(1)
21 = · · · =

w(Ks)
21 = a(Ks)

21 /(Ks(a
(Ks)
21 )2N2 + N21), w2 = 1/N2, and w(1)

12 =
· · · = w(Ks)

12 = a(2)
12 /(Ks(a

(2)
12 )2N1 + N12). We obtain that

ρ(i)
I =

[
1
N1

+
Ks
(
a(Ks)

21

)2

Ks
(
a(2)

21

)2
N2 + N21

]
P

=
[

1
N1

+

(
a(1)

21

)2(
a(1)

21

)2
N2 + N21

]
P

= ρ1 + ρeff
21 ,

ρ(i)
II =

(
1
N2

+
Ks
(
a(Ks)

12

)2

Ks
(
a(2)

12

)2
N1 + N12

)
P

=
[

1
N2

+

(
a(1)

12

)2(
a(1)

12

)2
N1 + N12

]
P

= ρ2 + ρeff
12 ,

(16)

where the equalities at the right come from a(Ks)
(12) = a(1)

12 /
√
Ks

and a(Ks)
(21) = a(1)

21 /
√
Ks, with a(1)

12 =
√
P12/(P1 + N1) and a(1)

21 =√
P21/(P2 + N2).

The main observation to be made here is that if we
consider the case of the fixed downlink channel bandwidth
(this case also implies that N1, N2, N12, and N21 are
independent of the number of cooperation exchanges), the
equivalent SNRs do not depend on the cooperation round
index for i ≥ 2. Therefore, the average effect brought by
the MRC is exactly compensated by the loss in terms of
cooperation power per exchange, the latter being translated

by the amplification gains a(i)
12 = a(i)

12/
√
Ks, a

(i)
21 = a(i)

21/
√
Ks.

3.3.3. Comparison of the two strategies

The ideal result we would like to obtain is to determine the
sign of ρ(i)

I ,S2
− ρ(i)

I ,S1
for any cooperation round index i. It

turns out that this is not easy and the underlying expressions
become more and more complicated as i increases. There-
fore, we chose to explicit the aforementioned difference in a
specific case, but the reasoning can be applied to other case
of interest. For the asymmetric case (the most general one)
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with Ka = 2 and when the downlink bandwidth is constant,
one can show that the numerator of ρ(i)

I ,S2
− ρ(i)

I ,S1
expresses as

Num
(
ρ(i)
I ,S2
− ρ(i)

I ,S1

)
= PN2P21P12

(
2N21N12P

2 + PN21N12N2 + 2PN1N21N12

+ PP21N12N2 + 2PN1P12N21 + PP12N21N2

+ N1N21N12N2 + N1P21N12N2 + N1P12N21N2
)

≥ 0.
(17)

This result shows that for two cooperation rounds, it is better
for the partner to send his downlink signal than the MRC
output. Simulation results will allow us to better quantify this
difference for any number of cooperation rounds.

4. THE CASE OF DECODE-AND-FORWARD

4.1. Differences between the AF andDF cases

In Section 3, we assumed a scalar AF protocol for coopera-
tion between the two receivers. For the considered scenario,
we calculated the equivalent SNR at the MRC output,
after an arbitrary number of cooperation exchanges. This
calculation did not require any assumption on the signals
transmitted by the source and the relays. In particular,
a Gaussian signal could be assumed at the source and
relays and, therefore, the equivalent SNRs could be used to
obtain an achievable transmission rate for the considered
system. In this section, we assume finite modulations at
the source and relays (typically QAM modulations). Now,
the relay tries to recover the source information messages
and re-encodes and remodulates them into symbols to be
sent to the destination. Ideally, these symbols would be
the source symbols. Therefore, one can define, for each
relay a discrete-input, discrete-output channel between the
source and each relay output. The transition probabilities of
each of these channels are directly linked to the considered
downlink channel SNR and the error-correction capacity of
the decoder.

