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We consider a state-dependent multiaccess channel (MAC) with state noncausally known to some encoders. For simplicity of
exposition, we focus on a two-encoder model in which one of the encoders has noncausal access to the channel state. The results
can in principle be extended to any number of encoders with a subset of them being informed. We derive an inner bound for
the capacity region in the general discrete memoryless case and specialize to a binary noiseless case. In binary noiseless case,
we compare the inner bounds with trivial outer bounds obtained by providing the channel state to the decoder. In the case of
maximum entropy channel state, we obtain the capacity region for binary noiseless MAC with one informed encoder. For a
Gaussian state-dependent MAC with one encoder being informed of the channel state, we present an inner bound by applying a
slightly generalized dirty paper coding (GDPC) at the informed encoder and a trivial outer bound by providing channel state to the
decoder also. In particular, if the channel input is negatively correlated with the channel state in the random coding distribution,
then GDPC can be interpreted as partial state cancellation followed by standard dirty paper coding. The uninformed encoders
benefit from the state cancellation in terms of achievable rates, however, it seems that GDPC cannot completely eliminate the
effect of the channel state on the achievable rate region, in contrast to the case of all encoders being informed. In the case of
infinite state variance, we provide an inner bound and also provide a nontrivial outer bound for this case which is better than the
trivial outer bound.
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1. INTRODUCTION

We consider a state-dependent multiaccess channel (MAC)
with noiseless channel state noncausally known to only some,
but not all, encoders. The simplest example of a commu-
nication system under investigation is shown in Figure 1,
in which two encoders communicate to a single decoder
through a state-dependent MAC p(y|x1, x2, s) controlled by
the channel state S. We assume that one of the encoders has
noncausal access to the noiseless channel state. The results
can in principle be extended to any number of encoders
with a subset of them being informed of the noiseless
channel state. The informed encoder and the uninformed
encoder want to send messages W1 and W2, respectively,
to the decoder in n channel uses. The informed encoder,
provided with both W1 and the channel state Sn, generates
the codeword Xn

1 . The uninformed encoder, provided only
with W2, generates the codeword Xn

2 . The decoder, upon

receiving the channel output Yn, estimates both messages
W1 and W2 from Yn. In this paper, our goal is to study the
capacity region of this model.

1.1. Motivation

State-dependent channel models with state available at the
encoder can be used to model IE [1–4]. Information embed-
ding (IE) is a recent area of digital media research with many
applications, including: passive and active copyright protec-
tion (digital watermarking); embedding important control,
descriptive, or reference information into a given signal; and
covert communications [5]. IE enables encoding a message
into a host signal (digital image, audio, video) such that it is
perceptually and statistically undetectable. Given the various
applications and advantages of IE, it is important to study
fundamental performance limits of these schemes. The infor-
mation theory community has been studying performance
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Figure 1: State-dependent multiaccess channel with channel state noncausally known to one encoder.

limits of such models in which random parameters capture
fading in a wireless environment, interference from other
users [6], or the host sequence in IE and date hiding
applications [1–4, 7].

The state-dependent models with channel state available
at the encoders can also be used to model communication
systems with cognitive radios. Because of growing demand
for bandwidth in wireless systems, some secondary users
with cognitive capabilities are introduced into an existing pri-
mary communication system to use the frequency spectrum
more efficiently [8]. These cognitive devices are supposed
to be capable of obtaining knowledge about the primary
communication that takes place in the channel and adapt
their coding schemes to remove the effect of interference
caused by the primary communication systems to increase
spectral efficiency. The state in such models can be viewed as
the signal of the primary communication that takes place in
the same channel, and the informed encoders can be viewed
as cognitive users. The model considered in the paper can
be viewed as a secondary multiaccess communication system
with some cognitive and noncognitive users introduced into
the existing primary communication system. The cognitive
users are capable of noncausally obtaining the channel state
or the signal of the primary communication system. In this
paper, we are interested in studying the achievable rates
of the secondary multiaccess communication system with
some cognitive users. Joint design of the primary and the
secondary networks is studied in [9, 10].

1.2. Background

The study of state-dependent models or channels with
random parameters, primarily for single-user channels, is
initiated with Shannon himself. Shannon studies the single-
user discrete memoryless (DM) channels p(y|x, s) with
causal channel state at the encoder [11]. Here, X , Y , and S
are the channel input, output, and state, respectively. Salehi
studies the capacity of these models when different noisy
observations of the channel state are causally known to the
encoder and the decoder [12]. Caire and Shamai extend the
results of [12] to channels with memory [13].

Single-user DM state-dependent channels with memo-
ryless state noncausally known to the encoder are studied in
[14, 15] in the context of computer memories with defects.

Gelfand-Pinsker derive the capacity of these models, which is
given by [16]

C = max
p(u|s),X= f (U ,S)

[
I(U ;Y)− I(U ; S)

]
, (1)

where U is an auxiliary random variable, and X is a
deterministic function of (U , S). Single-user DM channels
with two state components, one component noncausally
known to the encoder and another component known to the
decoder, are studied in [17].

Costa studies the memoryless additive white Gaussian
state-dependent channel of the form Yn = Xn + Sn +
Zn, where Xn is the channel input with power constraint
(1/n)

∑n
i=1X

2
i ≤ P, Sn is the memoryless state vector whose

elements are noncausally known to the encoder and are zero-
mean Gaussian random variables with variance Q, and Zn

is the memoryless additive noise vector whose elements are
zero-mean Gaussian random variables with variance N and
are independent of the channel input and the state. The
capacity of this model is given by [18]

C = 1
2

log
(

1 +
P

N

)
. (2)

In terms of the capacity, the result (2) indicates that
noncausal state at the encoder is equivalent to state at the
decoder or no state in the channel. The so-called dirty paper
coding (DPC) scheme used to achieve capacity (2) suggests
that allocating power for explicit state cancellation is not
optimal, that is, the channel input X is uncorrelated with the
channel state S in the random coding distribution [18].

For state-dependent models with noncausal state at the
encoder, although much is known about the single user case,
the theory is less well developed for multiuser cases. Several
groups of researchers [19, 20] study the memoryless additive
Gaussian state-dependent MAC of the form Yn = Xn

1 + Xn
2 +

Sn+Zn, where Xn
1 and Xn

2 are the channel inputs with average
power constraints (1/n)

∑n
i=1X

2
1,i ≤ P1 and (1/n)

∑n
i=1X

2
2,i ≤

P2, respectively, Sn is the memoryless channel state vector
whose elements are noncausally known at both the encoders
and are zero-mean Gaussian random variables with variance
Q, and Zn is the memoryless additive noise vector whose
elements are zero-mean Gaussian random variables with
variance N and are independent of the channel inputs and
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the channel state. The capacity region of this model is the set
of rate pairs (R1,R2) satisfying

R1 ≤ 1
2

log
(

1 +
P1

N

)
,

R2 ≤ 1
2

log
(

1 +
P2

N

)
,

R1 + R2 ≤ 1
2

log
(

1 +
P1 + P2

N

)
.

(3)

As in the single-user Gaussian model, the capacity region (3)
indicates that the channel state has no effect on the capacity
region if it is noncausally known to both the encoders.
Similar to the single-user additive Gaussian models with
channel state, DPC at both the encoders achieves (3) and
explicit state cancellation is not optimal in terms of the
capacity region. It is interesting to study the capacity region
for the Gaussian MAC with noncausal channel state at one
encoder because DPC cannot be applied at the uninformed
encoder.

