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Realizing high-quality digital image transmission via a satellite link, while optimizing resource distribution and minimizing battery
consumption, is a challenging task. This paper describes a methodology to optimize a turbo-encoded wavelet-based satellite down-
link progressive image transmission system with unequal error protection (UEP) techniques. To achieve that goal, we instantiate
a generic UEP methodology onto the system, and demonstrate that the proposed solution has little impact on the average per-
formance, while greatly reducing the run-time complexity. Based on a simple design-time distortion model and a low-complexity
run-time algorithm, the provided solution can dynamically tune the system’s configuration to any bitrate constraint or channel
condition. The resulting system outperforms in terms of peak signal-to-noise ratio (PSNR), a state-of-the-art, fine-tuned equal

error protection (EEP) solution by as much as 2 dB.
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1. INTRODUCTION

This paper focuses on an existing satellite transmission sys-
tem based on a state-of-the-art joint source-channel coding
solution, transmitting images from an orbital space mod-
ule to an earth ground station through a classical DVB-S2
(digital video broadcast for satellite) channel. In this sys-
tem, the FlexWave-II core [1-4] is the wavelet-based im-
age coder providing embedded scalability and low computa-
tional complexity. In addition, the T@mpo [5, 6] provides an
efficient low-latency low-power turbo coder enabling close-
to-capacity performance.

Our purpose is to jointly optimize the source and channel
cores to offer a reliable delivery of high-quality digital images.
In order to maximize the end-user quality, the system should
be flexible and able to dynamically select an optimal pro-
tection scheme, while meeting the bandwidth constraint and
adapting to the varying channel conditions. Source scalabil-
ity induces a sequential dependency and a natural unequal
error sensitivity among the compressed source symbols. This
phenomenon naturally calls for an unequal error protection
(UEP) scheme allowing a gradual protection leveling as we
move from important to unimportant symbols. UEP [7-12]

improves the system by protecting more the more impor-
tant bits, and protecting less the less important bits, thus im-
proving the average performance of the system with the same
amount of resources.

Impairments occurring on transmission channels usually
results in data erasure or data corruption. Corruption means
that data may be received with errors, while erasure means
that data is not received at all. A system transmitting data di-
rectly on the channel would likely undergo corruption. More
complex system including an IP stack would internally han-
dle the detection of errors, resulting in data erasure.

For erasure channels, techniques like priority encoding
transmission (PET) [13] are generally used. The PET frame-
work allows for an optimal distribution of the transmission
bit budget R. Initially, many solutions were initially devel-
oped, based on dynamic programming (DP) algorithms [14—
17]. Recent solutions using an initial rate-optimal optimiza-
tion followed by a fast local search distortion-optimal or La-
grangian techniques [18-21] were developed to bring down
the complexity to a linear O (R) order.

However, corruption channels require an error-detection
step before the source decoder, in order to prevent error
propagation. Classically, the source decoding is stopped after



2 EURASIP Journal on Wireless Communications and Networking

PSNR

0 1 1 1 1 1
0 1 2 3 4 5 6

Bitstream location (bpp scale)

FIGURE 1: Reconstructed PSNR quality of a FlexWave-II bitstream
when corrupted or truncated at specific locations.

the first detected errors, resulting in some parts of the trans-
mitted content to be considered undecodable. Applied to the
problem of joint source-channel optimization, various tech-
niques like concatenated coding [22, 23], dynamic program-
ming [23-25], exhaustive search [22], and gradient-based
optimization [26, 27] are employed to solve different vari-
ants of the problem.

We note that all aforementioned techniques suppose that
the source coder is not able to handle bitstream corruption,
and somehow eliminate residual errors in order to feed the
source decoding stage with uncorrupted data by either in-
serting an error detection stage, or by using packet-based
transmission where the network itself suppresses residual er-
rors by discarding data packets. This is suboptimal as re-
cent coders have the possibility to efficiently use part of the
data that was discarded. More specifically, by letting cor-
rupted data enter the decoding stage, and building specific
distortion models that evaluate the impact of corruption,
we can optimize the system and exploit previously unused
data.

