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While a typical way for diabetes therapy is discrete insulin infusion based on long-time interval measurement, in this paper, we
design a closed-loop control system for continuous drug infusion to improve the traditional discrete methods and make diabetes
therapy automatic in practice. By exploring the accumulative function of drug to insulin, a continuous injection model is proposed.
Based on this model, proportional-integral-derivative (PID) and fuzzy logic controllers are designed to tackle a control problem
of the resulting highly nonlinear plant. Even with serious disturbance of glucose, such as nutrition absorption at meal time, the
proposed scheme can perform well in simulation experiments.
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1. INTRODUCTION

Diabetes mellitus is a metabolic disorder in which insulin,
a kind of hormone which promotes the uptake of glucose
into cells, cannot properly perform its role. Diabetes Mel-
litus affects more than 100 million individuals throughout
the world and this number may be expected to double by
2010 [1, 2]. The healthcare costs are estimated to be over 100
billion dollars annually for the 16 million people who suf-
fer from this debilitating disease and its complications in the
US [3]. Based on 2002 death certificate data, diabetes was the
sixth-leading listed cause of death in the US [4]. This ranking
is based on the 73 249 death certificates in which diabetes was
listed as the underlying cause of death. According to death
certificate reports, diabetes accounted for a total of 224 092
deaths [4].

For patients with diabetes, especially, type I insulin-
dependent diabetes, tight control of glucose level is essen-
tial. Regulating blood glucose concentration using insulin in-
fusion pumps is important for these patients, because they
have deficiency of insulin production by pancreas that pre-
vents appropriate metabolism of glucose. For many patients
under diabetes therapies, insulin injection using needles and
syringes under skin is adopted to deliver insulin, so that the

functions of the pancreas are replaced with external devices.
A typical external insulin pump is an electronic medical de-
vice that delivers insulin through a narrow and flexible plas-
tic tubing that ends with a needle inserted just under the skin
near the abdomen. The pump releases doses of insulin peri-
odically, at meals or at time when blood glucose is too high
based on measured values of glucose sensors.

A patient’s glucose concentration may change dynami-
cally depending mostly on his/her physical activities and nu-
trition, and therefore, the amount of insulin needed varies
from time to time. A number of diseases may occur, possibly
resulting in life-threatening health conditions if the supply of
insulin is not in time or not correctly dosed or fails for some
reasons. For example, sustained hyperglycemia (blood glu-
cose exceeding 120 mg/dL) may lead to most of the long-term
complications associated with diabetes, such as nephropathy
and retinopathy according to the Diabetes Control and Com-
plications Trial (DCCT) Research Group [5]. But to date, a
common current method of therapy is a series of 3—-5 daily
in insulin injections with quantities of insulin based on 4-8
daily invasive glucose measurements. In this sense, infusion
of insulin is discretely controlled by users based on the feed-
back of several blood glucose measurements. It is obvious
that such treatment lacks a reliable continuous monitoring,
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FiGurk 1: Closed-loop framework of blood glucose concentration control.

which may cause glucose concentration being out of a per-
mitted range because of control delay. This kind of therapy
may not prevent glucose fluctuations occurring in many pa-
tients. Therefore, designing a continuous closed-loop control
system is needed for insulin infusion. The continuous con-
trol would be a great improvement in the daily treatment of
diabetes, especially, in some cases that medical persons are
not presented or the patients have less knowledge about the
disease. Such an automatic control will benefit patients and
avoid some mistakes during injections and operations.

To implement the continuous closed-loop control, three
primary components are needed for such therapy: an im-
plantable glucose sensor, a pump, and a control algorithm.
Implantable glucose sensors have been developed to con-
tribute to the interest in feedback-type insulin infusion
pumps [6, 7], including needle-type sensors and extracor-
poral sensors, coupled with iontophoresis [8], microdialysis
[9], or microperfusion [10] system. A pump mechanism has
been studied extensively and is available. The most important
is a control algorithm to design the continuous closed-loop
control system, which is the focus of this paper. The detailed
implementation of the system is beyond the scope of the pa-
per.