For the DM case, the state-dependent MAC with state
at one encoder is considered in [21–23] when the informed
encoder knows the message of the uninformed encoder. For
the Gaussian case in the same scenario, the capacity region
is obtained in [22, 24] by deriving nontrivial outer bounds.
It is shown that the generalized dirty paper coding (GDPC)
achieves the capacity region. The model considered in this
paper from the view of lattice coding is also considered in
[25]. Cemal and Steinberg study the state-dependent MAC
in which rate-constrained state is known to the encoders
and full state is known to the decoder [26]. State-dependent
broadcast channels with state available at the encoder have
also been studied in the DM case [27, 28] and the Gaussian
case [29].

1.3. Main contributions and organization of the paper

We derive an inner bound for the model shown in Figure 1
for the DM case and then specialize to a binary noiseless
case. General outer bounds for these models have been
obtained in [30], however, at present, these bounds do not
coincide with our inner bounds and are not computable
due to lack of bounds on the cardinalities of the auxiliary
random variables. In binary noiseless case, the informed
encoder uses a slightly generalized binary DPC, in which
the random coding distribution has channel input random
variable correlated to the channel state. If the binary channel
state is a Bernoulli(q) random variable with q < 0.5, we
compare the inner bound with a trivial outer bound obtained
by providing the channel state to the decoder, and the bounds
do not meet. If q = 0.5, we obtain the capacity region by
deriving a nontrivial outer bound.

We also derive an inner bound for an additive white
Gaussian state-dependent MAC similar to [19, 20], but in the
asymmetric case in which one of the encoders has noncausal
access to the state. For the inner bound, the informed
encoder uses a generalized dirty paper coding (GDPC)
scheme in which the random coding distribution exhibits

arbitrary correlation between the channel input from the
informed encoder and the channel state. The inner bound
using GDPC is compared with a trivial outer bound obtained
by providing channel state to the decoder. If the channel
input from the informed encoder is negatively correlated
with the channel state, then GDPC can be interpreted as
partial state cancellation followed by standard dirty paper
coding. We observe that, in terms of achievable rate region,
the informed encoder with GDPC can assist the uninformed
encoders. However, in contrast to the case of channel state
available at all the encoders [19, 20], it appears that GDPC
cannot completely eliminate the effect of the channel state
on the capacity region for the Gaussian case.

We also study the Gaussian case if the channel state has
asymptotically large variance Q, that is, Q→∞. Interestingly,
the uninformed encoders can benefit from the informed
encoder’s actions. In contrast to the case of Q < ∞ in which
the informed encoder uses GDPC, we show that the standard
DPC is sufficient to help the uninformed encoder as Q→∞.
In this latter case, explicit state cancellation is not useful
because it is impossible to explicitly cancel the channel state
using the finite power of the informed encoder.

We organize the rest of the paper as follows. In Section 2,
we define some notation and the capacity region. In
Section 3, we study a general inner bound for the capacity
region of the model in Figure 1 for a DM MAC and also
specialize to a binary noiseless case. In this section, we also
derive the capacity region of the binary noiseless MAC with
maximum entropy channel state. In Section 4, we study inner
and outer bounds on the capacity region of the model in
Figure 1 for a memoryless Gaussian state-dependent MAC
and also study the inner and outer bounds for the capacity
region of this model in the case of large channel state
variance. Section 5 concludes the paper.

2. NOTATIONS ANDDEFINITIONS

Throughout the paper, the notation x is used to denote the
realization of the random variable X∼p(x). The notation Xn

1

represents the sequence X1,1,X1,2, . . . ,X1,n, and the notation
Xn

1,i represents the sequence X1,i,X1,i+1, . . . ,X1,n. Calligraphic
letters are used to denote the random variable’s alphabet, for
example, X ∈ X. The notation cl{A} and co{A} denote
the closure operation and convex hull operation on set A,
respectively.

We consider a memoryless state-dependent MAC,
denoted p(y|x1, x2, s), whose output Y ∈ Y is controlled
by the channel input pair (X1,X2) ∈ (X1,X2) and along
with the channel state S ∈ S. These alphabets are discrete
sets and the set of real numbers for the discrete case and the
Gaussian case, respectively. We assume that Si at any time
instant i is identically independently drawn (i.i.d.) according
to a probability law p(s). As shown in Figure 1, the state-
dependent MAC is embedded in some environment in which
channel state is noncausally known to one encoder.

The informed encoder, provided with the noncausal
channel state, wants to send message W1 to the decoder
and the uninformed encoder wants to send W2 to the
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decoder. The message sources at the informed encoder and
the uninformed encoder produce random integers

W1 ∈
{

1, 2, . . . ,M1
}

, W2 ∈
{

1, 2, . . . ,M2
}

, (4)

respectively, at the beginning of each block of n channel
uses. We assume that the messages are independent and the
probability of each pair of messages (W1 = w1,W2 = w2) is
given by 1/M1M2.

Definition 1. A (�2nR1�, �2nR2�,n) code consists of encoding
functions

f n1 : Sn ×W1 −→Xn
1 , f n2 : W2 −→Xn

2 (5)

at the informed encoder and the uninformed encoder,
respectively, and a decoding function

gn : Yn −→ (
W1 ×W2

)
, (6)

where Wi = {1, 2, . . . , �2nRi�} for i = 1, 2.

From a (�2nR1 , 2nR2 ,n�) code, the sequences Xn
1 and Xn

2

from the informed encoder and the uninformed encoder,
respectively, are transmitted without feedback across a
state-dependent MAC p(y|x1, x2, s) modeled as a discrete
memoryless conditional probability distribution, so that

Pr
(
Yn = yn|sn, xn1 , xn2

) = n∏
j=1

p
(
yj|x1, j , x2, j , s j

)
. (7)

The decoder, upon receiving the channel outputYn, attempts
to reconstruct the messages. The average probability of error
is defined as Pn

e = Pr[g(Yn) /=(W1,W2)].

Definition 2. A rate pair (R1,R2) is said to be achievable if
there exists a sequence of (�2nR1�, �2nR2�,n) codes ( f n1 , f n2 , gn)
with limn→∞Pn

e = 0.

Definition 3. The capacity region C is the closure of the set
of achievable rate pairs (R1,R2).

Definition 4. For given p(s) and p(y|x1, x2, s), let P i be
the collection of random variables (Q, S,U1,X1,X2,Y) with
probability laws

p
(
q, s,u1, x1, x2, y

)
= p(q)p(s)p

(
u1|s, q

)
p
(
x1|u1, s, q

)
p
(
x2|q

)
p
(
y|x1, x2, q

)
,
(8)

where Q and U1 are auxiliary random variables.

3. DISCRETEMEMORYLESS CASE

In this section, we derive an inner bound for the capacity
region of the model shown in Figure 1 for a general DM
MAC and then specialize to a binary noiseless MAC. In this
section, we consider X1, X2, S, and Y to all be discrete and
finite alphabets, and all probability distributions are to be
interpreted as probability mass functions.

3.1. Inner bound for the capacity region

The following theorem provides an inner bound for the DM
case.

Theorem 1. Let Ri be the closure of all rate pairs (R1,R2)
satisfying

R1 < I
(
U1;Y |X2,Q

)− I
(
U1; S|Q),

R2 < I
(
X2;Y |U1,Q

)
,

R1 + R2 < I
(
U1,X2;Y |Q)− I

(
U1; S|Q)

(9)

for some random vector (Q, S,U1,X1,X2,Y) ∈ P i, where Q ∈
Q and U1 ∈ U1 are auxiliary random variables with |Q| ≤ 4
and |U1| ≤ |X1||X2||S| + 4, respectively. Then the capacity
region C of the DM MAC with one informed encoder satisfies
Ri ⊆ C.