As an example, we can see in Figure 1 the performance of
FlexWave-II when the data is either truncated or corrupted at
different locations in the bitstream. The x-axis represents the
bitstream location on a bit per pixel scale, while the y-axis
represents the PSNR quality obtained after decoding. The
plain curve shows the PSNR quality when the bitstream is
truncated. Each cross shows the PSNR quality when a sin-
gle bit error is inserted, leaving the rest of the bitstream un-
touched. We can see that the distortion resulting from a bit
error at any location in the bitstream is always smaller than
the distortion resulting from a truncation at the same loca-
tion. This means that the source decoder can efficiently use
the data beyond the corruption point to reduce the distor-
tion.

Our UEP methodology [28] proposes a novel, generic,
and pragmatic approach to solve the source-channel al-
location problem. It is based on a joint source-channel
model that is steered at runtime by a low-complexity algo-
rithm. This joint model is merging different models, respec-
tively, characterizing the different components of the system
(source, source coder, channel coder, and channel), and is en-
abled by a set of well-defined simplifying assumptions. These
assumptions greatly reduce the complexity of the model. This
joint source-channel model is actually very flexible, and is
able to dynamically provide the rate-distortion characteris-
tics of the system depending on parameters such as the global
bit budget or the channel conditions. At runtime, these rate-
distortion characteristics are exploited by a low-complexity
algorithm that optimizes the code rate allocation. This paper
focuses on the instantiation of our solution for the satellite
communication system described before.

Because of complexity constraints, the source model is
source-independent and only represents a statistical expec-
tation of the rate-distortion behavior over a training set of
satellite images. Hence, it is a priori suboptimal. Previous
work [29] has demonstrated that the source-independent
model had no significant impact on the end-to-end rate-
distortion performance of our methodology.

In this paper, the UEP controller performance will be
compared with a classical equal error protection (EEP) solu-
tion that simply utilizes the incoming order of the FlexWave-
II bitstream as prioritarization information. We will prove
that the proposed UEP solution can dynamically adapt to
varying transmission conditions, and outperforms the EEP
scheme in the working range of channel conditions.

Section 2 gives an overview of our UEP methodology.
Section 3 describes the general setup of the satellite commu-
nication system and derives the characteristics of the rate-
distortion model. Section 4 shows the simulation results.
Section 5 compares the simulated results to the performance
of the hardware implementation. Section 6 concludes the pa-

per.

2. UEP METHODOLOGY

The proposed generic UEP methodology can be incorpo-
rated in any system offering UEP capabilities. In previous
work [28], this methodology has been successfully applied to
a JPEG2000-based system. The goal of this paper is to apply
the same methodology to a satellite compression system, and
to demonstrate its performance.

Section 2.1 recalls the general problem statement.
Section 2.2 deals with the joint modeling of the channel and
source components. Sections 2.3 and 2.4, respectively, ex-
plain how the separate models are combined at run-time and
how the resulting rate-distortion characteristics are exploited
to derive the final protection allocation.

2.1. Problem statement

We consider the transmission of a scalable bitstream embed-
ding S substreams. We have P + 1 discrete protection levels,
including the possibility of transmitting a substream without
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protection or not transmitting it at all. Protection levels are
indexed from 0 to P, where 0 corresponds to the untrans-
mitted case (cut substream), and 1 corresponds to the un-
protected case (uncoded substream). A global bit budget R is
available to transmit the data and is shared among these sub-
streams. Our objective is to maximize the expected quality
of the received data, or to minimize the expected distortion
. Concerning the protection allocation, three important re-
marks have to be made.

The first remark is that the system allows residual bit er-
rors in the transmitted substreams. This means that all sub-
streams are effectively used by the source decoder, with a
possibility to quality degradation when the source is recon-
structed. The second remark is that each substream is consid-
ered as an independently decodable unit. This means that the
amount of protection allocated to each substream (related
to the amount of residual errors) can be independently and
arbitrarily chosen. In other words, we are not constraining
the resource distribution to be monotonically decreasing, as
would be done in the case of a progressive bitstream [22, 30].

It could be argued that even though a scalable bitstream
is not necessarily progressive, decoding dependencies may
subsist in the bitstream. Actually, this decoding dependency
is the cause of the unequal error sensitivity observed in a
scalable bitstream. Additionally, the proposed solution mea-
sures this error sensitivity through a model and unequally
distributes the protection accordingly. Therefore, the joint
source-channel model is a central tool that allows the algo-
rithm to gradually match the protection level to the error
sensitivity and thus taking into account the possible decod-
ing dependencies.