Assuming decode-and-forward type protocols at the
relays implies three main differences between the AF and DF
cases:

(1) the MRC is the optimum combiner when AF is
assumed for relaying. When a DF-type relaying
protocol is assumed, some decoding noise is intro-
duced by the relay, which is not compensated for
by the MRC. As the simulation results of [15] show,
using an MRC can even degrade the performance of
the destination (with respect to the noncooperative
counterpart) in the case, where the relay introduces
too much decoding noise. In order to extract the
best of cooperation under any condition when DF
is assumed, we will present a generalized version of
the maximum-likelihood detector (MLD) originally
introduced by [16] and recently reused by [15, 17];

(2) in Section 3, the MRC was combining, at a given
cooperation round, the cooperation signal with the

last recombined signal (from the previous round).
It turns out that this assumption really complicates
the derivation of the optimum detector. In order
to derive the ML detector, we will suppose that the
MLD always combines the cooperation signal with
the signal directly received from the source;

(3) as we have already mentioned, the bandwidth of the
signals transmitted by the AF-based relays has to be
equal to the downlink signal bandwidth. When DF
is assumed, the downlink and cooperation signals
can have different bandwidths since the relay can
use a different modulation from the one used by
the source. In contrast to the AF case, the constraint
ΔB = BDL is, therefore, relaxed for the DF case. In the
case of the AF protocol with fixed total bandwidth,
the problem of determining the optimum number
of cooperation exchanges was equivalent to the
bandwidth allocation problem. Here, the frequency
allocation problem consists in both, determining the
fraction of bandwidth to be allocated to the DL
channels and determining the number of orthogonal
subbands of the cooperation channel. In this paper,
we will not treat this issue in its generality since
we will only consider the case where the downlink
bandwidth is fixed. As said earlier, comparing such
a cooperative system with its noncooperative version
(P12 = 0, P21 = 0, BC = 0) is unarguably unfair
in terms of spectral and power resources. However,
making the assumption BDL = const. has two strong
advantages: it corresponds to real scenarios which the
engineers have to face with and it allows us to keep the
modulation-coding scheme at the source to be fixed.

As it will be seen, these simplifying assumptions will lead
to results and observations that can provide some insight
into the way of cooperating in practical cases, for example, a
DVB system coupled with a cellular system. Indeed, for DVB
systems, the DL signal bandwidth is typically 20 MHz, while
receivers in cellular systems have a bandwidth of a couple of
MHz (5 MHz in UMTS systems). Taking into account the
fact that the DF protocol does not impose the DL and the
cooperation signals bandwidths to be equal, it seems to be
suited to the situation taken for illustration.

4.2. Symmetric and asymmetric cooperation
types: definitions

Since we have already defined the asymmetric and symmetric
cooperation types for the AF protocol, we will just briefly
mention the main feature of the case under investigation.
Figures 2 and 3 define the two corresponding schemes. As
mentioned above, an ML detector is used at the receivers
instead of the MRC. Indeed, the possible presence of decod-
ing noise in the decoded and forwarded signal makes the
equivalent noise at the receiver non-Gaussian and correlated
with the useful signal. Therefore, the equivalent SNR is not
always a good performance criterion. This is why no SNR
analysis will be made here. Instead, we will provide raw BER
performance through simulation results.
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Figure 2: DF-based symmetric cooperation.
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Figure 3: DF-based asymmetric cooperation.

4.3. Maximum-likelihood detector

The purpose of this section is to present a generalized version
of the ML combiner used in [15–17]. Inthese works, the
authors assumed a binary-phase shift keying modulation
at the source and relay, and derived the corresponding
ML detector. The authors of [15] showed that, under this
assumption, the gain provided by the MLD over the MRC
can be significant when the relay has a receive SNR close
to (or less than) the destination SNR, and it is negligible
otherwise. In this paper, the reason for extending the MLD
of [15–17] is twofold:

(i) we want the receiver to optimally combine the signals
it receives whatever the noise level at the relay;

(ii) it also turns out that the MRC does not seem
to be suited for combining signals using different
constellations and its derivation is not ready, perhaps
impossible.