Proof. The above inner bound can be proved by essentially
combining random channel coding for the DM MAC
[31] and random channel coding with noncausal state at
the encoders [16]. For completeness, a proof using joint
decoding is given in Appendix A.1.

Remarks

(i) The inner bound of Theorem 1 can be obtained by apply-
ing Gelfand-Pinsker coding [16] at the informed encoder. At
the uninformed encoder, the codebook is generated in the
same way as for a regular DM MAC [31].

(ii) The region Ri in Theorem 1 is convex due to the
auxiliary time-sharing random variable Q.

(iii) The inner bound Ri of Theorem 1 can also be
obtained by time-sharing between two successive decoding
schemes, that is, decoding one encoder’s message first
and using the decoded codeword and the channel output
to decode the other encoder’s message. On one hand,
consider first decoding the message of the informed encoder.
Following [16], if R1 < I(U1;Y) − I(U1; S), we can decode
the codeword Un

1 of the informed encoder with arbitrarily
low probability of error. Now, we use Un

1 along with Yn to
decode Xn

2 . Under these conditions, if R2 < I(X2;Y |U1),
then we can decode the message of the uninformed encoder
with arbitrarily low probability of error. On the other hand,
if we change the decoding order of the two messages, the
constraints are R2 < I(X2;Y) and R1 < I(U1;Y |X2)−I(U1; S).
By time-sharing between these two successive decoding
schemes and taking the convex closure, we can obtain the
inner bound Ri of Theorem 1.

3.2. Binary noiseless example

In this section, we specialize Theorem 1 to a binary noiseless
state-dependent MAC of the form Yn = Xn

1 ⊕Xn
2 ⊕Sn, where

Xn
1 and Xn

2 are channel inputs with the number of binary
ones in Xn

1 and Xn
2 less than or equal to np1, 0 ≤ p1 ≤ 1,

and np2, 0 ≤ p2 ≤ 1, respectively; Sn is the memoryless
state vector whose elements are noncausally known to one
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encoder and are i.i.d. Bernoulli(q) random variables, 0 ≤
q ≤ 1; and ⊕ represents modulo-2 addition. By symmetry,
we assume that p1 ≤ 0.5, p2 ≤ 0.5, and q ≤ 0.5.

3.2.1. Inner and outer bounds

The following corollary gives an inner bound for the capacity
region of the binary noiseless MAC by applying a slightly
generalized binary DPC at the informed encoder in which
the channel input X1 and the channel state S are correlated.

Definition 5. Let Ri(a10, a01) be the set of all rate pairs
(R1,R2) satisfying

R1 < (1− q)Hb
(
a10
)

+ qHb
(
a01
)
,

R2 < Hb
(
p2
)
,

R1 + R2 < (1− q)Hb
(
a10
)

+ qHb
(
a01
)

+ Hb
(
p2∗

[
qa01 + (1− q)a10

])
−Hb

(
qa01 + (1− q)a10

)
,

(10)

for (a10, a01) ∈A, where

A := {(x, y) : 0 ≤ x, y ≤ 1, (1− q)x + q(1− y) ≤ p1
}

,
(11)

and Hb(γ) := −γlog2(γ) − (1 − γ)log2(1 − γ), and x∗y :=
x(1− y) + y(1− x). Let

Ri
BIN := cl

{
co

{ ⋃
(a10,a01)∈A

Ri
(
a10, a01

)}}
. (12)

Corollary 1. The capacity region CBIN for the binary noiseless
state-dependent MAC with one informed encoder satisfies
Ri

BIN ⊆ CBIN.

Proof. Encoding and decoding are similar to encoding and
decoding explained for the general DM case above. The
informed encoder uses generalized binary DPC in which
the random coding distribution allows arbitrary correlation
between the channel input from the informed encoder
and the known state. We consider U1 = X1 ⊕ S and
X2∼Bernoulli(p2), where X1 is related to S by a01 = P(X1 =
0 | S = 1) and a10 = P(X1 = 1 | S = 0) with a01 and
a10 chosen such that P(X1 = 1) ≤ p1. We compute the
region Ri(a10, a01) defined in (1) using the probability mass
function of X2 and the auxiliary random variable U1 for all
(a10, a01) ∈ A, and deterministic Q to obtain the region
Ri

BIN in (9). We use deterministic Q to compute the region
in the binary case because we explicitly take the convex hull
of unions of the regions computed with distributions. This
completes the proof.

The following proposition provides a trivial outer bound
for the capacity region of the binary noiseless MAC with one
informed encoder. We do not provide a proof because this
outer bound can be easily obtained if we provide the channel
state to the decoder.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
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Figure 2: A numerical example of the binary noiseless multipleac-
cess channel with p1 = 0.1, p2 = 0.4, and q = 0.2.

Proposition 1. Let Ro
BIN be the set of all rate pairs (R1,R2)

satisfying

R1 ≤ Hb
(
p1
)
,

R2 ≤ Hb
(
p2
)
,

R1 + R2 ≤
⎧⎨⎩Hb

(
p1 + p2

)
if 0 ≤ p1 + p2 < 0.5,

1 if 0.5 ≤ p1 + p2 ≤ 1.

(13)

Then the capacity region CBIN for the binary noiseless MAC
with one informed encoder satisfies CBIN ⊆Ro

BIN.

3.2.2. Numerical example

Figure 2 depicts the inner bound using generalized binary
DPC specified in Corollary 1 and the outer bound specified
in Proposition 1 for the case in which p1 = 0.1, p2 = 0.4,
and q = 0.2. Also shown for comparison are the following:
an inner bound using binary DPC alone, or the generalized
DPC with a10 = p1 and a01 = 1 − p1; and the inner bound
for the capacity region of the case in which the state is known
to neither the encoders nor the decoder.

These results show that the inner bound obtained by
generalized binary DPC is larger than that obtained using
binary DPC [32], and suggest that the informed encoder can
help the uninformed encoder using binary DPC [32] as well
as generalized binary DPC. Even though state is known to
only one encoder, both the encoders can benefit in terms of
achievable rates compared to the case in which the channel
state is unavailable at the encoders and the decoder.

3.2.3. Maximum entropy state

In this section, we discuss how the uninformed encoder
benefits from the actions of the informed encoder even if
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q = 0.5 so that Hb(S) = 1. The following corollary provides
the capacity region of the noiseless binary MAC with one
informed encoder in this case.

Corollary 2. For the given input constraints (p1, p2) and q =
0.5, the capacity region of the binary noiseless MAC with one
informed encoder is the set of rate pairs (R1,R2) satisfying

R2 ≤ Hb
(
p2
)
, R1 + R2 ≤ Hb

(
p1
)
. (14)

Proof. The region (2) is achieved if the informed encoder
employs the generalized binary DPC with a10 = p1 and
a01 = 1 − p1 or the standard binary DPC. We obtain (14)
from (10) by substituting a10 = p1 and a01 = 1− p1 in (10).
A converse proof for the above capacity region is given in
Appendix A.2.

