
Hindawi Publishing Corporation
EURASIP Journal on Wireless Communications and Networking
Volume 2008, Article ID 473613, 10 pages
doi:10.1155/2008/473613

Research Article
Efficient Decoding of Turbo Codes with
Nonbinary Belief Propagation

Charly Poulliat,1 David Declercq,1 and Thierry Lestable2

1 ETIS laboratory, UMR 8051-ENSEA/UCP/CNRS, Cergy-Pontoise 95014, France
2 Samsung Electronics Research Institute, Communications House, South Street, Staines, Middlesex TW18 4QE, UK

Correspondence should be addressed to Charly Poulliat, charly.poulliat@ensea.fr

Received 31 October 2007; Revised 25 February 2008; Accepted 27 March 2008

Recommended by Branka Vucetic

This paper presents a new approach to decode turbo codes using a nonbinary belief propagation decoder. The proposed approach
can be decomposed into two main steps. First, a nonbinary Tanner graph representation of the turbo code is derived by clustering
the binary parity-check matrix of the turbo code. Then, a group belief propagation decoder runs several iterations on the obtained
nonbinary Tanner graph. We show in particular that it is necessary to add a preprocessing step on the parity-check matrix of the
turbo code in order to ensure good topological properties of the Tanner graph and then good iterative decoding performance.
Finally, by capitalizing on the diversity which comes from the existence of distinct efficient preprocessings, we propose a new
decoding strategy, called decoder diversity, that intends to take benefits from the diversity through collaborative decoding schemes.

Copyright © 2008 Charly Poulliat et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. INTRODUCTION

Turbo codes and low-density, parity-check (LDPC) codes
have long been recognized to belong tothe family of modern
error correctingcodes. Although often opponents in stan-
dards and applications, these two classes of codes share
common properties, the most important one being that they
have a sparse graph representation that allows to decode
them efficiently using iteratively whether the maximum a
posteriori (MAP) algorithm [1] for turbo codes, or the belief
propagation (BP) algorithm for LDPC codes [2], as well as
their low-complexity iterative decoders.

Moreover, LDPC and turbo codes are two coding
candidates which are often options within the same system
[3, 4]. It is thus interesting to investigate common architec-
ture/algorithm at the receiver side to enable switching easily
among them, whilst still maintaining reasonable cost and
area size.

Even if turbo codes effectively exhibit a sparse factor
graph representation for which the BP decoder is equivalent
to the so-called turbo decoder [5, 6], this factor graph
representation is composed of different types of nodes,
both for variable and for function nodes, which are not
reduced to parity-check constraints (see [5] for more details).
Later, some researchers have tried to use a factor graph

representation of the turbo code based only on parity-check
equations [7]. We will refer to a factor graph with only parity-
check constraints for the function nodes (binary or not) as
Tanner graph in the rest of the paper [8].

The classical BP algorithm (sometimes called sum-
product) on the Tanner graph of a turbo code does not
perform sufficiently well to compete with the turbo decoder
performance [7]. This is mainly due to the inherent presence
of many short cycles of length 4, that lead to a poor con-
vergence behavior inducing loss of performance. In order to
solve the problem of these short cycles, in [9, 10] the authors
propose to use special convolutional codes as components
of the turbo code, called low-density convolutional codes,
for which an iterative decoder based ontheir Tanner graph
experiences has less statistical dependence, and therefore
exhibits very good performance.

Our approach is different from [10] since we aim at
having a generic BP decoder which performs close to the
best performance, without imposing any constraint on the
component code. In this paper, we present a new approach
to decode parallel turbo codes (i.e., binary, duobinary,
punctured or not, etc.) using a nonbinary belief propagation
decoder. The generic structure of the proposed iterative
decoder is illustrated in Figure 1. The general approach can
be decomposed into two main steps: the first step consists



2 EURASIP Journal on Wireless Communications and Networking

Group BP
decoder

Generic turbo-decoder

ClusteringPreprocessing

Code
parameters
(or parity
matrix H)

p p
Channel likelihoods

Figure 1: Block representation of the generic turbo decoder based
on group BP decoder.

in building a nonbinary Tanner graph of the turbo code
using only parity-check nodes defined over a certain finite
group, and symbol nodes representing groups of bits. The
Tanner graph is obtained by a proper clustering of order p
of the binary parity-check matrix of the turbo code, called
“binary image.” However, the clustering of the commonly
used binary representation of turbo codes appears to be not
suitable to build an nonbinary Tanner graph representation
that leads to good performance under iterative decoding.
Thus, we will show in the paper that there exist some suitable
preprocessing functions of the parity-check matrix (first
block of Figure 1) for which, after the bit clustering (second
block of Figure 1), the corresponding nonbinary Tanner
graphs have good topological properties. This preliminary
two-round step is necessary to have good Tanner graph
representations that outperform the classical representations
of turbo codes under iterative decoding. Then, the second
step is a BP-based decoding stage (last block in Figure 1)
and thus consists in running several iterations of group
belief propagation (group BP), as introduced in [11], on
the nonbinary Tanner graph. Furthermore, we will show
that the decoder can also fully benefit from the decoding
diversity that inherently raises from concurrent extended
Tanner graph representations, leading to the general concept
of decoder diversity. The proposed algorithms show very
good performance, as opposed to the binary BP decoder,
and serve as a first step to view LDPC and turbo codes
within a unified framework from the decoder point of view,
that strengthen the idea to handle them with a common
approach.