In recent years, significant efforts have been made in
the development of glucose control algorithms. Model-based
predictive control (MPC) algorithms have been recently re-
ported in literature to successfully tackle constraints posed
by several biomedical control problems, not only in blood
glucose concentration control in diabetic patients [11, 12],
but also in mean arterial pressure and cardiac output control
during anesthesia [12, 13]. Parker et al. proposed a model
predictive control for type I diabetic patient blood glucose
control and adopted an asymmetric objective unction to ad-
dress the inherent performance requirement of the physio-
logical problem [14]. However, we believe that the function
of drug should be cumulated if continuous injection is ap-
plied, and this makes the plant highly nonlinear. Such a char-
acteristic of the plant will weaken the performance of MPC.
The authors in [15] considered a considerable amount of un-
certainty of the parameters in a mathematical model of blood
glucose dynamics and proposed an Heo controller for robust
closed-loop regulation. However, their approach took a sim-
ple glucose absorption model from food into account. Some
intelligent advance control strategies are applied to the blood
glucose control system. A neural-network controller was de-
veloped in [16], which suggests an appropriate next-time in-

sulin dose based on short historical discontinuous blood glu-
cose measurements and insulin doses’ settings. Using fuzzy
logic controllers to regulate blood glucose level also had been
proposed in [17, 18]. In [17], fuzzy reasoning method was
used to monitor and help to detect hypoglycemia in diabetic
patients. In [18], knowledge about patient treatment was in-
corporated, and inner-loop and outer-loop controllers using
a Mamdani-type fuzzy scheme were designed. Other strate-
gies like optimal control with quadratic cost function and
artificial systems had been applied to blood glucose control
[19, 20]. But these strategies were all discrete control, and the
injection only happened at meal time.

In this paper, we present reviewed results of discrete con-
trol to blood glucose concentration of type I diabetes. An in-
tegral form is proposed to model the time course of plasma
insulin concentration along with continuous injection of a
typical dose of insulin preparations. Although the resulting
plant model is highly nonlinear, PID and Fuzzy logic con-
trollers are carefully framed to tackle the corresponding non-
linear control problem. Simulation experiment results show
that with such controllers the real-time blood glucose could
be restricted in the permitted bound, and the unexpected
concentration fluctuation due to the patients accidental dan-
gerous behaviors could also be dealt with.

The remainder of the paper is organized as follows. In
Section 2, a continuous model is proposed to explore the ac-
cumulative effect of drug on insulin, which is involved in
the design of a closed-loop control system. Both PID con-
troller and fuzzy logic controller are designed, and the per-
formance is evaluated by extensive simulation experiments
in Section 3. Section 4 concludes this paper.

2. A CONTINUOUS CLOSED-LOOP MODEL

To describe the complete metabolism process of glucose,
three important parameters related to type I diabetes patients
are involved: dose of drugs, insulin concentration, and glu-
cose concentration. Therefore, we need two different models
to describe the relationships among them. One is the time
course function of drug to insulin while the other is the in-
sulin to glucose. The process flow chart can be described in
Figure 1. The object of the controller design is to minimize
the error, which makes the output track the required blood
glucose level. The controller drives the pump to implement
continuous insulin infusion. Before the controllers are de-

signed, the plant should be modeled firstly.
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F1GURre 2: Time course of plasma insulin concentration after a sub-
cutaneous injection (10 U) of Lispro.

2.1. A continuous model of drug to insulin

The development of the implantable sensor technology has
made it possible for continuous insulin injection. There have
been a number of results regarding related topics [21]. Phar-
maceutical research has produced various types of insulin to
glucose, through their combined injection and subcutaneous
injections. The typical insulin preparations with faster dy-
namics, namely, Lispro and regular insulin, and delayed ac-
tion, such as neutral protamine hagedorn (NPH), are used
to meet the basal insulin requirement. In this paper, it is
assumed that only the drug Lispro is used to produce in-
sulin [22], whose plasma insulin concentration is shown in
Figure 2 after subcutaneous injection of a typical dose of the
Lispro.

Function f(t,d) is defined to describe the time course of
plasma insulin concentration after a subcutaneous injection
d dose of Lispro. It is assumed that there is a linear relation-
ship as in (1) when d is not so large:

f(t,cxd) = cx f(t,d). (1)

When d = 10U, we can get the function f(t) with the
curve described in Figure 2. Because of the continuous injec-
tion, the effects on insulin concentration each time should be
cumulated. Therefore, the integral form is used as follows to
calculate the insulin concentration:

A fe-1)
1) = Jz—sso 10 ar, 2

where d(¢) is defined as the dose of drug injected at time ¢.
The duration from time point of injection of Lispro to invali-
dation equals 360 minutes, and its effect should be taken into
account and calculated in active term of Lispro. This is the
most distinct characteristic of continuous control of blood
glucose. In the previous works [18, 23], the interval of injec-
tion is long enough and the effects will not be overlapped, so
that there is no accumulative result on insulin concentration.