Remarks

(i) From (14), we see that the uninformed encoder can
achieve rates below min{Hb(p1),Hb(p2)} though the chan-
nel has maximum entropy state. Let us investigate how
the uninformed encoder can benefit from the informed
encoder’s actions even in this case using successive decoding
in which Un

1 is decoded first using Yn and then Xn
2 is decoded

using Yn and Un
1 . The informed encoder applies the standard

binary DPC, that is, a10 = p1 and a01 = (1 − p1) in
generalized binary DPC, to generate its codewords, and the
uninformed encoder uses a Bernoulli( p̃2) random variable
to generate its codewords, where p̃2 ≤ p2. In the case
of maximum entropy state, Un

1 can be decoded first with
arbitrary low probability of error if R1 satisfies

R1 < Hb
(
p1
)−Hb

(
p̃2
)
, (15)

for p̃2 ≤ p2 and p̃2 ≤ p1. The channel output can be
written as Yi = U1,i ⊕ X2,i because U1,i = X1,i ⊕ Si for
i ∈ {1, 2, . . . ,n}. Using Un

1 , we can generate a new channel
output for decoding Xn

2 as

Ỹi = Yi ⊕U1,i = X2,i, (16)

for i ∈ {1, 2, . . . ,n}. Since there is no binary noise present in
Ỹ n for decoding Xn

2 , the message of the uninformed encoder
can be decoded with arbitrarily low probability of error if
R2 < Hb( p̃2) for p̃2 satisfying both p̃2 ≤ p1 and p̃2 ≤ p2.

Then the bound on R2 can be written as

R2 < min
{
Hb
(
p1
)
,Hb

(
p2
)}
. (17)

If p1 > p2, we can achieve R2 < Hb(p2) as if there were no
state in the channel, though the maximum entropy binary
state is present in the channel and the state is not known to
the uninformed encoder. If p1 ≤ p2, the uninformed encoder
can still achieve positive rates, that is, R2 < Hb(p1).

(ii) Let us now discuss how the informed encoder
achieves rate below Hb(p1) using successive decoding in
the reverse order, that is, Xn

2 is decoded first using Yn and
then Un

1 is decoded using Yn and Xn
2 . If q = 0.5, Xn

2 can
be decoded with arbitrary low probability of error if R2 <
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Figure 3: The capacity region of the binary noiseless MAC with
maximum entropy binary state, that is, q = 0.5, and p2 = 0.3.

[Hb(p2∗(p1∗0.5))−Hb(p1∗0.5)] = 0. This means that only
R2 = 0 is achievable. Then R1 < Hb(p1) is achievable with
a10 = p1 and a01 = 1− p1.

Let us illustrate the case of maximum entropy binary
state with numerical examples. Figure 3 illustrates the inner
bound given in Corollary 2 for q = 0.5 and p2 = 0.3 in
two cases p1 = 0.2 (p1 ≤ p2) and p1 = 0.4 (p1 > p2).
In both cases, these numerical examples suggest that the
uniformed encoder achieves positive rates from the actions
of the informed encoder as discussed above. In the case of
p1 = 0.4 (p1 > p2), the informed encoder can still achieve
Hb(p2) though the channel state has high entropy and is
not known to the uninformed encoder, and the informed
encoder has input constraint p1 = 0.4.

4. GAUSSIANMEMORYLESS CASE

In this section, we develop inner and outer bounds for the
memoryless Gaussian case. The additive Gaussian MAC with
one informed encoder is shown in Figure 4. The output of
the channel isYn = Xn

1 +Xn
2 +Sn+Zn, whereXn

1 andXn
2 are the

channel inputs with average power constraints
∑n

i=1X
2
1,i ≤

nP1 and
∑n

i=1X
2
2,i ≤ nP2 with probability one, respectively;

Sn is the memoryless state vector whose elements are zero-
mean Gaussian random variables with variance Q; and Zn

is the memoryless additive noise vector whose elements are
zero-mean Gaussian random variables with variance N and
independent of the channel inputs and the state.

4.1. Inner and outer bounds on the capacity region

The following definition and theorem give an inner bound
for the Gaussian MAC with one informed encoder. To obtain
the inner bound for this case, we apply generalized dirty
paper coding (GDPC) at the informed encoder.
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Decoder
Yn

Sn Zn

(Ŵ1, Ŵ2)

Xn
1

Xn
2

Informed encoder

Uninformed encoder

W1

W2

Figure 4: Gaussian state-dependent multiaccess channel with channel state noncausally known to one encoder.

Definition 6. Let

r1(ρ,α)

:= 1
2

log
(

P1
(
1−ρ2

)(
P1 +Q+2ρ

√
P1Q+N

)
P1Q

(
1−ρ2

)(
1− α

)2
+N

(
P1 +α2Q+2αρ

√
P1Q

)),

r2(ρ,α)

:= 1
2

log
(
1+

P2

N+P1Q
(
1−ρ2

)
(1−α)2/

(
P1 +α2Q+2αρ

√
P1Q

)),

r3(ρ,α)

:= 1
2

log
(

P1
(
1−ρ2

)(
P1 +P2 +Q+2ρ

√
P1Q+N

)
P1Q

(
1−ρ2

)
(1− α)2 +N

(
P1 +α2Q+2αρ

√
P1Q

)),

(18)

for a given −1 ≤ ρ ≤ 0, and a given α ∈A(ρ), where

A(ρ) = {x ∈ R : r1(ρ, x) ≥ 0, r2(ρ, x) ≥ 0, r3(ρ, x) ≥ 0
}
.

(19)

Theorem 2. Let Ri(ρ,α) be the set of all rate pairs (R1,R2)
satisfying R1 < r1(ρ,α), R2 < r2(ρ,α), and R1 + R2 < r3(ρ,α)
for given −1 ≤ ρ ≤ 0 and α ∈A(ρ). Let

Ri
G = cl

{
co

{ ⋃
−1≤ρ≤0,α∈A(ρ)

Ri(ρ,α)

}}
. (20)

Then the capacity region CG of the Gaussian MAC with one
informed encoder satisfiesRi

G ⊆ CG.

Proof. Our results for the DM MAC can readily be extended
to memoryless channels with discrete time and continuous
alphabets using standard techniques [33]. The informed
encoder uses GDPC in which the random coding distribu-
tion allows arbitrary correlation between the channel input
from the informed encoder and the known channel state.
Fix a correlation parameter −1 ≤ ρ ≤ 0. We then consider
the auxiliary random variable U1 = X1 + αS, where α is a
real number whose range will be discussed later, X1 and S
are correlated with correlation coefficient ρ, X1∼N (0,P1),
and S∼N (0,Q). We consider X2∼N (0,P2). Encoding and
decoding are performed similar to the proof of Theorem 1
in Section 3.1 In this case, we assume that q is deterministic
because time-sharing of regions with different distributions
is accomplished by explicitly taking convex hull of union of
regions with different distributions. We evaluate (9) using
the jointly Gaussian distribution of random variables S, U1,

X1, X2, Z, and Y for a given (ρ,α) and obtain Ri(ρ,α). Also
note that we restrict α to A(ρ) = {α : α ∈ R, r1(ρ,α) ≥
0, r2(ρ,α) ≥ 0, r3(ρ,α) ≥ 0} for a given ρ. By varying ρ and α,
we obtain different achievable rate regions Ri(ρ,α). Taking
the union of regions Ri(ρ,α) obtained by varying ρ and α
followed by taking the closure and the convex hull operations
completes the proof.

Remarks

(i) In both standard DPC [18] and GDPC, the auxiliary
random variable is given by U1 = X1 + αS. In GDPC,
X1∼N (0,P1) and S∼N (0,Q) are jointly correlated with
correlation coefficient ρ, whereas in the standard DPC,
they are uncorrelated. If the channel input X1 is negatively
correlated with the channel state S, then GDPC can be viewed
as partial state cancellation followed by standard DPC. To see
this, let us assume that ρ is negative and denote X̂1 as a linear
estimate of X1 from αS under the minimum mean square
error (MMSE) criterion. Accordingly, X̂1 = αρ

√
P1/QS. We

can rewrite the auxiliary random variable U1 as follows:

U1 =
(
X1 − X̂1

)
+ X̂1 + αS

= X1,w + α

(
1 + ρ

√
P1

Q

)
S

= X1,w + α

(
1−

√
γP1

Q

)
S

= X1,w + αŜ,

(21)

where γ = ρ2 ∈ (0, 1], Ŝ can be viewed as the remaining state
after state cancellation using power γP1, and X1,w is error
with variance (1 − γ)P1 and is uncorrelated with Ŝ. GDPC
with negative correlation coefficient ρ can be interpreted as
standard DPC with power (1−γ)P1 applied on the remaining
state Ŝ after state cancellation using power γP1.