The remaining of the paper is organized as follows. In
Section 2, we describe how to decode turbo codes based on
group BP decoder. To this end, we review how to derive the
binary representation of the parity-check matrix Htc of a
parallel turbo code. Then, we explain how to build the non-
binary Tanner graph of a turbo code based on a clustering
technique and describe the group BP decoding algorithm
based on this representation. In Section 3, we discuss how
to choose a posteriori good matrix representations and how
to take advantage of the inherent diversity that is offered by
concurrent preprocessing in the decoding process. To this
end, we present some choices for the required preprocessing
of the matrix Htc before clustering to build a Tanner graph
with good topological properties, that performs well under

group BP decoding. Then, we introduce in Section 4 the
concept of decoder diversity and show how it can be used
to further enhance performance. Finally, conclusions and
perspectives are drawn in Section 5.

2. DECODING A TURBO CODE AS
A NONBINARY LDPC CODE

In this Section, we present the different key elements that
enable to decode turbo codes as nonbinary LDPC codes
defined over some extended binary groups. First, we briefly
review how to derive the binary representation of the parity-
check matrix Htc of a parallel turbo code based on the parity-
check matrix of a component code. Then, we explain how
to build the nonbinary Tanner graph of a turbo code based
on a clustering technique and describe how the group BP
decoding algorithm can be used to efficiently decode turbo
codes based on this extended representation.

2.1. Binary parity-checkmatrix of a turbo code

The first step in our approach consists in deriving a binary
parity-check matrix representation of the turbo code. We will
only focus in this paper on parallel turbo codes with identical
component codes.

2.1.1. Parity-checkmatrix of convolutional codes

The binary image of the turbo code is essentially based on
the binary representation of the parity-check matrices of its
component codes. Following the derivations presented in
[12], the parity-check matrix for both feedforward convo-
lutional encoders and their equivalent recursive systematic
form is generally derived using the Smith’s decomposition
of its polynomial generator matrix G(D), where G(D) is a
k × n matrix that gives the transfer of the k inputs into the n
outputs of the convolutional encoder and D is defined as the
delay operator (please refer to [12] for more details about this
decomposition). From this decomposition, the polynomial
syndrome former matrix HT(D) [12], of dimensions n×(n−
k), can be derived and it can be expanded as

HT(D) = HT
0 + HT

1 D + · · · + HT
ms
Dms , (1)

whereHT
i , 0 ≤ i ≤ ms is a matrix with dimensions n×(n−k),

and ms is the maximum degree of polynomials inHT(D). For
both feedforward convolutional encoders and their recursive
systematic form, it is possible to derive the binary image from
the semi-infinite matrix HT given by

HT =

⎛
⎜⎜⎜⎜⎝

HT
0 HT

1 . . . HT
ms

HT
0 HT

1 . . . HT
ms

. . .
. . .

. . .

⎞
⎟⎟⎟⎟⎠
. (2)

When direct truncation is used, it is possible to derive
from HT the finite length binary parity-check matrix with



Charly Poulliat et al. 3

dimension (N − K)×N , given by

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

H0

H1 H0
...

. . . H0

Hms

Hms

. . .
. . .

Hms . . . H0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (3)

where N and K are the codeword and information block
lengths, respectively.

Under some length restrictions for the recursive case
[13, 14], it is also possible to derive the binary image of
the parity-check matrix of the tail-biting code Htb from the
parity-check matrix H [15] for feedforward convolutional
encoders and their recursive systematic form. This can finally
be represented as follows using the so-called “wrap around”
technique:

Htb =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

H0 Hms . . . H1

H1 H0
. . .

...
...

. . .
. . . Hms

Hms H0

Hms

. . .
. . .

Hms Hms−1 . . . H0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4)

Note that, in each case, both systematic and nonsystem-
atic encoders give the same codewords and thus share the
same parity-check matrix [12, 16].

2.1.2. Parity-checkmatrix of turbo codes

For recursive systematic convolutional codes of rate k/(k+1),
that mainly compose classical turbo codes in the standards,
the matrix HT(D) is simply given by [12]

HT(D) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

hT1 (D)

hT2 (D)

...

hTk+1(D)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (5)

where in fact hTi (D), 1 ≤ i ≤ k, are the feedforward poly-
nomials and hTk+1(D) is the feedback polynomial defining the
recursive systematic convolutional code. Then, for this kind
of components codes, the binary parity-check matrix can be
simply derived using (2)–(4).