We assume the total expected image distortion & to be
the sum of the expected distortion for each image substream
[31]. This is expressed by the following equation:

S(y) = > &(Py), (1)

1<s<$§

where y represents the S-tuple (P, ..., Ps) of protection lev-
els applied, respectively, to the S substreams; and J,(P;) is the
distortion contribution of substream s associated with pro-
tection level P;. Given a protection set ¥ we compute the
global rate required:

Ly
P(II/):ZP;(Ps) = Z R(P)’ (2)
s P;;O ’

where L; is the length of substream s and R(P;) is the chan-
nel coding rate for the protection P;. Smaller coding rates
give better protection levels and increase the corresponding
rate expense. Protection Py = 0 incurs no rate expense since
the corresponding substream data will not be transmitted.
The problem is solved by finding the optimal protection set
/ that minimizes the global distortion 8(y), while meeting
the global rate constraint p(y) < R:

Y= argmvi/n 8(y) stply) <R (3)

This additive distortion model allows for an independent op-
timization of the protection levels for each substream, and
thus greatly simplifies the task of the runtime optimization.
In the following, we give more details about the distortion
model.

2.2. Joint source-channel distortion model

The joint source-channel distortion model is actually a com-
bination of two simpler models which individually esti-
mate the characteristics of the source coder and the differ-
ent protection modes of the channel coder. This section de-
scribes the computation of the individual source and channel
models, and explains how they are combined into the joint
source-channel model.

2.2.1.  Source model

The source model evaluates the distortion induced by cut-
ting or corrupting individual substreams. This is done in two
steps.

(i) First, we compute the S values D", which represent
the MSE distortion resulting after cutting the sub-
stream s out of the bitstream while leaving other sub-
streams untouched. It should be noted that cutting
substream s means that protection level P; = 0 has
been assigned to substream s.

(ii) Secondly, we compute the S values DYt which estimate
the average MSE distortion per erroneous bit in the
substream s. This is obtained by inserting individual
bit errors in the substream, while leaving remaining
bits uncorrupted.

2.2.2. Channel model

The channel coder offers P distinct protection levels. De-
pending on the channel quality g and the protection level p,
the channel model provides an average estimation of the bit
error rate (BER), which we will denote b(g, p).

2.2.3.  Joint source-channel model

Considering a fixed channel quality g, the joint source-
channel model estimates the expected MSE distortion &;(p)
inside substream, depending on the protection level p. Since
residual errors are considered independent, we can simply
estimate the distortion §,(p) in function of the estimated
residual BER b(g, p). To obtain a usable model, we estimate
the expected MSE distortion D" (b) on the range of possible
BER values b between 0 and 0.5. To achieve that, we simply
measure D" on a discrete set of BER values, relying on a
linear extrapolation for intermediate values.

It should be noted that when the residual BER within
substream s is equal to 1/L;, the average number of errors
is equal to 1, and the expected MSE distortion DP"(1/L;) is
matching the average bit distortion D', Eventually, we are
able to estimate the expected distortion within substream s,
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undergoing loss or corruption according to the following
equations:

85(0) = ng§

(4)
65(Ps) = DEer[b(q’Ps)]-

2.3. Rate-distortion curves

Consider the transmission of a bitstream with protection
p — 1. Assuming the substream, s has its protection level up-
graded from p — 1 to p, we express the distortion reduction
Asp as

Asp = 0(p— 1) = &:(p). (5)

Hence, the distortion reduction has been evaluated as if the
substream with protection p — 1 was cut from the bitstream
and added again with protection p. Rewriting (5) for the case
when the substream s is simply added to the bitstream deliv-
ers

Asp = 85(0) — 6(1) = D¢ — &5(1). (6)

Furthermore, we define the importance value I, as the ra-
tio between the distortion decrease and the bitrate increase
induced by upgrading the protection level of the substream s
from p — 1to p:

I, = Bsp
*P " (1/R(p) = 1/R(p — 1)) L’

(7)

Actually, the set of importance values I , matches exactly the
slope values of the rate-distortion curve for substream s. We
assume here that the obtained rate-distortion curve is con-
vex. However, if this is not the case, we can prune out pro-
tection levels for a specific substream so that the I, slope
series is monotonically decreasing. At most, I, values must
be computed for all possible protection levels p from 1 to P
and for all substreams s from 1 to S. It yields a maximum
number of PS importance values.