(ii) In this paper, we focus on the two-encoder model in
which one is informed and the other is uninformed, but the
concepts can be extended to the model with any number of
uninformed and informed encoders. The informed encoders
apply GDPC to help the uninformed encoders. Following
[19, 20], the informed encoders cannot be affected from the
actions of the other informed encoders because the informed
encoders can eliminate the effect of the remaining state on
their transmission after the state cancellation by them.
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Figure 5: An achievable region for Gaussian MAC with P1 = 15,
P2 = 50, Q = 20, and N = 60.

The following proposition gives a trivial outer bound for
the capacity region of the Gaussian MAC with one informed
encoder. We do not provide a proof because this bound
is the capacity region of the additive white Gaussian MAC
with all informed encoders [19, 20], the capacity region of
the additive white Gaussian MAC with state known to only
the decoder, and the capacity region of the additive white
Gaussian MAC without state.

Proposition 2. Let Ro
G be the set of all rate pairs (R1,R2)

satisfying

R1 ≤ 1
2

log
(

1 +
P1

N

)
,

R2 ≤ 1
2

log
(

1 +
P2

N

)
,

R1 + R2 ≤ 1
2

log
(

1 +
P1 + P2

N

)
.

(22)

Then the capacity region CG for the Gaussian MAC with one
informed encoder satisfies CG ⊆Ro

G.

4.2. Numerical example

Figure 5 depicts the inner bound using GDPC given in
Theorem 2 and the outer bound specified in Proposition 2
for the case in which P1 = 15, P2 = 50, Q = 20, and
N = 60. Also shown for comparison are the following: an
inner bound using DPC alone, or GDPC with ρ = 0 and α as
parameter; and the capacity region for the case in which the
the state is unavailable at the encoders and the decoder.

These results suggest that the informed encoder can help
the uninformed encoder using DPC as well as GDPC. Even
though the state is known only at one encoder, both the
encoders benefit from this situation by allowing negative
correlation between the channel input X1 and the state

S at the informed encoder, since the negative correlation
allows the informed encoder to partially cancel the state. The
achievable rate region Ri(0,α) obtained by applying DPC
[18] with α as a parameter is always contained in Ri

G in (20).
In contrast to the case of state available to both the encoders
[19, 20], GDPC is not sufficient to completely mitigate the
effect of state on the capacity region.

Figure 6 illustrates how the maximum rate of the unin-
formed encoder R2,max varies with the channel state variance
Q if R1 = 0, for P2 = 50, and N = 60. As shown in
Figure 6, R2,max decreases as Q increases because the variance
of remaining state also increases following state cancellation
by the informed encoder. The decrease in R2,max is slower
as P1 increases because the informed encoder can help the
uninformed encoder more in terms of achievable rates as its
power increases.

4.3. Asymptotic analysis

In this section, we discuss the inner bound in Theorem 2 as
Q→∞.

Definition 7. Let R̃i(ρ,α) be the set of all rate pairs (R1,R2)
satisfying R1 < r̃1(ρ,α), R2 < r̃2(ρ,α), and R1 + R2 < r̃3(ρ,α)
for a given −1 ≤ ρ ≤ 0 and α ∈ Ã(ρ) = {x ∈ R : 0 ≤ x ≤
2P1(1− ρ2)/(P1(1− ρ2) + N)}, where

r̃1(ρ,α)= lim
Q→∞

r1(ρ,α)= 1
2

log
(

P1(1−ρ2
)

P1
(
1−ρ2

)
(1−α)2 +α2N

)
,

r̃2(ρ,α)= lim
Q→∞

r2(ρ,α)= 1
2

log
(

1+
P2

N+P1
(
1−ρ2

)
(1−α)2/α2

)

r̃3(ρ,α) = lim
Q→∞

r3(ρ,α)= 1
2

log
(

P1
(
1− ρ2

)
P1
(
1− ρ2

)
(1− α)2 +α2N

)
.

(23)

(ri(ρ,α) for i = 1, 2, 3 is defined in (18) and is a function
of Q, though variable Q is not mentioned in the notation
ri(ρ,α).)

Corollary 3. As the variance of the state becomes very large,
that is, Q→∞, an inner bound for the capacity region of the
Gaussian MAC with one informed encoder is given by

R̃i
G = cl

{
co

{ ⋃
−1≤ρ≤0,α∈A(ρ)

R̃i(ρ,α)

}}
. (24)

Remarks

(i) Let us investigate how the uninformed encoder can
benefit from the informed encoder’s actions even as Q→∞.
For this discussion, consider successive decoding in which
the auxiliary codeword Un

1 of the informed encoder is
decoded first using the channel output Yn and then the
codeword Xn

2 of the uninformed encoder is decoded using
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Figure 6: Variation of the maximum rate of uninformed encoder
R2,max with the channel state variance Q when R1 = 0, P2 = 50, and
N = 60.

Yn and Un
1 . In the limit as Q→∞, Un

1 can be decoded first
with arbitrary low probability of error if R1 satisfies

R1 <
1
2

log
(

P1
(
1− ρ2

)
P1
(
1− ρ2

)
(1− α)2 + α2

(
P2 + N

)), (25)

where ρ ∈ [−1, 0] and 0 ≤ α ≤ 2P1(1−ρ2)/(P1(1−ρ2)+P2 +
N). The right hand side of (25) is obtained by calculating
the expression I(U1;Y) − I(U1, S) for the assumed jointly
Gaussian distribution and letting Q→∞. The channel output
can be written as Yi = U1,i + X2,i + (1 − α)Si + Zi because
U1,i = X1,i +αSi for i ∈ {1, 2, . . . ,n}. The estimate of (1−α)Si
using U1,i is denoted as Ŝi for i ∈ {1, 2, . . . ,n}.

Using Ŝn and Un
1 , we can generate a new channel output

for decoding Xn
2 as

Ỹi = Yi −U1,i − Ŝi = X2,i + Zi +
(
(1− α)Si − Ŝi

)
(26)

for i ∈ {1, 2, . . . ,n}. Since all random variables are identical,
we omit the subscript i for further discussion. The variance
of total noise present in elements of Ỹ n for decoding Xn

2 is
N + P1(1 − ρ2)(1 − α)2/α2, where N is the variance of Z,
and P1(1 − ρ2)(1 − α)2/α2 is the error of estimating (1 −
α)S from U1. Then the message of the uninformed encoder
can be decoded with arbitrarily low probability of error if
R2 < limQ→∞r2(ρ,α) for given ρ ∈ [−1, 0] and 0 ≤ α ≤
2P1(1 − ρ2)/(P1(1 − ρ2) + P2 + N). Even if the variance of
the state becomes infinite, nonzero rate for the uninformed
encoder can be achieved because the estimation error is finite
for ρ ∈ [−1, 0] due to the increase of the variance of U1 with
the increase of the statevariance.
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Figure 7: The inner and outer bounds for the capacity region of the
Gaussian MAC with one informed encoder in the strong additive
Gaussian state case, that is, Q→∞, for P1 = 50 (P1 ≤ P2 + N), P2 =
50, and N = 60.