As recursive component codes of turbo codes are system-
atic, the columns of the associated parity-check matrix H
with dimension (N −K)×N can be assigned to information
bits and to redundancy bits. Note that when using the pre-
ceding expressions of H , the output bits of the convolutional
encoder are supposed to be ordered alternatively within the
codeword. After some column permutations, we can rewrite

H as H̃ = [HiHr], where Hi and Hr contain columns of
H relative to information and redundancy bits, respectively.
Using this notation, we can derive easily the parity-check
matrix of a turbo code as follows for the case of two-
component codes in parallel [17, 18]:

Htc =
[

Hi Hr 0

HiΠT 0 Hr

]
, (6)

where ΠT is the transpose of the interleaver permutation
matrix at the input of the second component encoder. In that
case, Htc has dimensions 2(N − K) × 2N − K . Of course,
this technique can be easily generalized to more than two
components.

2.1.3. Example

To illustrate this section, we consider an R = 1/3 turbo code
with two rate one-half code components with parameters
in octal given by (1, 238/358). Under direct truncation, the
parity-check matrix of a component code and a correspond-
ing turbo code are, respectively, given by the matrices H and
Htc as follows:

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0
1 1 1 0 0 1 0 1 1 1 0 0 0 0 0 0
0 0 1 1 1 0 0 1 0 1 1 1 0 0 0 0
0 0 0 0 1 1 1 0 0 1 0 1 1 1 0 0
0 0 0 0 0 0 1 1 1 0 0 1 0 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

Htc =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 1 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 1 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 1 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0
0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0
1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0
0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0
0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(7)

2.2. Clustering and preprocessing

Once the parity-check matrix H of a turbo code has been
derived, we obtain a nonbinary Tanner graph by applying a
clustering technique, which is essentially the same as the one
described in [11].

The matrix H is decomposed in groups of p rows and
p columns. Each group of p rows represents a generalized



4 EURASIP Journal on Wireless Communications and Networking

parity-check node in the Tanner graph, defined in the finite
group G(2p), and each group of columns represents a symbol
node, build from the concatenation of p bits (p-tuples)
defining elements in G(2p).

A cluster is then defined as a submatrix hi j of size
p × p in H , and each time a cluster contains nonzero
values (ones in this case) in it an edge connecting the
corresponding group of rows and group of columns is
created in the Tanner graph. To each nonzero cluster is
associated a linear function fi j(·) from G(2p) to G(2p) which
has hi j as matrix representation. Using this notation, the ith
generalized parity-check equation defined over G(2p) can be
written as

∑

j

fi j(cj) ≡ 0, (8)

where cj is the jth coordinate of a codeword having symbols
defined in G(2p).

To illustrate the clustering impact on the Tanner graph
representation and to give some insights that can motivate
to extend the representation from the binary domain to a
nonbinary one, we will consider as a simple example the
clustering of the recursive systematic convolutional codes
with polynomial representation in octal basis given by
(1, 58/78). We assume that 12 information bits have been sent
using direct truncation. Then, a 4× 4 clustering is applied to
the binary parity-check matrix. Using representation of (3),
the resulting clustered matrix is given by

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(9)

We are now able to associate a nonbinary Tanner
graph representation of H with generalized parity-check
constraints applying now to 4-tuples binary vectors. The
Tanner graph corresponding to our example is finally given
in Figure 2(b) and it is compared with the Tanner graph
associated with the binary image defined by H (Figure 2(a)).

Through this example, we can see that, for convolutional
codes, when using the representation given in (3), we
can still ensure a sparse graph condition and even reach
a tree representation when increasing the order of the
representation. In fact, for rate one-half codes, it has been
observed that there exists a minimum value of P for which
we can have a tree. This induces that using a BP-like decoder

(a)

(b)

(c)

Figure 2: Comparison of different Tanner graph representations of
the recursive systematic convolutional code with bit clustering of
order p = 4 versus those of the binary image defined by H .

will lead to a maximum a posteriori symbol decoding and, in
that case, it has been verified that BP and the MAP have the
same performance. Unfortunately, this tree condition does
not hold anymore when we use the alternative representation
H̃ of the parity-check matrix of a convolutional code as used
in turbo codes parity-check matrix as it can be seen for
the Tanner graph representation of our previous example in
Figure 2(c). This representation introduces cycles even in the
extended representation of the convolutional code using bit
clustering, and as a result, in the extended representation of
the turbo codes. Moreover, when tail biting is used, there is
no possibility to ensure a tree condition due to the nonzero
elements in the right-hand corner of the tail-bited, parity-
check matrix of the component code. Thus, a remaining
issue is how to derive a “good” extended Tanner graph
representation. To this end, we will present in Section 3
how to overcome these problems to ensure fair performance
under BP decoding by applying an efficient preprocessing of
the parity-check matrix of the turbo code.