Before providing the signal model used for the derivation
of the MLD, we consider a special case in order to clearly
explain the idea of compatibility between the modulations
used by the source and relay. Assume that BDL = B, BC = B/4,
K = 1, and the source transmits at the rate of d = 1 bpcu.
As the relay has to use the channel twice more often than
the source, the relay has to transmit 4 bpcu in order to send
at the same coded bit rate as the source. For example, if the
source and relay implement the same kind of transmit filters
(e.g., a root-raised-cosine filter) and the source uses a BPSK
modulation, the relay can use a 16-QAM modulation. (For
this type of filters the filter bandwidth is proportional to

the symbol rate.) In this example, the MLD has to combine
one 16-QAM symbol with four BPSK symbols. In general,
the MLD will have to combine r Mr-ary symbols from the
relay with s Ms-ary symbols from the source, where r and
s are linked through the condition of conservation of the
coded bit rate between the input and output of the relay:
r log2Mr = s log2Ms � n.

Without loss of generality, assume K = 1, consider
that Receiver 1 sends a cooperation signal to Receiver 2 and
express the signals received by the latter destination:

Y (1)
2 = X (1) + Z(1)

2 ,

...

Y (s)
2 = X (s) + Z(s)

2 ,

Y (1)
12 = a12ε(1)X (1)

I + Z(1)
12 ,

...

Y (r)
12 = a12ε(r)X (r)

I + Z(r)
12 ,

(18)

where for all i ∈ {1, . . . , r}, X (i) ∈ {x1, . . . , xMs}, for all

i ∈ {1, . . . , r}, X (i)
I ∈ {xI ,1, . . . , xI ,Mr}, and the random

variables ε(i) model the decoding noise introduced by the
relay. For example, when the relay uses a QPSK modulation,
ε(i) ∈ {1, e j(π/2), e jπ , e j(3π/2)}. Now, in order to express
the likelihood at Receiver 2, we introduce the following

notations: Y 2 = (Y (1)
2 , . . . ,Y (s)

2 ), Y 12 = (Y (1)
12 , . . . ,Y (r)

12 ), b =
(b1, . . . , bn) that denote the vector of coded bits associated
with the ordered vector of symbols X = (X (1), . . . ,X (r)). We
want to express the likelihood pML = p(y

2
, y

12
| b). We have

pML = p
(
y2, y12 | b

)
(a)= p

(
y

2
, y

12
| x)

(b)= p
(
y

2
| x) p(y

12
| x),

(19)

where

(a) there is a one-to-one mapping between X and b;

(b) the noises of the downlink and the cooperative
channels are independent.

Denoting N2 = n2BDL, the first term of the product in
(20) expresses as

p
(
y2 | x

) = p
(
y(1)

2 , . . . , y(r)
2 | x(1), . . . , x(r))

=
r∏

i=1

p
(
y(i)

2 | x(i))

=
r∏

i=1

1
πN2

exp
(
−
∣∣y(i)

2 − x(i)
∣∣2

N2

)
.

(20)
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By denoting N12 = n12ΔB, the second term can be expanded
as follows:

p
(
y12 | x

) = p
(
y12 | b

)
= p

(
y(1)

12 , . . . , y(s)
12 | b1, . . . , bn

)
(c)=

s∏
i=1

p
(
y(i)

12 | b(i−1)log2Ms+1, . . . , bi log2Ms

)

=
s∏

i=1

p
(
y(i)

12 | x(i)
I

)
(d)=

s∏
i=1

Ms∑
j=1

Pr
[
ε(i)=ε(i)

j | x(i)
I

]
p
(
y(i)

12 | x(i)
I , ε(i)=ε(i)

j

)

=
s∏

i=1

Ms∑
j=1

Pr
[
ε(i) = ε(i)

j | x(i)
I

] 1
πN12

× exp
(
−
∣∣y(i)

12 − ε(i)
j x

(i)
I

∣∣2

N12

)
(21)

with

(c) given x(i)
I , the signal y(i)

12 is independent of x
( j)
I

for j /= i; remind that x(i)
I is associated with

(b(i−1)log2Ms+1, . . . , bilog2Ms);

(d) is obtained by marginalizing over ε(i).