Our aim is to minimize the variance of the estimation
error ((1 − α)S − Ŝ) to maximize r2(ρ,α) over ρ and α.
Since the right-hand side of (25) becomes nonnegative for
0 ≤ α ≤ 2P1(1− ρ2)/(P1(1− ρ2) + P2 + N) and ρ ∈ [−1, 0],
we consider only these values. The variance of the estimation
error is decreasing in both ρ ∈ [−1, 0] and α ∈ [0, 1] and is
increasing in the remaining range of α. Then r2(ρ,α) achieves
its maximum at ρ = 0 and α = min{1, 2P1/(P1 + P2 +N)}. If
P1 ≥ P2 + N , so that R1 is nonnegative, then

R2 <
1
2

log
(

1 +
P2

N

)
(27)

is achievable. In this case, the uninformed encoder fully
benefits from actions of the informed encoder, specifically
from its auxiliary codewords, even though the variance of
interfering state is very large. If P1 < P2 + N , then R2 <
limQ→∞r2(0,α∗) is achievable, where α∗ = 2P1/(P1 +P2 +N).
In either cases, GDPC with ρ = 0 is optimal in terms of
assisting the uninformed encoder, contrary to the case of
finite state variance. This makes sense because if the state
has infinite variance, then it is impossible for the informed
encoder to explicitly cancel it with finite power.

(ii) To investigate how the informed encoder achieves
its maximum rate, let us consider successive decoding in
the reverse order in which Xn

2 is decoded first using Yn,
and then Un

1 is decoded using Yn and Xn
2 . As Q→∞, Xn

2

can be decoded with arbitrary low probability of error if
R2 < limQ→∞I(X2,Y) = 0. This means that only R2 = 0 is
achievable. Then R1 < (1/2)log(1 + P1/N) is achievable with
ρ = 0 and α = P1/(P1 + N).

The following proposition gives an outer bound for the
Gaussian MAC with one informed encoder as Q→∞.
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Figure 8: The inner and outer bounds for the capacity region of the
Gaussian MAC with one informed encoder in the strong additive
Gaussian state case, that is, Q→∞, for P1 = 120 (P1 > P2 + N),
P2 = 50, and N = 60.

Proposition 3. As Q→∞, an outer bound for the capacity
region of the Gaussian MAC with one informed encoder is the
set of rate pairs (R1,R2) satisfying

R2 ≤ 1
2

log
(

1 +
P2

N

)
,

R1 + R2 ≤ 1
2

log
(

1 +
P1

N

)
.

(28)

We do not provide a proof of the above proposition
because the proof is similar to the converse proof given in
Appendix A.2. The outer bound in Proposition 3 is better
than the trivial outer bound in Proposition 2 obtained by
giving the channel state to the decoder.

Finally, let us discuss the case of strong additive Gaussian
channel state, that is, Q→∞, with numerical examples.
Figures 7 and 8 illustrate the inner bound in Corollary 3 and
the outer bound in Proposition 3 in two cases, P1 = 50 (P1 ≤
P2 +N) and P1 = 120 (P1 > P2 +N), respectively, for P2 = 50
and N = 60. In both cases, the uniformed encoder achieves
positive rates from the actions of the informed encoder as
discussed above. In the case of P1 = 120 (P1 > P2 + N), the
informed encoder can still achieve (1/2)log(1+P2/N), though
the additive channel state is very strong and is not known to
the uninformed encoder, and the informed encoder has finite
power.

As P1 increases and P1 ≥ P2 + N , in the strong additive
Gaussian state case, the inner bound in Corollary 3 and the
outer bound in Proposition 3 meet asymptotically. Thus, we
obtain the capacity region for P1→∞ and P1 ≥ P2 + N .
For the very large values of P1, the outer bound given in
Proposition 3 is achieved asymptotically with α = 1. Figure 9
shows the inner bound in the strong additive state case which
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Figure 9: The inner and outer bounds for the capacity region of the
Gaussian MAC with one informed encoder in the strong additive
Gaussian state case, that is, Q→∞, for P1 = 2000, P2 = 50, and
N = 60.

is also compared with the outer bound in Proposition 3 for
the very large values of P1, that is, P1 = 2000.

5. CONCLUSIONS

In this paper, we considered a state-dependent MAC with
state known to some, but not all, encoders. We derived an
inner bound for the DM case and specialized to a noiseless
binary case using generalized binary DPC. If the channel
state is a Bernoulli(q) random variable with q < 0.5, we
compared the inner bound in the binary case with a trivial
outer bound obtained by providing the channel state to only
the decoder. The inner bound obtained by generalized binary
DPC does not meet the trivial outer bound for q < 0.5. For
q = 0.5, we obtain the capacity region for binary noiseless
case by deriving a nontrivial outer bound.

For the Gaussian case, we also derived an inner bound
using GDPC and an outer bound by providing the channel
state to the decoder also. It appears that the uninformed
encoder benefits from GDPC because explicit state cancel-
lation is present in GDPC. In the case of strong Gaussian
state, that is, the variance of state going to infinity, we
also specialized the inner bound and analyzed how the
uninformed encoder benefits from the auxiliary codewords
of the informed encoder even in this case because explicit
state cancellation is not helpful for this case. In the case
of strong channel state, we also derived a nontrivial outer
bound which is tighter than the trivial outer bound. These
bounds asymptotically meet if P1→∞ and P1 ≥ P2 + N .
From results in the special cases of both the binary case
and the Gaussian case, we note that the inner bounds
meet the nontrivial outer bounds. From the results and
observations in this paper, we would like to conclude that
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we are not able to show that random coding techniques
and inner bounds in this paper achieve the capacity region
due to lack of nontrivial outer bounds in all cases for this
problem.

APPENDIX

We denote the set of jointly strongly typical sequences
[31, 34] with distribution p(x, y) as Tn

ε [X ,Y]. We define
Tn
ε [X ,Y |xn] as the following:

Tn
ε
[
X ,Y |xn] = {yn :

(
xn, yn

) ∈ Tn
ε [X ,Y]

}
. (A.1)

A.1. Proof of Theorem 1

In this section, we construct a sequence of codes
(�2nR1�, �2nR2�,n) with Pn

e→0 as n→∞ if (R1,R2) satisfies (9).
The random coding used in this section is a combination of
Gel’fand-Pinsker coding [16] and coding for MAC [31]. This
random coding is not a new technique but it is included for
completeness. Fix ε > 0 and take (Q, S,U1,X1,X2,Y) ∈ P i.

a. Encoding and decoding

Encoding

The encoding strategy at the two encoders is as follows.
Let M1= 2n(R1−4ε), M2= 2n(R2−2ε), and J= 2n(I(U1;S|Q)+2ε). At
the informed encoder, where the state is available, generate
JM1 sequences Un

1 (qn,m1, j), whose elements are drawn
i.i.d. with p(u1|q), for each time-sharing random sequence
Qn, where 1 ≤ m1 ≤ M1, and 1 ≤ j ≤ J . Here, m1

indexes bins and j indexes sequences within a particular
bin m1. For encoding, given state Sn = sn, time-sharing
sequence Qn = qn and message W1 ∈ {1, 2, . . . ,M1},
look in bin W1 for a sequence Un

1 (qn,W1, j), 1 ≤ j ≤
J , such that Un

1 (qn,W1, j) ∈ Tn
ε [Q,U , S|qn, sn]. Then, the

informed encoder generates Xn
1 from (Un

1 , Sn,Qn) according
to probability law

∏n
j=1p(x1, j|u1, j , s j , qj).