Taking the accumulative effect into consideration, (2)
stands for a new time course model for plasma insulin
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FIGURE 3: Detailed compartmental model of glucose-insulin inter-
actions.

concentration after a subcutaneous injection (10 U) of Lispro
in continuous closed-loop control for diabetes therapy. Al-
though such accumulative effect has been neglected in, for
instance, the traditional three meal-time discrete control
methods, it is crucial for our continuous control. The trade-
off is that the nonlinearity of this model makes the control
strategy hard to realize.

2.2. Model of insulin to glucose

The relationship between insulin and glucose has been well
investigated in recent years [23-25]. There are mainly two
different proposed models: Sorensen model and minimal
model.

Sorensen model: as a physiologically based compartmen-
tal model of glucose and insulin dynamics, Sorensen model
[23, 24] is a six compartment model, as shown in Figure 3,
where the compartments are physiological representations of
brain, heart and lungs, liver, gut, and kidney peripheral tis-
sue.

As a physiologically based compartmental model,
Sorensen model is described vividly. Furthermore, it also
represents glucagon to complete the glucose-insulin system
model. However, it is difficult to get the parameters since pa-
rameters of 6 compartments for different patients are differ-
ent.

Minimal model: as a typical minimal model, Bergman
model [24, 25] is widely used in the blood glucose-level con-
trol. It offers a good benchmark for testing the relationship
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TasLE 1: Insulin-glucose model parameters.

Parameters Value
m 0.0337 min~"
P2 0.0209 min~"!
s 0.00000751 min~2(uU/mL)~!
n 0.214 min~!
T 5 min
Gy 0.811 mg/mL
M 0.012 mg/mL/min
G 0.81 mg/mL
X 0.0054 yU/mL
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FIGURE 4: The meal disturbance of blood glucose.

between insulin and glucose. The model can be depicted as
follows:

G(t) = —[p1 + X()]G(t) + p1Gp + m(t),

X(t) = —p2X(t) + ps1(2), (3)
I(t) = 7-u(t) — n-I1(t),

where G(t) is the concentration of glucose, I(#) is the concen-
tration of insulin, X (¢) is the dynamic insulin response, Gy, is
the basal level of glucose, and m(t) is the rate of exogenous
glucose infusion; pi, ps, ps, 7, and n are parameters defined
in Table 1.

In order to simplify the nonlinearity, the idea of linearity
of Bergman model is proposed in [26]:

G(t) = —[p1 +X()]G(t) - G-X(t) + G-X + p1Gp + m(t),
X(t) = —p2X(t) + psI(1),
I(t) = 7-u(t) — n-1(1),

(4)

where G and X are the average values of G(t) and X (t), which
are defined in Table 1.

The above parameters in Bergman model can be ob-
tained easily [26, 27]. The Bergman model ignores the effects
of glucagon, which is not important in this paper.
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F1Gure 5: The output of system with PID controller.

3. CONTROLLER DESIGN AND SIMULATION
EXPERIMENTS

Before the controller design, we would like to parameterize
the whole plant model as follows. The function f(t) is ap-
proached by a high-order binomial. For the model of insulin
to glucose, by applying Laplace transform for (4), the trans-
fer function from insulin to glucose is presented with the pa-
rameters shown in Table 1. The simulations are carried out
in Matlab Simulink, and the data are collected by “scope” in
sink:

—0.00003
$3+0.274s2 + 0.0136565 + 0.00018°

G(s) = (5)

The main disturbance caused by three meals can be de-
picted as a curve shown in Figure 4 [23]. Under the distur-
bance, we want to design a controller to meet the require-
ments of normal person’s glucose concentration of about
60-100 mg/dL before the meal and less than 140 mg/dL af-
ter meal. As the meal disturbance is much higher than nor-
mal glucose concentration level, it demands a controller with
good performance of disturbance rejection.

Considering the possible unmodeled nonlinearities, two
control strategies are introduced to design corresponding
controllers, that is, the PID controller and fuzzy logic con-
troller.