2.3. Nonbinary group belief propagation decoding

The Tanner graph obtained by preprocessing and clustering
the binary image does not correspond to a usual code defined
over a finite field GF(q = 2p) but can be defined on a
finite group G(2p) of the same order (see [11] for more
details). We will refer to the belief propagation decoder on
group codes as group BP decoder. The group BP decoder
is very similar in nature to regular BP in finite fields. The



Charly Poulliat et al. 5

Messages
of size q Vpv

Vcp

Uvp

Upc

Channel values

Information symbols
ci

Linear
function nodes

hjici

Interleaver Π

Parity check nodes

Figure 3: Tanner graph of a nonbinary LDPC code defined over a finite group G(q).

only difference is that the nonzero values of a parity-check
equation are replaced with more general linear functions
from G(2p) to G(2p), defined by the binary matrices which
form the clusters. In particular, it is shown in [11] that
group BP can be implemented in the Fourier domain with
a reasonable decoding complexity.

We briefly review the main steps of the group BP decoder
and its application to the nonbinary Tanner Graph of a turbo
code. The modified Tanner graph of an LDPC code over a
finite group is depicted in Figure 3, in which we indicated
the notations we use for the vector messages. Additionally, to
the classical variable and check nodes, we add function nodes
to represent the effect of the linear transformations deduced
from the clusters as explained in the previous section.

The group BP decoder has four main steps which use q =
2p dimensional probability messages.

(i) Data node update: the output extrinsic message is
obtained from the term by term product of all input
messages including the channel-likelihood message,
except the one carried on the same branch of the
Tanner graph.

(ii) Function node update: the messages are updated
through the function nodes fi j(·). This message
update is reduced to a cyclic permutation in the case
of a finite field code, but in the case of a more general
linear function from G(2p) to G(2p) denoted β =
fi j(α) the update operation is

Upc[βj] =
∑

i

Uvp[αi] j = 0, . . . , q − 1, βj = fi j(αi).

(10)

(iii) Check node update: this step is identical to BP decoder
over finite fields and can be efficiently implemented
using a fast Fourier transform. See, for example, [11,
19] for more details.

(iv) Inverse function node update: with the use of the
function fi j(·) backwards, that is, by identifying the
values αi which have the same image βj , the update
equation is

Vpv[αi] = Vcp[βj] ∀αi : βj = fi j(αi). (11)

These four steps define one decoding iteration of a
general parity-check code on a finite group, which is the
case of a clustered convolutional or turbo code as described
previously. Note that the function node update is simply a
reordering of the values both in the finite field case, and when
the cluster defining the function fi j(·) is full rank. When the
cluster has deficient rank r < p, which is often the case when
clustering a turbo code, only 2r entries of the message Upc are
filled and the remaining entries are set to zero.

Note that we do not discuss in this paper the decoding
complexity issues, but we rather focus on the feasibility of
the decoding using a BP decoder. Of course, a nonbinary BP
decoder is naturally much more computationally intensive
than a binary BP or a turbo decoder. However, reduced
complexity nonbinary decoders have been recently proposed,
which exhibit good complexity/performance tradeoff even
compared to binary decoders [20]. The reduced complexity
decoder can be easily adapted to codes on finite groups, since
the function node update is not more complex in the group
case than in the field case.

3. COMPARISONOF BINARY IMAGES OBTAINED
WITH DIFFERENT PREPROCESSINGS

In this Section, we discuss some relevant issues related to the
improvement of the performance when group BP decoder
is used. We show in particular that some preprocessing
functions can lead to interesting Tanner graph topologies and
good performance under iterative decoding.

3.1. Selection of preprocessing for an efficient
sparse graph representation

It should be noted that the performance of the group BP
decoder depends highly on the structure of the nonbinary
Tanner graph. In our framework, it is possible to apply some
specific transformations on the binary image H before the
clustering operation, so that the Tanner graph has desirable
properties. Indeed, any row linear transformation A and
column permutation Π applied to H do not change the code
space but change the topology of the clustered Tanner graph.
Let us denote by H′ = Pc(H) = A ·H ·Π the preprocessed



6 EURASIP Journal on Wireless Communications and Networking

binary parity-check matrix. We propose in this paper two
preprocessing techniques that we found attractive in terms of
Tanner graph properties and described below and depicted in
Figure 4.

(Pc1 )

This preprocessing is defined by alternating the information
bits and the redundancy bits of the first convolutional code
of the parallel turbo code. We obtain with this technique
two parts in the parity-check matrix. Each of them has an
upper triangular form with a diagonal (or near diagonal for
the rectangular part of H′), therefore, reducing the number
of nonzero clusters in the nonbinary Tanner graph deduced
from H′. Note that a second preprocessing of this type can
be considered by alternating the information bits and the
redundancy bits of the second convolutional encoder.