2.4. Proposed runtime algorithm

According to (7), we have at most K = PS importance values
Ip,withl <s<Sand1 < p < P. [, represents the relative
importance or quality improvement that would be observed
if the protection level of substream s would be upgraded to
p- This actually means that these importance values represent
the slopes of the rate-distortion curves associated to each as-
sociated to the S substreams.

These K values are now sorted in decreasing order and
the corresponding indices are arranged in two series (sx) and
(px). The allocation is done with an iterative process over the
K stages. At stage k = 0, all substreams are initialized to p =
0. At each stage k, the substream s is upgraded to protection
level py until we reach stage k = PS, where all substreams are
maximally protected with protection level P.

As an example, in Figure 2 we have S = 2 substreams, P =
3 protection levels, and K = 6 importance values. We see that

62(0)

MSE

02(1)

5,2(2)
0,2(3)

0 Ly L L
R(1) R(2) R(3)
Channel rate
FIGURE 2: An example of rate-distortion characteristics obtained
with 2 substreams and 3 protection levels.

TABLE 1: Protection levels allocation of the proposed algorithm, cor-
responding to the rate-distortion characteristics of Figure 2.

Stage 1 2 3
Substream 1 0 1 2 2 3 3
Substream 2 0 0 0 1 2 3

the importance values are sorted in the following decreasing
order: A])], A])z, Az,l, A1,3, Az,z, and A2)3. Table 1 shows how
the proposed UEP algorithm attributes the protection levels
to the 2 substreams in a 6-stage allocation.

During the algorithm, we also form the series of protec-
tion set (y,) and rate expense (p,). ¥, is the protection set
where all substreams are cut. p,, is therefore equal to 0 since
no substream is transmitted. y, is defined follows:

v, = (P5,...,Pk,...,P}), (8)
where Pk is the protection level associated with substream s at
stage k. We derive y, from y,_, by upgrading the protection
level of substream si to px. Therefore, v, is identical to v, _,
except for its sxth element, which is equal to px. Accordingly,
we derive p; from p,_, by adding the extra rate incurred by
protection pj on substream s. Using (2), we define the global
rate p;:

LS LSk
R(P¥)  R(P)

pr =py) = Z
SESE

_ L Ly,
Pt ™ R(pE1) T R(PE)”

Sk

)

We eventually obtain the rate sets (p,) and the correspond-
ing optimal protection sets (y,). Thanks to the reordering
operation, the global optimization is achieved by selecting
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the highest p, being smaller than the target rate R. After the
global optimization step, the two series (p,) and () enable
the system to reach an optimal protection set for any rate
constraint. This means that our low-complexity algorithm
is very dynamic and can adapt to any rate condition with a
simple search, without loss of optimality in the specific case
of convex rate-distortion characteristics.

2.5. Complexity evaluation

The computation of the importance values A, in (7) re-
quires K = 3PS multiplications and 2K additions, accord-
ing to (7), and (4). The sorting costs an expected K log, (K)
comparisons. The (y,) series computation do not require
any computation. According to (9), each p, computation
needs 1 multiplication and 2 additions for a total of K mul-
tiplications and 2K additions. The selection of the optimal k
is performed by a bisection search and requires an expected

log,(K) comparisons in order to find the optimal k. If we
consider that the multiplication is the dominant term, the
proposed algorithm has a complexity of order @ (PS), which
is linear with respect to the number of substreams S and the
number of protection levels P. Given that the number of pro-
tection levels can be limited to 3, the proposed runtime algo-
rithm has a very low complexity.

3. SYSTEM SETUP

The transmission of the data from the satellite to the ground
station is performed over a DVB-S2 channel. Basically, the
FlexWave-II still image encoder produces a progressive bit-
stream by outputting a series of data substreams that holds
a varying number of bytes. These substreams are forwarded
to the T@mpo encoder that adds a certain number of par-
ity symbols depending on the selected protection mode. The
protected substreams are then sent directly on the transmis-
sion channel and received by the T@mpo decoder. The de-
coded substreams are then fed to the FlexWave-II decoder,
which subsequently decodes the image.