As in [18], we want to express the log-likelihood ratio
associated with a given coded bit as a function of the
likelihood expressed above. To this end, let us define the
sets: B(n)

i (k) = {b ∈ {0, 1}n}, bk = i with i = 0 or i = 1.
The coded bits bk being equiprobable we have

LLR
(
bk
)

�
p
(
y

2
, y

12
| bk = 1

)
p
(
y

2
, y

12
| bk = 0

)
=
∑

b∈B(n)
1 (k)p

(
y

2
, y

12
| b)∑

b∈B(n)
0 (k)p

(
y

2
, y

12
| b)

=
∑

x∈Xk
1
p
(
y

2
, y

12
| x)∑

x∈Xk
0
p
(
y

2
, y

12
| x) .

(22)

This LLR can be either used to make a decision on the bits
sent by the source or reused as a soft information by a stage
following the combiner. As we restrict our attention to the
raw BER for our performance study, we will not consider the
way of using this LLR by the channel decoder, for example.

5. EXPERIMENTAL ANALYSIS

5.1. System performance criteria

In order to compare the different cooperation schemes,
suited system performance criteria have to be selected. By
way of an example, if we fix the information rate/spectral

efficiency at the transmitter and obtain the pair of BERs
(BER1, BER2) for the coding scheme C and (BER′1, BER′2) for
the coding scheme C′, with BER1 < BER′1 and BER2 > BER′2,
one cannot easily conclude, which shows the importance
of using a system performance metric. From now on, we
will denote by K the number of cooperation exchanges
with K equals Ka or 2Ks depending on the cooperation
scheme. In order to compare the different cooperation
strategies, we propose four performance criteria (23)–(26).
All the performance criteria can be used to evaluate the
performance of the system for both relaying protocols, but
the performance Criterion (1) is less meaningful for the
DF protocol since the channel input is not Gaussian in our
context. The four performance criteria are as follows:

(1)

R(K)
AF = BDL min

{
log

(
1 + ρ(K)

I

)
, log

(
1 + ρ(K)

II

)}
, (23)

where ρ(K)
I , ρ(K)

II are the SNRs at the end of the cooperation

procedure. One can notice that R(K)
AF represents the maximum

information rate possible for a reliable transmission achieved
by the AF-based cooperation schemes and a Gaussian
channel input;

(2)

P(K)
e,max = max

{
P(K)
e,I ,P(K)

e,II

}
, (24)

where P(K)
e,I and P(K)

e,II are the raw BERs at the combiner (i.e.,
the MRC for the AF protocol, the MLD for the DF protocol)
outputs at the end of the cooperation procedure. This
criterion is useful in a broadcasting system for which one
wants every user to have a minimum transmission quality,

which requires P(K)
e,max ≤ Pe,0 where Pe,0 is the minimum

quality target;
(3)

P(K)
e,sum = P(K)

e,I + P(K)
e,II . (25)

This criterion gives an image of the average transmission
quality of the broadcasting system and serves as an upper
bound for the performance criterion given just below.
Although this criterion does not translate the variance of the
qualities of the differentcommunications, it has the merit to
be simple which is the reason why many works assumed this
criterion (see, e.g., [19, 20]);

(4)

P(K)
e,max ≤ P(K)

e,sys ≤ P(K)
e,sum. (26)

The quantity P(K)
e,sys is the system probability of errors P(K)

e,sys,
which is defined as the probability that Receiver 1 or (inclu-
sive or) Receiver 2 makes a decision error. This probability
is generally not easy to explicit but can be bounded by
using the Criteria (24) and (25). As a comment, note that
the Shannon capacity of the channel under consideration is
precisely defined with respect to the system error probability,
which means that communicating at a rate less than the
capacity insures the existence of a code such that PK∗

e,sys→0.
It is, therefore, the criterion to be considered to assess the
suboptimality of a given channel coding scheme in the CBC
with respect to its Shannon limit.
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5.2. Simulation results for the AF protocol

On allfigures, RK
AF and RK

AF − DL denote the achievable rates
with the strategy S1 and the strategy S2, respectively.