(Pc2 )

This preprocessing is obtained by column permutations
with the aim of having the most concentrated diagonal in
the parity-check matrix, that is, minimizing the number of
clusters that will be created on the diagonal. This is supposed
to be a good choice since the clusters on the diagonal are
the more dense in the Tanner graph and are assumed to
participate the most to the performance degradation of
the BP decoder when they contribute to cycles. Indeed, we
have verified by simulations on several turbo codes that
the number of nonzero clusters of a given size has less in
the preprocessing Pc2 than in the preprocessing Pc1 on the
diagonal. Note that by properly choosing the columns to be
permuted, several images of this type could be created.

Note that the two proposed preprocessing techniques are
restricted to column permutations, that is, with the special
case of A = Id, where Id corresponds to the identity trans-
formation. This case is the simplest one; the transformation
keeps the binary Tanner graph of the code unchanged,
but the nonbinary clustered Tanner graph is modified after
preprocessing. We will show through simulations that this
has an important impact on the decoder performance.
Although Figure 4 plots examples of rate R = 1/3 turbo
codes, the exact same preprocessing strategies can be applied
to any type of turbo code, that is, any rate for punctured
and/or multibinary turbo codes.

3.2. Simulation results with different preprocessings

In this section, we apply the different preprocessing tech-
niques presented in the previous section to duobinary turbo
codes with the parameters R = 0.5 and size N = {848, 3008}
coded bits taken from the DVB-RCS standard [21, 22]. The
frame sizes we used correspond to ATM and MPEG frame
sizes with K = {53, 188} information bytes, respectively.
Note that these turbo codes have sizes which are not
particularly well suited to clustering. A size ofN = 864 would
have been preferable for cluster size p = 8 to ensure a proper
clustering of each part of the turbo code parity-check matrix
corresponding to each component codes, but we wanted to

Binary image of a turbo code, natural representation

Binary image of TC(23, 35), natural representation

100

200

300

400

500

600

700

800

R
ow

in
de

x

200 400 600 800 1000 1200

Column index

0

0
0

0
0

0

0

0
Info

Red 1 Red 2

Π(info)

(a)

Binary image of a turbo code, preprocessing Pc1

Binary image of TC(23, 35), alternating bits for first component code

100

200

300

400

500

600

700

800

R
ow

in
de

x

200 400 600 800 1000 1200

Column index

0

0 0

0

0

Info+red 1 Red 2

(b)

Binary image of a turbo code, preprocessing Pc2

50

100

150

200

250

300

350

400

R
ow

in
de

x

100 200 300 400 500 600 700 800

Column index

0

0

0

0

(c)

Figure 4: Three different binary representations of the same rate
R = 1/3 turbo code. The first one is the natural representation (see
(6)), the second one corresponds to the clustering Pc1 , and the third
one to the clustering Pc2 .



Charly Poulliat et al. 7

100

10−1

10−2

10−3

10−4

10−5

10−6

Fr
am

e
er

ro
r

ra
te

0.5 1 1.5 2 2.5 3 3.5

Eb/N0 (dB)

Turbo-decoder
Group-BP: no prep.
Group-BP: P1

Group-BP: P2

Binary BP

Figure 5: Performance of the group BP decoding algorithm based
on different preprocessing functions for the (R = 0.5, N = 848)
duobinary turbo code and comparison with the turbo decoder as
used in the DVB standard.

keep the original interleaver and frame size from the standard
[21, 22]. These codes have been terminated using tail biting,
and their minimum distances are dmin = {18, 19}. For both
duobinary turbo codes, HT(D) is given by

HT(D) =

⎛
⎜⎜⎝

1 + D2 + D3

1 + D + D2 + D3

1 + D + D3

⎞
⎟⎟⎠ . (12)

In the following, we will consider the additive white
Gaussian noise channel (AWGN) for our simulations. For
this channel, we compare the group decoder performance
with various preprocessing functions, a clustering size of
p = 8, and a floating point implementation of the group
BP decoder using shuffle scheduling [23]. As a reference,
we simulated the turbo decoder based on MAP component
decoders in floating-point precision in order to have the best
results that one can obtain with a turbo decoding strategy.

The curves plotted in Figure 5 are related to the R = 1/2
turbo code with parameter N = 848 and correspond to the
natural representation of the code and two preprocessings
(one type Pc1 and one type Pc2 ).

In order to illustrate that the preprocessing has influence
on the nonbinary factor graph, we have counted the number
of nonzero clusters and also the number of full-rank clusters
in the cases of the two simulated matrices tested in this
section, and for the two types of preprocessings Pc1 and
Pc2 . We reported the statistics on Table 1. Remember that a
nonzero cluster corresponds to an edge in the Tanner graph,
and that a full-rank cluster corresponds to a permutation
function, while a rank deficient cluster corresponds to a
projection. We can see that the number of nonzero clusters
is much lower in the case of the proposed preprocessing,

Table 1: Cluster Statistics on the turbo codes from the DVB
standard, with a clustering size of P = 8.