At the uninformed encoder, sequencesXn
2 (qn,m2), whose

elements are drawn i.i.d. with p(x2|q), are generated for
each time-sharing sequence Qn = qn, where 1 ≤ m2 ≤
M2. The uninformed encoder chooses Xn

2 (qn,W2) to send
the message W2 ∈ {1, 2, . . . ,M2} for a given time-sharing
sequence Qn = qn and sends the codeword Xn

2 .
Given the inputs and the state, the decoder receives

Yn according to conditional probability distribution∏
i p(yi|si, x1,i, x2,i). It is assumed that the time-sharing

sequence Qn = qn is noncausally known to both the
encoders and the decoder.

Decoding

The decoder, upon receiving the sequence Yn, chooses a
pair (Un

1 (qn,m1, j),Xn
2 (m2)), 1 ≤ m1 ≤ M1, 1 ≤ j ≤ J ,

and 1 ≤ m2 ≤ M2 such that (Un
1 (qn,m1, j),Xn

2 (qn,m2)) ∈
Tn
ε [Q,U1,X2,Y |qn,Yn]. If such a pair exists and is unique,

the decoder declares that (Ŵ1, Ŵ2) = (m1,m2). Otherwise,
the decoder declares an error.

b. Analysis of probability of error

The average probability of error is given by

Pn
e =

∑
sn∈Sn,qn∈Qn

p
(
sn
)
p
(
qn
)
Pr
[
error|sn, qn

]
≤

∑
sn /∈Tn

ε [S]

p
(
sn
)

+
∑

qn /∈Tn
ε [Q]

p
(
qn
)

+
∑

sn∈Tn
ε [S],qn∈Tn

ε [Q]

p
(
qn
)
Pr[error|sn, qn

]
.

(A.2)

The first term, Pr[sn /∈Tn
ε [S]], and the second term,

Pr[qn /∈Tn
ε [Q]], in the right-hand side expression of (A.2)

go to zero as n→∞ by the strong asymptotic equipartition
property (AEP) [31].

Without loss of generality, we can assume that
(W1,W2) = (1, 1) is sent, time-sharing sequence is
Qn = qn, and state realization is Sn = sn. The probability of
error is given by the conditional probability of error given
(W1,W2) = (1, 1), Qn = qn ∈ Tn

ε [Q], and Sn = sn ∈ Tn
ε [S].

(i) Let E1 be the event that there is no sequence
Un

1 (qn,W1, j) such that Un
1 (qn, 1, j) ∈ Tn

ε [Q,U1, S|qn, sn].
For any Un

1 (qn, 1, j) and Sn = sn generated independently
according to

∏
p(u1i|qi) and

∏
p(si), respectively, the prob-

ability that there exists at least one j such that Un
1 (qn, 1, j) ∈

Tn
ε [Q,U , S|qn, sn] is greater than (1 − ε)2−n(I(U1;S|Q)+ε) for n

sufficiently large. There are J number of such Un
1 ’s in each

bin. The probability of event E1, the probability that there is
no Un

1 for a given sn in a particular bin, is therefore bounded
by

Pr
[
E1
] ≤ [1− (1− ε)2−n(I(U1;S|Q)+ε)]2n(I(U1;S|Q)+2ε)

. (A.3)

Taking the natural logarithm on both sides of (A.3), we
obtain

ln
(
Pr
[
E1
]) ≤ 2n(I(U1;S|Q)+2ε)ln

[
1− (1− ε)2−n(I(U1;S|Q)+ε)]

(a)≤ −2n(I(U1;S|Q)+2ε)(1− ε)2−n(I(U1;S|Q)+ε)

= −(1− ε)2nε,
(A.4)

where (a) follows from the inequality ln(q) ≤ (q − 1). From
(A.4), Pr[E1]→0 as n→∞.

Under the event Ec
1, we can also assume that a particular

sequence Un
1 (qn, 1, 1) in bin 1 is jointly strongly typical

with Sn = sn. Thus, codewords Xn
1 corresponding to the

pair (Un
1 (qn, 1, 1), sn) and Xn

2 corresponding to Xn
2 (qn, 1)

are sent from the informed and the uninformed encoders,
respectively.

(ii) Let E2 be the event that(
Un

1

(
qn, 1, 1

)
,Xn

2

(
qn, 1

)
,Yn

)
/∈Tn

ε

[
Q,U1,X2,Y |qn]. (A.5)

The Markov lemma [31] ensures jointly strong typicality
of (qn, sn,Un

1 (qn, 1, 1),Xn
2 (qn, 1)Yn) with high probability

if (qn, sn,Un
1 (qn, 1, 1),Xn

1 ) is jointly strongly typical and
(qn,Xn

2 (1)) is jointly strongly typical. We can conclude that
Pr[E2|Ec

1]→0 as n→∞.
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(iii) Let E3 be the event that

Un
1

(
qn,m1, j

) ∈ Tn
ε

[
Q,U1,X2,Y |qn,Yn,Xn

2

(
qn, 1

)]
. (A.6)

The probability that Un
1 (qn,m1, j) ∈ Tn

ε [Q,U1,X2,Y |qn,Yn,
Xn

2 (qn, 1)] for (m1 = 1 and j /=1), or (m1 /=1 and 1 ≤ j ≤ J),
is less than 2−n(I(U1;Y |X2,Q)−ε) for sufficiently large n. There are
approximately JM1 (exactly JM1 − 1) such Un

1 sequences in
the codebook. Thus, the conditional probability of event E3

given Ec
1 and Ec

2 is upper bounded by

Pr
[
E3|Ec

1,Ec
2

] ≤ 2−n((I(U1;Y |X2,Q)−I(U1;S|Q))−R1)+ε). (A.7)

From (A.7), Pr[E3|Ec
1,Ec

2]→0 as n→∞ if R1 < I(U1;Y |X2,
Q)− I(U1; S|Q) and ε > 0.

(iv) Let E4 be the event that

Xn
2

(
qn,m2

) ∈ Tn
ε

[
Q,U1,X2,Y |qn,Yn,Un

1

(
qn, 1, 1

)]
(A.8)

for m2 /=1. The probability that Xn
2 (qn,m2)∈Tn

ε [Q,U1,X2,Y |
qn,Yn,Un

1 (qn, 1, 1)] for m2 /=1 is less than 2−n(I(X2;Y |U1,Q)−ε)

for sufficiently large n. There are approximately M2 =
2n(R2−2ε) such Xn

2 sequences in the codebook. Thus, the
conditional probability of event E4 given Ec

1 and Ec
2 is upper

bounded by

Pr
[
E4|Ec

1,Ec
2

] ≤ 2−n(I(X2;Y |U1,Q)−R2+ε). (A.9)

From (A.9), Pr[E4|Ec
1,Ec

2]→0 as n→∞ if R2 < I(X2;Y |U1,Q).
(v) Finally, let E5 be the event that

(
Un

1

(
qn,m1, j

)
,Xn

2

(
qn,m2

)) ∈ Tn
ε

[
Q,U1,X2,Y |qn,Yn

]
(A.10)

for ((m1 = 1 and j /=1), or (m1 /=1 and 1 ≤ j ≤ J)), and
m2 /=1. The probability that (Un

1 (qn,m1, j),Xn
2 (qn,m2)) ∈

Tn
ε [Q,U1,X2,Y |qn,Yn] for m1 /=1, 1 ≤ j ≤ J , and m2 /=1 is

less than 2−n(I(U1,X2;Y |Q)−ε), for sufficiently large n. There are
approximately JM1 sequences Un

1 and M2 sequences Un
2 in

the codebook. Thus, the conditional probability of event E5

given Ec
1 and Ec

2 is upper bounded by

Pr
[
E5|Ec

1,Ec
2

] ≤ 2−n((I(U1,X2;Y |Q)−I(U1;S|Q))−(R1+R2)+3ε). (A.11)

From (A.11), the Pr[E5|Ec
1,Ec

2]→0 as n→∞ if R2 + R2 <
I(U1,X2;Y |Q)− I(U1; S|Q).