Asymmetric cooperation: which user should
start cooperating first?

For both strategies S1 and S2, Figure 4 represents the
plane (n1,n2) with linear scales: n1 ∈ [10−2, 102], n2 ∈
[10−2, 102]. For different ratios, P12/P21 ∈ {−30 dB,
−10 dB, 0 dB, 10 dB, 30 dB}. The different curves delimit
the decision regions that allow us to determine the best
cooperation order in terms of information rate for the five
values of the ratio P12/P21. When the pair (n1,n2) is above the
line, Receiver 1 has to start first and conversely. We see that
both the DL and cooperation SNRs have to be considered
to optimize the overall performance. In a cellular system, for
instance, the cooperation powers can be quite close (a given
fraction of the mobile transmit power), which would make
the cooperation order lesscritical.

Comparison between the strategies S1 and S2

We first consider the case of a constant global bandwidth.
We look at three different SNR scenarios: (P/n1B,
P/n2B,P12/n12B,P21/n21B) = (10 dB, 0 dB, 30 dB, 30 dB),
(P/n1B,P/n2B,P12/n12B,P21/n21B) = (−1 dB,−4 dB, 30 dB,
30 dB), and (P/n1B,P/n2B,P12/n12B,P21/n21B) = (10 dB,
0 dB, 15 dB, 15 dB).Figures 5(a) and 5(b) represent the
performances of both strategies S1 and S2, where the
asymmetric cooperation is considered. Bothstrategies
have approximately the same performance, but the
strategy S2 can perform better than the strategy S1

for great values of K (K > 2, see Figure 5(b)). Since
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Figure 5: Achievable rate versus number of cooperation exchanges
for both strategies S1 and S2 when the total bandwidth is fixed at
high cooperative regime (a) or medium cooperative regime (b).

the optimum is obtained in general at low values of K
(K ≤ 2), we can conclude that both strategies S1 and S2

have similar performances in asymmetric cooperation.
We have also observed that this conclusion remains
valid when the symmetric cooperation is considered.
Now, we consider the case where the DL bandwidth
is constant. In Figure 6, we can consider two different
scenarios for the S2 for the asymmetric cooperation case:
(P/n1B,P/n2B,P12/n12B,P21/n21B) = (10 dB, 0 dB, 30 dB,
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medium and high cooperative regimes.

30 dB) and (P/n1B,P/n2B,P12/n12B,P21/n21B) = (10 dB,
10 dB, 16 dB, 16 dB). We observe that the SIMO bound is
rapidly attained (K = 2). Also, we have observed that, for
the strategy S2, the symmetric and asymmetric cooperation
types perform the same. This means that for the symmetric
case also the SIMO bound is attained for Ks = 1. In the
following paragraph, we will compare these results with the
results obtained with the stategy S1 in the same setup (DL
bandwidth constant).

Asymmetric cooperation versus symmetric
cooperation for the strategy S1

First, we assume the total bandwidth to be limited.
Figure 7(a) represents the information rate as a function of
the number of cooperation exchanges for the asymmetric
and symmetric cases for two different scenarios: (P/n1B,
P/n2B,P12/n12B,P21/n21B) = (10 dB, 0 dB, 30 dB, 30 dB) and
(P/n1B,P/n2B,P12/n12B,P21/n21B) = (−1 dB,−4 dB, 30 dB,
30 dB). It can be seen that the rate always decreases for K ≥ 2.
This is not surprising since a system with K > 2 is a special
case of the system for which K = 2. However, note that the
system with K = 2 is not a special of the system K = 0 or
K = 1, which means that cooperating can compensate for the
performance loss due do orthogonalizing the DL channel.
We also see that the asymmetric system performs better
than its symmetric counterpart. We observed from other
simulations not presented here that most of the cooperation
benefits are captured with one cooperation exchange. In
contrast to the discrete CBC with a conference channel [3, 7,
8], we see that the performance can decrease with K . Now, we
look at two scenarios where the downlink bandwidth is fixed