3.1. Source

Since satellite imaging is targeted, it is therefore necessary to
optimize the source model for this application. To this end,
we chose the black and white version of the Toulouse image
represented in Figure 3.

The main advantage of the methodology [28] is the sep-
aration of the design-time modeling phase and the runtime
optimization phase. In the ideal case, the source model is per-
fectly matching the distortion characteristic of the transmit-
ted image. However, this can only be obtained by computing
the model at runtime, which is unpractical given the high
complexity of the modeling process. A real-life transmission
system will therefore utilize a model calculated offline based
on a training set of images, which we address as the source-
independent model. When a communication system is trans-
mitting a specific class of images like space imagery as our
satellite data, the source-independent model will be statisti-

FiGure 3: The Toulouse image (512 x 512 pixels, 8 bits per pixel).

cally close to the type of images that are being transmitted, as
proved in the next paragraph.

The distortion characteristics of the source-independent
model are based on a training set of I images: we first com-
pute the IS components D, D!, and D" as described
in Section 2, which correspond to the I individual source
models for each training image. We obtain the S source-

independent model components D&, Dbit, and Dber by av-
eraging the individual models over the training set.

Two source models are computed. The reference source
model is directly computed from the Toulouse image itself.
The source-independent model training set contains 12 im-
ages that were taken from the USC-SIPI free image database
[32]. It represents an average source model for satellite image
class. Further on in this document, we refer, respectively, to
these models as Toulouse and Sipi models.

From the series of Deut values, it is natural to sort the
substreams by decreasing distortion values. Conceptually, the
bitstream order is a property, which is only dependent on the
characteristics of the source coder and, therefore, we only use
the cut distortion values Det, As we averaged the distortions
characteristics of each substream over a set of training im-
ages, we obtain a probabilistic importance order of the sub-
streams, which we call the source-independent bitstream or-
der.

Figures 4 and 5 show a comparison of the distortion char-
acteristics between the Toulouse model and the Sipi model.
On both curves, the x-axis is the substream index, following
the source-independent bitstream order, and the y-axis rep-
resents the MSE distortion. The plain curve represents the
Sipi model. The dashed curve follows the Toulouse model
profile. The Sipi model matches well the Toulouse model,
apart from some local deviations. This is a logical conclusion
since the Sipi model is based on a training set of images that
represent specifically the class of images to which Toulouse
belongs.
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3.2. Source coder

The source coder used in this satellite system is based on the
FlexWave-II architecture. This architecture has been specif-
ically designed as a dedicated compression component for
space-born applications. It is based on a 9/7 wavelet decom-
position, which is also used by similar state-of-art source
coders like SPTHT [33] and JPEG2000 [34]. However, the
SPIHT and JPEG2000 are fully featured source coders that
are too complex to implement in a low-power cost-efficient
application specific integrated circuit (ASIC) realization for
space applications. Therefore, specific algorithmic simplifi-
cations have been brought to the FlexWave-II core in or-
der to reduce the complexity of the solution at the cost
of a slight compression performance decrease. On a field-
programmable gate array (FPGA) implementation of the
FlexWave-11, clocked at 41 MHz, a processing performance
of up to 10 Mpixels/s was measured. For this paper, we con-
figured the FlexWave-II core for a 4-level wavelet decompo-
sition depth, which outputs a total of S = 349 substreams.

3.3. Channel

Typically, the quality of service offered over a DVB-S2 chan-
nel is subject to tropospheric phenomena, such as rain and
clouds, as well as the influence of atmospheric gas. Both
can severely degrade the quality of the transmission channel.
These effects can have an influence on the long-term distri-
bution of the channel attenuation statistics.