P
Total Nonzero Full-rank

clusters clusters clusters

Turbo R = 1/2 Pc1 5618 506 26

N = 848 bits Pc2 5618 426 0

Turbo R = 1/2 Pc1 70688 1786 94

N = 3008 bits Pc2 70688 1504 0

but also that there is no full-rank clusters. This indicates
that the preprocessing Pc2 has concentrated the ones of
the parity-check matrix Hb in a better way than Pc1 . Our
simulation results show that this better concentration has
a direct influence on the error-correction capability of the
group BP decoder.

All group BP simulations have used a maximum of 100
iterations, but the average number of iteration is as low as
3-4 iterations for frame error rates below 10−3. Simulations
were run until at least 100 frames have been found in error.
As expected, the preprocessing of type Pc2 is far better than
the other preprocessings, which is explained by the fact that
the corresponding Tanner graph has less nonzero clusters.
It can be seen that with a good preprocessing function, a
turbo code can be efficiently decoded using a BP decoder,
and even can slightly beat the turbo decoder in the waterfall
region. The turbo decoder remains better in the error floor
region, which is due to the fact that the group BP decoder
has much more detected errors (due to decoder failures) in
this region than the turbo decoder. Although we are aware
that the group BP decoder is much more complex than the
turbo decoder, this result is quite encouraging since it was
long thought that turbo codes could not be decoded using
an LDPC-like decoder. As a drastic example, we have plotted
the very poor performance of a binary BP decoder on the
binary image of the turbo code, which does not converge at
all for all the SNRs under consideration.

We also simulated the same curves for a longer code with
N = 3008 in order to show the robustness of our approach.
The results are shown in Figure 6, and the same comments as
for the N = 848 code apply with an even larger performance
gain when using the best preprocessing function.

4. IMPROVING PERFORMANCE BY CAPITALIZING ON
THE PREPROCESSING DIVERSITY

As there exist more than one possibility to build a nonbi-
nary Tanner graph from the same code through different
preprocessing functions, this raises the question whether
if it is possible to improve the decoding performance by
using this diversity of graph representation. Actually, we
have noticed that with the same noise realization, the
group BP decoder on a specific Tanner graph can either
(i) converge to the right codeword,or (ii) converge to a
wrong codeword (undetected error),or (iii) diverge after a
fixed maximum number of iterations. If we accept some
additional complexity, using several instances of iterative
decoding based on several preprocessing functions and a



8 EURASIP Journal on Wireless Communications and Networking

100

10−1

10−2

10−3

10−4

10−5

10−6

Fr
am

e
er

ro
r

ra
te

0.5 1 1.5 2 2.5 3

Eb/N0 (dB)

Turbo-decoder
Group-BP: no prep.
Group-BP: P1

Group-BP: P2

Binary BP

Figure 6: Performance of the group BP decoding algorithm based
on different preprocessing functions for the (R = 0.5, N = 3008)
duobinary turbo code and comparison with the turbo decoder as
used in the DVB standard.

proper results merging strategy is likely to improve the error-
correction performance.

In this paper, we will not address the problem of finding
a good set of preprocessing functions, and we restrict
ourselves to Nd = 5 different Tanner graphs obtained
with preprocessing functions of type Pc2 . There are various
possible merging methods to use the outputs of each decoder,
with associated performance complexity tradeoffs. Aside
from the two natural merging strategies depicted below, one
can think of more elaborate choices.

Serial merging

The Nd decoders are potentially used in a sequential manner.
Assuming that we check the value of the syndrome at each
iteration, when a decoder fails to converge to the right
codeword or to a wrong codeword after a given number
of iterations, we switch to another decoder, that is, another
Tanner graph is computed with a different preprocessing
and we restart the decoder from scratch with the new graph
and the permuted likelihood. The process stops when one
decoder converges to a codeword (either the sent codeword
or not).

Parallel merging

The Nd decoders are used in parallel and a maximum
likelihood (ML) decision is taken among the ones that have
converged to a codeword. If nb, with nb ≤ Nd, is the number
of decoders that have converged to a codeword in less than
the maximum number of iterations, then the nb associated
likelihood is computed and the one with the maximum

likelihood is selected. Note that the nb candidate codewords
are not necessarily distincts.

Lower bound onmerging strategies

In order to study the potential of the decoder diversity
approach regardeless of the merging strategy, we define the
following lower bound. Among the Nd decoders in the
diversity set, we check if at least one decoder converges to
the right codeword. A decoder failure is decided if all Nd

decoders have not converged after the maximum number
of iterations. Note that this method does not exhibit any
undetected error. This is called a lower bound on merging
strategies because it assumes that if there exists at least one
Tanner graph which converges to the right codeword, one
can think of a smart procedure to select this graph. This is
of course not always possible, especially if the codeword sent
is not the ML codeword. This lower bound allows also to
have a possibly tight estimation on the parallel merging case,
without having to simulate all Nd decoders.