(Figure 7(b)): (P/n1B,P/n2B,P12/n12B,P21/n21B) = (10 dB,
10 dB, 30 dB, 30 dB) and (P/n1B,P/n2B,P12/n12B,P21/n21B)
= (10 dB, 10 dB, 16 dB, 16 dB). We see that in the high-
cooperation regime the SIMO bound is rapidly attained, that
is, for K = 2. When less cooperation powers are available,
the performance still decreases with K . This time is not
due to the orthogonalization loss, but to the fact that the
cooperation power per exchange decreases in ∼1/K , whereas
the gain brought by increasing the number of recombina-
tions increases slowly. Note that now the symmetric system
performs better than the asymmetric one because nothing is
lost in terms of bandwidth by increasing K (while for the case
where the total bandwidth was limited, the DL bandwidth
was decreasing according to Propositions 1 and 2).

Comparing the results of the strategies S1 and S2 when
the DL bandwidth is constant (Figures 7(b) and 6), we
have observed that both strategies perform identically for
the symmetric cooperation when there is enough power
available for the cooperation (high-cooperative regime).
If the cooperative power is reduced, the strategy S2 will
perform better than the strategy S1, starting from Ks = 2
(equivalent to K = 2). In fact, using the strategy S1, during
the second exchange round, the receiver acting as relay is
waisting a part of the limited available power to send to
the other receiver a signal that it has already received on
the downlink channel. Thus, the expected power gain from
the cooperation is limited with respect to the strategy S2,
where the receiver acting as relay uses all of the available
power to send the signal needed to increase the equivalent
SNR. However, since the optimal performance is obtained for
Ks = 1, we can conclude that both strategies have the same
performance for symmetric cooperation case.

For the strategy S2, the symmetric and asymmetric
cooperation schemes perform identically. This is also the
case for the strategy S1, but only when the high cooperative
regime is assumed. For the strategy S2, the achievable rates
remain constant after Ks = 1, whatever the cooperation
power level. For the strategy S1, if the cooperation powers
are limited, the symmetric cooperation case outperforms
its asymmetric counterpart. Also, for the asymmetric coop-
eration with limited cooperation powers, the strategy S2

performs better than the strategy S1 even at the optimum
number of cooperation rounds K∗.

Influence of the performance criterion and BER analysis.

In the simulations results presented so far, we have implicitly
assumed the channel input and relay outputs to be Gaussian,
which allowed us to provide an achievable rate for the chan-
nel under investigation. In the following part of the section,
we will assume finite modulations (QAM modulations). It
turns out that the observations made for the information
theoretic transmission rate are generally confirmed by the
raw BER analysis and under the QAM assumption. This
fact is illustrated in Figures 8(a) and 8(b). In both figures,
the asymmetric cooperation case and the strategy S1 are
assumed. Also, the first figure corresponds to assumption
H1, while the second one is based on assumption H1. The
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Figure 7: Achievable rate versus number of cooperation exchanges for the strategy S1 when the total bandwidth is fixed (a) or when the
downlink bandwidth is fixed (b).

system BER is minimized for K = 1 or K = 2 whatever the
assumption on spectral resources.

5.3. Simulation results for the DF protocol

In the case of the DF protocol, we always assume that only
the downlink bandwidth is fixed. As a consequence, the
total bandwidth increases with K (see assumption H2 in
Section 2).