3.1. PID controller design for continuous closed-loop
control system
The standard PID controller could be stated as

Kok (14 s/T;) % (Tg%s+1)

PID = >
Taxs/Ag+1

(6)

where K. =P, T; =1, T; = D,and Az = 10.

For this PID controller, there are three important param-
eters: P, I, and D, where P is a proportional feedback in
which the stronger it is, the more powerful the feedback is;
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FIGURE 6: The corresponding output of PID controller.
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F1GURE 7: The effect of parameters of K, in PID controller.

I is an integral role feedback, which benefits the steady per-
formance but does not contribute to the dynamic perfor-
mance of the system; and D is a differential role of feedback.
Appropriate differential role of the plot can improve dynamic
performance significantly.

The parameters are adjusted and chosen based on the re-
sults in [28]. Figure 5 depicts the control effects with P =
.0045, I = 10000, and D = 61. Obviously, the effect of PID
controller meets output requirements that the concentration
of blood glucose is between 60 mg/dL and 140 mg/dL while
the output of the controller is shown in Figure 6 which is very
small.

We have also done a lot of experiments to explore the
control effects of tuning the controller parameters K., T}, and
Tg, as well as the sample time. Some of them are analyzed
as follows. Figure 7 shows the effect caused by changing the
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FiGURE 8: The effect of parameter of T; in PID controller.

proportional parameters of K.. When K, = 0.001, it is rea-
sonable that the glucose (dash line) is much higher than ex-
pected since K is so small that the injected drug is deficient.
On the contrary, when K. = 0.01, which is stronger than ex-
pected, too much drug is injected which leads to the fluc-
tuations of glucose (dotted line). Furthermore, the concen-
tration of glucose is also lower (about 60 mg/dL) than floor
level of the expected bound. By a large scale simulation, it is
found that when K. = 0.0045, the glucose (solid line) meets
the required range better.

With given K. = 0.0045, the effect of the integral pa-
rameter T; in PID controller is illustrated in Figure 8. When
T; = 100000, which means that there is almost no inte-
gral effect, the output (solid line) meets the demands well.
When T; = 100, which enriches the integral effect a little,
the controller considers the effect in a long duration, for ex-
ample, from beginning to current time point, the effect of
more doses of drug is taken into account for type I diabetes
patients, and the output (dotted line) of blood glucose con-
centration is lower than the required. When T; = 10, which
means the integral effect has been quite large, the output of
blood glucose concentration (dash line) is much worse and
far lower than expected floor limitation.

Figure 9 shows the effect of parameter of Ty under given
K. and T;. When T, = 30, which means the differential ef-
fect is weak, the controller considers the rate of glucose little,
the hysteresis is too strong, which makes the system react too
late, and the output (dash line) cannot meet the requirement
and goes beyond the upbound sporadically. When T, = 61,
the output (solid line) performs better within the expected
bound than during a period of 24 hours. When T = 100,
differential role is enhanced, the controller considers the rate
of glucose change, and the output of controller is too strong,
so that the fluctuations of glucose (dotted line) are more se-
rious.
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FIGURE 10: The effect of parameter of sample time in PID controller
under the best parameters of controller like in Figure 5.

The effect of parameter of sample time in PID controller
is also analyzed in Figure 10 under the best parameters of
controller like in Figure 5. When the sample time equals to 5
minutes, the data cannot describe the system characteristics
properly and in time, and the output (dotted line) also has
fewer errors. When the sample time equals to 0.5 (dash line)
and time equals to 1 (solid line), the result is much better.
A higher sample rate makes the data approach much closer
to real system, but if there is a wireless monitoring station
for patients of diabetes, the data of glucose concnetration
of patines should be transmitted to the central station, and

TasLE 2: Rules for fuzzy logic controller.

Glucose
Rate
Overlow Good High Overhigh
Overlow Zero Zero Zero Zero
Low Zero Zero Zero Little
High Zero Norm Most Most
Highest Zero Norm Most Most

there exists a tradeoff between wireless communication cost
and the performance of control system [29].

3.2. Fuzzylogic controller

Fuzzy logic control is also an advanced process control,
which imitates the logic of human thought, and much less
rigid than the calculations computers generally perform [30].
There are three steps for the process of a fuzzy logic algo-
rithm: fuzzification, rules, and defuzzification.