The extra complexity induced by the serial merging is
negligible since the other Tanner graphs will be used only
when the first one fails to converge, that is, at an FER =
10−3 for the first decoder, the decoder diversity will be used
only 0.1% of the time. The parallel merging is much more
complex since it uses Nd times more computations, but one
can argue that it is simpler to parallelize on a chip. We did not
simulate the parallel merging in this work. In the worst case,
the extra latency of the serial merging is obviously linearly
dependent on the number Nd of different Tanner graphs.

In Figures 7 and 8, we report simulation results for the
AWGN channel for the two turbo codes that have been
studied in the previous section. Of course, the results with no
diversity are similar to those observed in Figures 5 and 6 for
the preprocessing of type Pc2 , and we do not plot them in the
new figures. If we focus on the maximum performance gain
that one can hope for by looking at the lower bound curves, it
is clear that using several decoders can improve significantly
the performance, both in the waterfall and the error floor
regions. For the small code as well as for the longer code,
using group BP decoding with decoder diversity can gain
between 0.25 dB to 0.4 dB compared to the turbo decoder
using MAP component decoders, which was up to now
considered as the best decoder proposed for turbo codes.
This result shows in particular that it is possible to consider
iterative decoders which are more powerful and, therefore,
which are closer to the maximum-likelihood decoder, than
the classical turbo decoder.

Interestingly, the serial merging which is the more
obvious merging strategy, and also requires the least addi-
tional complexity, achieves full decoder diversity gain in
the waterfall region, that is, above FER = 10−3. This is
particularly useful for wireless standards which use ARQ-
based transmission and, therefore, hardly require error
correction below FER = 10−3. In the error floor region
though, we can see in both Figures 7 and 8 that more
elaborate merging solutions should be used to achieve full
diversity gain and obtain a substantial gain compared with
turbo decoder. Note, however, that with the serial merging



Charly Poulliat et al. 9

100

10−1

10−2

10−3

10−4

10−5

10−6

10−7

Fr
am

e
er

ro
r

ra
te

0.5 1 1.5 2 2.5 3 3.5

Eb/N0 (dB)

Turbo-decoder
5 group decoders: serial merging
5 group decoders: lower bound

Figure 7: Decoding performance when diversity is applied to the
(R = 0.5, N = 848) duobinary turbo code.

100

10−1

10−2

10−3

10−4

10−5

10−6

10−7

Fr
am

e
er

ro
r

ra
te

0.5 1 1.5 2 2.5 3

Eb/N0 (dB)

Turbo-decoder
5 group decoders: serial merging
5 group decoders: lower bound

Figure 8: Decoding performance when diversity is applied to the
(R = 0.5, N = 3008) duobinary turbo code.

and for the N = 3008 turbo code the results are better than
the turbo decoder for all SNRs, even in the error floor region.

5. CONCLUSION

In this paper, we have proposed a new approach to efficiently
decode turbo codes using a nonbinary belief propagation
decoder. It has been shown that this generic method is
fully efficient if a preprocessing step on the parity-check
matrix of the code is added to the decoding process in order
to ensure good topological properties of the Tanner graph

and then good iterative decoding performance. Using this
extended representation, we show that the proposed algo-
rithm exhibits very good performance in both the waterfall
and the error regions when compared to a classical turbo
decoder. Moreover, using the inherent diversity induced by
the existence of several concurrent extended Tanner graph
representations, we show that the performance can be further
improved and we introduce the concept of decoder diversity.
This study shows that this decoding strategy (i.e., joint use
of preprocessing, group BP and diversity decoding) appears
as a key step that enables to consider LDPC and turbo
codes within a unified framework from the decoder point of
view.

REFERENCES

[1] L. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding
of linear codes for minimizing symbol error rate,” IEEE
Transactions on Information Theory, vol. 20, no. 2, pp. 284–
287, 1974.

[2] R. G. Gallager, Low Density Parity Check Codes, Number
21 in Research Monograph SeriesNumber 21 in Research
Monograph Series, MIT Press, Cambridge, Mass, USA, 1963.

[3] IEEE 802.16-2004, “IEEE standard for local and metropolitan
area networks, air interface for fixed broadband wireless access
systems,” October 2004.

[4] IEEE 802.16e, February 2006, IEEE standard for local and
metropolitan area networks, air interface for fixed broadband
wireless access systems, amendment 2: physical and medium
access control layers for combined fixed and mobile operation
in licensed bands and corrigendum 1.

[5] F. R. Kschischang and B. J. Frey, “Iterative decoding of
compound codes by probability propagation in graphical
models,” IEEE Journal on Selected Areas in Communications,
vol. 16, no. 2, pp. 219–230, 1998.