Asymmetric cooperation versus symmetric cooperation

We always assume QAM modulations at the source and
relays, and we do take into account the possible presence
of channel coders at the source and relay. We consider
two different scenarios: a high cooperative regime with
(P/n1B,P/n2B,P12/n12B,P21/n21B) = (7 dB, 3 dB, 30 dB,
30 dB) and a low cooperative regime with (P/n1B,P/n2B,
P12/n12B,P21/n21B) = (7 dB, 3 dB, 2 dB, 2 dB). We use a 4-
QAM modulation for any transmission at the source and
at the relay. We only consider the uncoded case, but the
performance analysis can be extended to coded case, at
least for hard input decoders. We assume that Receiver 1
starts sending a cooperation in the asymmetric cooperation
case. Figures 9(b) and 9(a) show the system performance
as a function of the number of cooperation exchanges
for performance criteria 2 and 4, respectively. In the low-
cooperation regime, symmetric and asymmetric cooperation
types perform similarly. In the high-cooperation regime, the
asymmetric cooperation performs slightly better for Pe,sys

and conversely for Pe,max. Other simulations, which will not
be provided here for keeping the number of figures reason-
able, show that the performance of asymmetric cooperation
is generally better than that of its symmetric counterpart,
whatever the performance criterion under consideration. In
contrast to the AF case, it is more difficult to determine
analytically which receiver has to start cooperation in the first
place. This means that, in practice, this information has to be
sent to the receivers. Otherwise, the symmetric cooperation
has to be used.

Asymmetric cooperation: influence of both number of
cooperation exchanges and combining scheme

Figures 10(a) and 10(b) show the performance for Receivers
1 and 2, the system performance in the low- and high-
cooperation regimes, respectively, as defined previously.
Although the system bandwidth increases with K , we see
that the system performance is maximum (low-cooperation
regime) or reaches a floor (high-cooperation regime)
for two cooperation exchanges. There are at least three
reasons for this. First of all, the gain provided by an
additional cooperation round decreases with K . Second,
the cooperation power per exchange also decreases with
K . In addition, in order to derive the MLD, we have made
the simplifying assumption that the decoding errors and
receive noise at each receiver are independent, which is
perfectly true for K ≤ 2. In Figure 10(b), we also observe
the impact of the derived MLD on system performance.
We compare the DF protocol associated to MLD with
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Figure 8: System BER versus number of cooperation exchanges for strategy S1 and the asymmetric cooperation case when the total
bandwidth is fixed (a) or when the downlink bandwidth is fixed (b).
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Figure 9: Performance versus number of cooperation exchanges in term of Pe,sys (a) and Pe,max (b).

the AF protocol associated to the MRC in terms of the
system and individual receivers performance, and we
observe that the use of the MRC limits the expected
performance gain since this combiner does not take into
account the eventual decoding made at the receivers unlike
the MLD. The observations are similar to those in [15].

5.4. Comparison between the AF protocol
(strategy S1) and the DF protocol

We consider the case where only the downlink bandwidth
is fixed. We look at the following SNR scenario: (P/n1B,
P/n2B,P12/n12B,P21/n21B) = (7 dB, 3 dB, 30 dB, 30 dB) and
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Figure 10: Performance for the asymmetric cooperation versus number of cooperation exchanges in low cooperative regime (a) and high
cooperative regime (b).

Asymmetric cooperation: ρ1 = 7 dB & ρ2 = 3 dB
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Figure 11: Maximum BER (maximum {BER1, BER2}) at the
receivers for the AF protocol (S1) with MRC and DF protocol with
MLD.

(P/n1B,P/n2B,P12/n12B,P21/n21B) = (7 dB, 3 dB, 2 dB, 2 dB).
Figure 11 represents the BER performance obtained with the
AF protocol (strategy S1) associated with the MRC and the
DF protocol associated with the MLD. We observe the impact
of the hard decision with the DF protocol which results in a

performance loss in comparison to the AF protocol. This is
due to the fact that the receiver acting as the sender does not
decode perfectly the message. If one receiver can succeed to
decode the message with only the downlink signal, the DF
protocol would perform better than the AF one (see [15]
for the same analysis on the relay channel), and the optimal
number of cooperative exchanges will obviously be equal to
K∗ = 1.