Figure 6 represents a simulated time series of N = 7200
samples for a typical DVB-S2 channel. The channel simu-
lator is outputting correlated channel coefficients at a basic

50 100 150 200

Substream index

<<<<<< Toulouse
—— Sipi

FiGuRre 5: Toulouse D" and Sipi DPit source model distortion pro-
file.

frequency F. = 2 Hz, so that the channel series spans over 1
hour. The actual datarate of the system is R, = 45 Mbit/s.
Therefore, we can insert approximately 2.8 Mbytes of data
between 2 consecutive samples. Considering a standard size
compressed picture to be sent on this channel, we see that
it will be entirely contained between two consecutive co-
efficients. Moreover, due to the time-domain correlation,
two consecutive samples will have similar amplitudes (see
Figure 6). As a consequence, we can already anticipate that
the system will exclusively work in slow fading mode. This
means that the protection allocation optimizer can safely
consider the channel as a constant additive white Gaussian
noise (AWGN) channel with a specific signal-to-noise ratio
for the complete transmission of an image corresponding to
the current attenuation of the DVB-S2 channel.

In the remainder of the document, we will therefore focus
on the end-to-end performance of the system over an AWGN
channel. The derivation of the performance over the DVB-
S2 channel is simply performed by a convolution between an
AWGN performance curve and the modeled DVB-S2 chan-
nel statistic profile.

3.4. Channel coder

The channel coder used in the T@mpo system is an ef-
ficient implementation of a low-latency low-power turbo
coder/decoder based on parallel concatenated convolutional
turbo codes (PCCC). The T@mpo coder has 4 protection
modes allowing the system to adapt the degree of protection
against errors. The protection levels are described by their re-
spective coderates in Table 2.
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TABLE 2: Available protection levels for the T@mpo channel coder.

Protection level Coderate
1 (strongest) 1/3
2 1/2
3 2/3
4 (weakest) 3/4

Under independent channel errors assumption [28], the
BER after decoding is taken as the only parameter to charac-
terize the occurrence of errors in the system. In Section 3.3
we considered that computing the performance of the sys-
tem transmitting over AWGN channels was sufficient to ac-
curately derive the performance of the system over the con-
sidered DVB-S2 satellite channel. Figure 7 gives an overview
of the performance of the T@mpo channel coder over an
AWGN channel. The x-axis represents the signal-to-noise ra-
tio E¢/Ny, while the y-axis represents the BER at the output
of the channel decoder. Plain curves represents the perfor-
mance of the 4 modes of the T@mpo coder as presented in
Section 3.4. The dashed curve represents the classical non-
coded performance on an AWGN channel.

4. SIMULATIONS

In this section, we compare the performance of the full UEP
controller with an EEP controller that would equally protect
the bitstream with a single average protection level. As intro-
duced in Section 2, a predictive model of the end-to-end dis-
tortion propagation is required by the full UEP controller in
order to optimize the protection allocation. This predictive
model is based on the assumption that the distortion caused
by transmission errors is additive at the substream level. This
approximation is required to enable the low-complexity op-
timization described in Section 2.4, but may introduce a mis-

BER

Es/Np
--- Unprotected — T@mpo 1/2
—— T@mpo 3/4 — T@mpo 1/3
—— T@mpo 2/3

FIGURE 7: BER performance of the T@mpo channel coder on an
AWGN channel.

match between the estimated distortion during the optimiza-
tion of the protection allocation and the actual distortion
observed at the receiver. Depending on the amount of mis-
match, the performance of the UEP allocation may be dete-
riorated.

Though, the parameters of the simulations have been
previously introduced in Section 3, they are briefly recalled
hereafter. The number of encoded substreams is § = 349 and
corresponds to a 4-level wavelet decomposition. The number
of protection levels is equal to P+ 1 = 6, and accounts for the
4 T@mpo protection modes (see Table 2) plus the additional
unprotected and nontransmitted modes. It was shown in the
literature [35] that three protection levels are usually suffi-
cient to obtain most UEP gains for binary symmetric chan-
nels with error probabilities inferior to 10™!. Therefore, our
system used a sufficiently high number of protection levels.

In what follows, we compare the simulated end-to-end
performance of our solution with a state-of-the-art EEP so-
lution and assess the impact of the additivity assumption on
the end-to-end performance.