[6] R. J. McEliece, D. J. C. MacKay, and J.-F. Cheng, “Turbo decod-
ing as an instance of Pearl’s “belief propagation” algorithm,”
IEEE Journal on Selected Areas in Communications, vol. 16, no.
2, pp. 140–152, 1998.

[7] L. Zhu, J. Wang, and S. Yang, “Factor graphs based iterative
decoding of turbo codes,” in Proceedings of the IEEE Inter-
national Conference on Communications, Circuits and Systems
and West Sino Expositions (ICCCAS & WeSino Expo ’02), vol.
1, pp. 46–50, Chengdu, China, June-July 2002.

[8] R. Tanner, “A recursive approach to low complexity codes,”
IEEE Transactions on Information Theory, vol. 27, no. 5, pp.
533–547, 1981.

[9] K. Engdahl and K. Sh. Zigangirov, “On the statistical theory of
turbo codes,” in Proceedings of the 6th International Workshop
on Algebraic and Combinatorial Coding Theory (ACCT ’98), pp.
108–111, Pskov, Russia, September 1998.

[10] A. J. Felström and K. Sh. Zigangirov, “Time-varying periodic
convolutional codes with low-density parity-check matrix,”
IEEE Transactions on Information Theory, vol. 45, no. 6, pp.
2181–2191, 1999.

[11] A. Goupil, M. Colas, G. Gelle, and D. Declercq, “FFT-based BP
decoding of general LDPC codes over Abelian groups,” IEEE
Transactions on Communications, vol. 55, no. 4, pp. 644–649,
2007.

[12] R. Johannesson and K. Sh. Zigangirov, Fundamentals of Con-
volutional Coding, Digital, Mobile CommunicationDigital,
Mobile Communication, chapter 1-2, IEEE Press, New York,
NY, USA, 1999.



10 EURASIP Journal on Wireless Communications and Networking

[13] P. Stahl, J. B. Anderson, and R. Johannesson, “A note on tail-
biting codes and their feedback encoders,” IEEE Transactions
on Information Theory, vol. 48, no. 2, pp. 529–534, 2002.

[14] C. Weiss, C. Bettstetter, and S. Riedel, “Code construction
and decoding of parallel concatenated tail-biting codes,” IEEE
Transactions on Information Theory, vol. 47, no. 1, pp. 366–
386, 2001.

[15] H. Ma and J. Wolf, “Binary unequal error-protection block
codes formed from convolutional codes by generalized tail-
biting,” IEEE Transactions on Information Theory, vol. 32, no.
6, pp. 776–786, 1986.

[16] S. Lin and D. J. Costello, Error Control Coding, Prentice-Hall,
Englewood Cliffs, NJ, USA, 2nd edition, 2004.

[17] O. Pothier, Compound codes based on graphs and their iterative
decoding, Ph.D. thesis, ENST, Paris, France, January 2000.

[18] R. E. Blahut, Algebraic Codes for Data Transmission, Cam-
bridge University Press, Cambridge, UK, 2003.

[19] D. Declercq and M. Fossorier, “Decoding algorithms for
nonbinary LDPC codes over GF(q),” IEEE Transactions on
Communications, vol. 55, no. 4, pp. 633–643, 2007.

[20] A. Voicila, D. Declercq, F. Verdier, M. Fossorier, and P. Urard,
“Low complexity, low memory EMS algorithm for non-binary
LDPC codes,” in Proceedings of the IEEE International Confer-
ence on Communications (ICC ’07), pp. 671–676, Glasgow, UK,
June 2007.

[21] C. Douillard and C. Berrou, “Turbo codes with rate-m/(m +
1) constituent convolutional codes,” IEEE Transactions on
Communications, vol. 53, no. 10, pp. 1630–1638, 2005.

[22] Digital Video Broadcasting (DVB), “Interaction channel for
satellite distribution systems,” 2000, ETSI EN 301 790, v 1.2.2.

[23] J. Zhang and M. Fossorier, “Shuffled iterative decoding,” IEEE
Transactions on Communications, vol. 53, no. 2, pp. 209–213,
2005.


	1. INTRODUCTION
	2. DECODING A TURBO CODE AS A NONBINARY LDPC CODE
	2.1. Binary parity-checkmatrix of a turbo code
	2.1.1. Parity-check matrix of convolutional codes
	2.1.2. Parity-check matrix of turbo codes
	2.1.3. Example

	2.2. Clustering and preprocessing
	2.3. Nonbinary group belief propagation decoding

	3. COMPARISON OF BINARY IMAGES OBTAINED WITH DIFFERENT PREPROCESSINGS
	3.1. Selection of preprocessing for an efficient sparse graph representation
	3.2. Simulation results with different preprocessings

	4. IMPROVING PERFORMANCE BY CAPITALIZING ON THE PREPROCESSING DIVERSITY
	Serial merging
	Parallel merging

	5. CONCLUSION
	REFERENCES