6. CONCLUSIONS

In this paper, we treated four main issues inherent to the
bidirectional CBC with a single common message when
power and spectral resources are taken into account, which
cannot be considered through the discrete approach [3,
7, 8]. This study was made for a simplified scenario,
where scalar relaying protocols are assumed and coding/
decoding channel are not exploited (note, however, that
one of the main practical advantages of this approach is
that the extra decoding delay induced by cooperation is
relatively small). Although we have made these simplifying
assumptions, our approach still captures the main imple-
mentation issues posed by the bidirectional cooperation. The
observations made in this paper could be refined and used to
introduce cooperation in systems like the DVB or DVB-H
systems. Here are a few key observations we have made.

Concerning the way of combining the signals at the
receiver, we have seen that the MRC is the optimum com-
biner whatever the number of cooperation rounds when the
AF protocol is used. For the DF protocol, we have not only
seen that an ML detector is useful since it can compensate for
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the decoding noise introduced by the other receiver, but also
that it is necessary to combine signals with different constel-
lations, which is likely to happen in practice if the downlink
and cooperation channels have different bandwidths. Addi-
tionally, the choice between sending the downlink signal or
the combiner output as a cooperation signal does not seem
to be critical for the AF protocol, but the second solution
complicates the derivation of the ML detector.

Number of cooperation rounds. By assuming the system
total bandwidth and then the downlink bandwidth to be
constant, we have seen that the system performance does
not increase for more than two cooperation rounds (K∗ ∈
{0, 1, 2}), in contrast to [3, 7] for discrete channels. We have
shown for the AF protocol that the equivalent SNR is strictly
constant for K ≥ 2 for the strategy S2 and is almost constant
or reaches its maximum for K = 1, 2 or marginally for 3 with
the strategy S1.

Asymmetric/symmetric cooperation: when the system
bandwidth is fixed, the asymmetric cooperation has the
advantage to contain the case K = 1 for which the best
performance is generally achieved. Indeed, as the bandwidth
decreases linearly with K but only logarithmically with the
SNR, higher values of K generally lead to suboptimum
performance. This is the main reason why the asymmetric
cooperation is preferable to the symmetric cooperation.
When the downlink bandwith is fixed, the best performance
can be achieved for K = 2 typically. In this case, the asym-
metric cooperation suffers from a correlation effect which
reduces the cooperation gain with respect to the symmetric
case. Additionally, for K ≥ 2 the user who starts sending
the cooperation signal has to be selected. The influence of
the available cooperation powers and noise levels at the
receiver on the best order was assessed and shown to be not
negligible. In fading channels, this order should, therefore, be
chosen adaptively, which is a further drawback of the asym-
metric cooperation if K∗ ≥ 2. On the other hand, if most of
the performance gain could be captured by one cooperation
round (K∗ = 1), the asymmetric case is the best choice.

APPENDICES

A. CONSERVATIONOF THEMI FOR THEMRC

Proof. We want to prove that I(X ;Y (i)
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Now, by replacing the MRC weights given by equation (6) ,
we further have
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On the other hand, we have
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We see that S̃(i)
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2 , which concludes the
proof.
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After simplification with respect to the common factor C, we
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Then, by multiplying both the numerator and the denomi-
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C. PROOF OF PROPOSITION 1 :
SYMMETRIC COOPERATION

Here, we only show how to obtain the MRC weights, and this
for Receiver 2. The signal coefficients and equivalent noises
can be derived from the equivalent signal expressions.

At Receiver 2, at the iteration i, the signals available at the
combiner inputs are
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Denote by w(i) = (w(i)
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2 )t the optimal weight vector.
For the maximum ratio combiner, w(i) is given by the
following expression:
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and h is the useful signal coefficients vector given by h =
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Therefore, we find that
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and we start with e(0) = 0, N (0)
I = N1, N (0)
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D. PROOF OF PROPOSITION 2

Compared to the symmetric case, only the equivalent noise
expressions and the useful signal coefficients are changed.
They can be obtained from the signal expressions (2) and
shown to be
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Doing the same calculation as for the previous proposition
leads to the MRC weights which have the same expressions
as in the symmetric case.
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