4.1. End-to-end performance

In this section, we compare the end-to-end-performance of
the proposed UEP controller with that of an advanced EEP
system. A general EEP algorithm simply utilizes the order
of the embedded substreams as prioritarization informa-
tion. The image is encoded by the source coder, which sub-
sequently outputs an ordered sequence of substreams. The
substreams are further protected by the channel coder with a
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FIGURE 8: Performance comparison between UEP and optimized
EEP for the transmission of Toulouse.

single error correcting code until the bit budget is exhausted.
The remaining part of the bitstream is discarded and there-
fore not transmitted. Note that such an EEP solution relies
already on a progressive bitstream, which can be cut at any
place and is provided in a rate-distortion optimized order.

Figure 8 compares the performance of the EEP and UEP
controllers for a global budget corresponding to the size of
the Toulouse source bitstream. The plain curve shows the
performance of the UEP controller, while the dashed curve
shows the PSNR performance of the EEP controller. In a clas-
sical EEP system, the protection level is fixed for the whole
range of channel conditions. In this simulation, the EEP per-
formance is actually derived from the hull of all possible EEP
optimization, given the number of protection levels available
in the system. Therefore, the EEP performance of Figure 8
corresponds to an EEP controller that would choose the op-
timal protection mode according to the channel condition.
It should be noted that a classical EEP system cannot achieve
such an optimization since the protection level is fixed. How-
ever, for the UEP controller, the allocation is based on a pre-
dictive model, which is directly dependent on the channel
condition. Therefore, the protection levels are automatically
adapted prior to transmission.

The bottom x-axis represents the signal-to-noise ratio
E(/Ny, while the top x-axis represent the equivalent uncoded
BER on an AWGN with binary phase-shift keying (BPSK)
modulation. For low and high E;/Ny, the performance of
both the EEP and the UEP controller are closely matched.
This is explained by the fact that for E;/Ny below —3 dB and

above 12 dB, single protection modes are selected by both
algorithms. Looking at Figure 7, we see that for bad chan-
nel conditions (E;/Ny = —3 dB), the best T@mpo mode (1/3
rate) gives a BER of 10~ while the next best mode (1/2 rate)
gives a BER above 0.1. Both algorithms decide to transmit
1/3 of the bitstream with the best T@mpo mode. Similarly,
for very good channel conditions (E/Ny > 12 dB), the un-
protected mode is subject to a sufficiently low BER to deliver
the whole bitstream without any protection. For interme-
diate channel conditions (Es/Ny between —2dB and 12 dB),
the image reconstruction quality is acceptable, with a PSNR
above 30dB and the UEP controller outperforms the EEP
controller by as much as 2 dB.

It should be noted that for both controllers, the recon-
structed quality has a staircase effect. This effect is clearly vis-
ible on the EEP performance curve. The different switching
points actually correspond to the channel conditions where
the EEP controller decides to switch to the next protection
mode. This effect is mainly due to the fact that the number of
protection levels is limited. Indeed, for each protection level,
only one bitstream truncation point is possible in order to fit
the available budget. Between consecutive switching points,
the amount of source data will therefore be constant and cor-
respond to a quality plateau. At the next protection mode
switch, the truncation point jumps further along the bit-
stream. Looking at the UEP controller performance, we re-
mark that the staircase effect is less visible, giving a smoother
transition between the switching points. This is explained by
the fact that the UEP controller can allocate multiple pro-
tection rates across the substreams and trade more precisely
source and channel resources for a given channel condition.
It should be stressed that the UEP controller automatically
adapts the number of protection levels used and their dis-
tribution across the substreams according to the algorithm
described in Section 2.4.

4.2. Impact of additivity mismatch

The additivity assumption is central to the optimization al-
gorithms proposed in [28] and in Section 2. It allows the use
of a low-complexity algorithm for the UEP global optimiza-
tion. First, we characterize the amplitude of the mismatch
with large parameters P + 1 = 6 and S = 349 in order to
characterize the deviation for the system setup described in
Section 3. In a second step, we evaluate the end-to-end per-
formance and the mismatch for small parameters P = 2 and
S = 2. The impact of the deviation on the end-to-end is actu-
ally checked against a reference full-search algorithm, which
is only feasible when the parameters are small. Since the de-
viation has no impact when parameters are small, and that
deviation characteristics are similar whether we use small or
large parameters, we suppose that the system will keep good
performance with large parameters. Details of the simula-
tions are given hereafter.