In terms of these events, Pr[error|sn, qn] in (A.2) can
be upper bounded via the union bound, and the fact that
probabilities are less than one, as

Pr
[
error|sn, qn

] ≤ Pr
[
E1
]

+ Pr
[
E2|Ec

1

]
+ Pr

[
E3|Ec

1,Ec
2

]
+ Pr

[
E4|Ec

1,Ec
2

]
+ Pr

[
E5|Ec

1,Ec
2

]
.
(A.12)

From (A.12), it can be easily seen that Pr[error|sn, qn]→0
as n→∞. Therefore, the probability of error Pn

e goes to zero
as n→∞ from (A.2) and completes the proof.

A.2. Converse for the capacity region in Corollary 2

In this section, we show that (R1,R2) satisfies (14) for any
given sequence of binary codes (�2nR1�, �2nR2�,n) for the
noiseless binary state-dependent MAC with q = 0.5 and one
informed encoder satisfying limn→∞Pn

e = 0.
Let us first bound the rate of the uninformed encoder as

follows:

nR2 ≤ H
(
W2
) = H

(
W2|W1, Sn

) (a)≤ I
(
W2;Yn|W1, Sn

)
+ nεn

(b)≤
n∑
j=1

I
(
X2, j ;Yj|X1, j , Sj

)
+ nεn =

n∑
j=1

H
(
X2, j

)
+ nεn

(c)=
n∑
j=1

Hb
(
p2, j
)

+ nεn
(d)≤ nHb

(
1
n

n∑
j=1

p2, j

)
+ nεn

(e)≤ nHb
(
p2
)

+ nεn,
(A.13)

where

(a) follows from Fano’s inequality and εn→0 as Pn
e→0;

(b) follows from the fact that Xn
1 and Xn

2 are deter-
ministic functions of (W1, Sn) and (W2), respec-
tively, the memoryless property of the channel, and
H(Yj|Xn

1 , Sn,W1) ≤ H(Yj|X1, j , Sj);

(c) follows from the fact that X2, j is a Bernoulli(p2, j)
satisfying (1/n)

∑n
j=1p2, j ≤ p2;

(d) follows from the fact that the binary entropy function
is a concave function;

(e) follows from the fact that the binary entropy function
is a monotone increasing function in the interval
between 0 and 0.5, and (1/n)

∑n
j=1p2, j ≤ p2 ≤ 0.5.

An upper bound on R1 + R2 can be obtained as follows:

n(R1 + R2) ≤ H
(
W1,W2

)
(a)= I

(
W1,W2 : Yn

)
+nεn

= H
(
Yn
)−H

(
Yn|W1,W2, Sn

)
+H

(
Yn|W1,W2, Sn

)−H
(
Yn|W1,W2

)
+nεn

= I
(
W1,W2, Sn;Yn

)− I
(
Sn;Yn|W1,W2

)
+ nεn

(b)= I
(
Xn

1 ,Xn
2 , Sn;Yn

)
− I
(
Sn;Yn|W1,W2,Xn

2

)
+ nεn

=
n∑
j=1

[
H
(
Yj|Y j−1)−H

(
Yj|Y j−1,Xn

1 ,Xn
2 , Sn

)
−H

(
Sj|W1,W2,Xn

2 , Sj−1)
+ H

(
Sj|W1,W2,Xn

2 , Sj−1,Yn
)]

+ nεn
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(c)≤
n∑
j=1

[
H
(
Yj
)−H

(
Yj|X1, j ,X2, j , Sj

)
−H

(
Sj
)

+ H
(
Sj|X2, j ,Yj

)]
+ nεn

=
n∑
j=1

[
I
(
X1, j ,X2, j , Sj ;Yj

)−I
(
X2, j ,Yj ; Sj

)]
+nεn

(d)=
n∑
j=1

[
I
(
X2, j ;Yj

)
+ I
(
Sj ;Yj|X2, j

)
+ I
(
X1, j ;Yj|X2, j , Sj

)−I
(
Sj ;Yj|X2, j

)]
+nεn

=
n∑
j=1

[
I
(
X2, j ;Yj

)
+I
(
X1, j ;Yj|X2, j , Sj

)]
+nεn

(e)=
n∑
j=1

[
I
(
X2, j ;Yj

)
+ H

(
X1, j|Sj

)]
+ nεn

(f)=
n∑
j=1

[
Hb
(
p2, j∗

(
0.5
(
a10, j + a01, j

)))
−Hb

(
0.5
(
a10, j + a01, j

))
+ 0.5Hb

(
a10, j

)
+ 0.5Hb

(
a01, j

)]
+ nεn

(g)
≤

n∑
j=1

Hb
(
p1, j
)

+ nεn

(h)≤ nHb

(
1
n

n∑
j=1

p1, j

)
+ nεn

(i)≤ nHb
(
p1
)

+ nεn,

(A.14)

where

(a) follows from Fano’s inequality and εn→0 as Pn
e→0;

(b) follows from the fact that Xn
1 and Xn

2 are deterministic
functions of (W1, Sn) and W2, respectively, and the
memoryless property of the channel;

(c) follows from the fact that H(Yj|Y j−1) ≤ H(Yj),
H(Yj|Y j−1,Xn

1 ,Xn
2 , Sn) = H(Yj|X1, j ,X2, j , Sj), H(Sj|

W1,W2,Xn
2 ) = H(Sj), and H(Sj|W1,W2,Xn

2 ,Yn) ≤
H(Sj|X2, j ,Yj);

(d) follows from the fact that I(Sj ;X2, j) = 0;

(e) follows from the fact that H(Yj|X2, j , Sj) = H(X1, j|Sj)
and H(Yj|X1, j ,X2, j , Sj) = 0;

(f) follows from the fact that the X2, j is a Bernoulli(p2, j)
random variable with

∑n
j=1p2, j ≤ np2; and X1, j is

correlated to Sj with a10, j = Pr(X1, j = 1 | Sj = 0)
and a01, j = Pr(X1, j = 0 | Sj = 1) satisfying

Pr
(
X1, j = 1

) = p1, j = Pr
(
Sj = 1

)
Pr
(
X1, j = 1 | Sj = 1

)
+ Pr

(
Sj = 0

)
Pr
(
X1, j = 1 | Sj = 0

)
= 0.5

(
a10, j +

(
1− a01, j

))
;

(A.15)

(g) follows from the fact that the term [Hb(p2, j∗(0.5
(a10, j +a01, j)))−Hb(0.5(a10, j +a01, j))+0.5Hb(a10, j)+
0.5Hb(a01, j)] is maximized under the constraint
0.5(a10, j +(1−a01, j)) = p1, j for values a10, j = p1, j and
a01, j = 1 − p1, j , and the maximum value of the term
[Hb(p2, j∗(0.5(a10, j +a01, j)))−Hb(0.5(a10, j +a01, j))+
0.5Hb(a10, j) + 0.5Hb(a01, j)] is H(p1, j);

(h) follows from the concavity property of the binary
entropy function;

(i) follows from the fact that the binary entropy function
is a monotone increasing function in the interval
between 0 and 0.5, and (1/n)

∑n
j=1p1, j ≤ p1 ≤ 0.5.

From (A.13) and (A.14), we can conclude that the rate
pair (R1,R2) satisfies (14) by letting n go to∞.
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