Uniform BERs ranging from 107° to 10~ are applied on
the different substreams. For each BER, 100 simulations are
run to obtain a reasonable averaging of the MSE and the peak
signal-to-noise ratio (PSNR) measurements. First we jointly
corrupt all substreams with a fixed BER and compute the
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FIGURE 9: Additivity mismatch for Toulouse, defined as excess in
total expected distortion (using the additive model) over the simu-
lated overall distortion (true value), as a function of BER.

output distortion §. Secondly, we corrupt each of the S sub-
streams with a fixed BER b while leaving other substreams
uncorrupted, and compute the S individual distortions D,
where 1 < s < . Figure 9 shows the additivity mismatch
defined as

0
S )
2 =1Ds

which happens to be strictly positive. This confirms that the
additivity-based distortion estimation overestimates the real
joint distortion. The mismatch starts off with less than 10%
mismatch at a BER of 107> and reaches a plateau at 100%
for a BER of 107> before reaching a peak at 200% for a
BER of 3 x 1072, Clearly additivity is not respected within
FlexWave-II and exhibits a large additivity deviation. How-
ever, it should be stressed that a model mismatch does not
necessarily lead to a wrong decision during the optimization
phase or a decrease in the end-to-end performance of the sys-
tem.

To assess the impact of the additive model deviation on
the end-to-end performance, we compared the output opti-
mization decision with a full-search algorithm. A full-search
algorithm basically computed the expected distortion of all
possible protection allocations prior to the transmission, and
picked the best allocation based on the lowest distortion
value. The full-search algorithm is not realizable with the
large parameters P+ 1 = 6 and S = 349 used in Section 4.1.
However, with P+ 1 = 3 and S = 2, we found that the pro-
tection allocation performed by the system with the additive
model was identical to that of the full-search algorithm, while
having similar mismatch amplitudes. Therefore, we assume
that the behavior of our low-complexity solution will remain
optimal with increasing parameters.

a=1- (10)

As a final comment, we have to state that the UEP algo-
rithms optimally match the protection levels to the impor-
tance of each substream. By increasing the protection of im-
portant substreams, we expect to reduce their large contri-
bution to the distortion. Hence, we expect UEP to mitigate
the masking effect [31] when the parameters S and P are in-
creased, which is one of the main cause for the additivity mis-
match, as dominant substreams will be heavily protected.

5. HARDWARE IMPLEMENTATION

During the development of the satellite communica-
tion system, a hardware implementation of the UEP-
optimized system has been realized. This section briefly de-
scribes the hardware setup that was designed. The hard-
ware platform has been realized on a PICARD system
www.imec.be/wireless/picard. The PICARD system consists
of a PC in an industrial 19-inch rack. The backplane of the
rack exposes a compact PCI (C-PCI) backplane. On this
backplane, boards containing IP cores can be plugged. The
T@mpo, FlexWave-II and AWGN channel are all integrated
on such a circuit board. The board is built around as central
FPGA that interconnects all the IP cores.

Figure 10 shows the comparison between the software
version of the system presented in Section 4.1, and the hard-
ware platform that has been instantiated. The transmission
scenario described in Section 4 is used. The plain curve of
Figure 10 is therefore identical to the plain curve of Figure 8,
showing the performance of the UEP controller. The starred
curve shows the performance of the Hardware implementa-
tion. As we can see, there is an almost perfect match between
the two curves. This validates the hardware implementation
of the FlexWave-1I and T@mpo cores compared to their soft-
ware versions. A processing performance of up to 10 Mpix-
els/s was measured on the final platform.

6. CONCLUSIONS

We have shown that joint source-channel optimization is a
promising technique for the future of satellite imaging. By
combining the embedded scalability offered by state-of-the-
art wavelet-based source coders and recent channel coding
techniques that are providing a flexible range of protection
levels, and applying a generic UEP methodology on the com-
bined system, we have developed an efficient satellite im-
age transmission system. The proposed UEP solution out-
performs an optimized state-of-the-art EEP solution by as
much as 2dB in the working range of channel conditions,
and is able to adapt to any bitrate and any channel condi-
tion. The inherent low complexity of the resulting solution,
enabled by an efficient joint source-channel modeling of the
system, allowed the practical implementation of the com-
plete system on an hardware platform and proved to have
a rate-distortion performance very close to the software plat-
form.
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