(1) Fuzzification: the input of a controller is an exact
number, for example, the concentration of glucose is
100 mg/dL. What the fuzzification does is to fuzzify the
concentration such as low concentration, high concen-
tration, and proper concentration. Every exact number
has the weight of all these low, high, and proper con-
centrations.

(2) Rules: After defining the fuzzy concept of input, we
should make rules to decide what the output should
be: more drug, a little drug, or no drug. For example,
we define the following rule: if the concentration of
glucose is high and the rate of glucose is rising, then
the drug should be more.

(3) Defuzzification: After the rule, we get the output of
fuzzy concept, for example, more of 0.8 and little of
0.2. But the output which is the object model’s input
must be an exact number that needs to be defuzzified.
By defuzzification, the output gets an exact number.

In this paper, it is assumed that there are two different
inputs of the concentration of glucose and the change rate of
concentration, and one output of the dose of drug. “overlow,”
“good,” “high,” and “overhigh” are defined for the concentra-
tion. The rate is “overlow;,” “low,” “high,” and “highest.” The

dose of drug is defined as “zero,” “little,” “norm,” “more,” and
<« »
most.” Ten rules are defined such as

(1) if (rate is overlow) then (dosage is zero);

(2) if (concentration is overhigh) and (rate is low) then
(dosage is little);

(3) if (concentration is overhigh) and (rate is highest) then
(dosage is most).

For rule 1, when the rate is overlow, the injection dose
should be chosen as zero. If we still inject some drug, the
concentration will decrease so fast that it may reach below
60 mg/dL. Therefore, we choose rule 1. For rule 2, when the
concentration is overhigh and rate is low, the little dose is
chosen. If the rate is low, we do not need more drug, while
if the concentration is overhigh, we need drug to avoid the
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concentration staying high for too long. Therefore, we
choose little for this situation. For rule 3, when the concen-
tration is overhigh and the rate is high, the dose will be given
with the most quantity, since we need more insulin to de-
crease the concentration.

The ten rules also can be described in detail in Table 2.

We can then get the surface viewer which depicts the re-
lationship between the input and the output in Figure 11.

After discussing the fuzzy logic controller, we can see the
effect in Figure 12. As illustrated in this figure, the concen-
tration of blood glucose is too high (may =300 mg/dL) for
the diabetes patients without any control strategies. When
the strategies of continuous control are applied to the closed-
loop system, the output value of PID is bounded at about 66—
135mg/dL while the output of fuzzy logic control is about
71-128 mg/dL. It is shown that fuzzy logic controller is simi-
lar to, but gets a little better performance than, PID.

As for the output of fuzzy logic controller that is corre-
sponding to the dose of drug, it can be found in Figure 13
that the dose of drug is less than 10U and can be injected
automatically from time to time.

3.3. The effect of unexpected disturbance

Unexpected disturbance may happen, for example, a patient
might eat an apple in nonmeal time, and this should be con-
sidered but obviously is difficult to deal with by using the
traditional discrete time methods. Taking this into account,
simulation experiments, shown in Figures 14-15, are pre-
sented to test the robustness of the two control strategies.
In Figure 14, we put the unexpected disturbance at the vale
point of concentration of glucose. Both the PID controller
and fuzzy logic controller perform better when the amplitude
of the unexpected disturbance is not too large. But when the
amplitude reaches around 30 mg/dL, the output of closed-
loop system will be out of the expected bound, especially,
when the amplitude is lower than 60 mg/dL.

It should also be observed that if the unexpected distur-
bance occurs at a local peak concentration of glucose, the
output becomes worse, especially, for the fuzzy logic con-
troller. It is quite reasonable that the larger the amplitude of
the disturbance becomes, the worse the result is obtained, as

The effect of PID and fuzzy logic controller
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FIGURE 12: The system output of glucose concentration under PID
and fuzzy logic controller.
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FIGURE 13: The controller output under fuzzy logic controller.

shown in Figure 15. Therefore, we suggest that the patients
can get a little food when the concentration of glucose is at
the point of vale, while it is dangerous to eat any more food
when the concentration is the peak point.

Above all, the robustness of the two control strategies is
quite desirable for the system with small unexpected distur-
bance. While the unexpected disturbance happens at the vale
point of the concentration of glucose for both two strategies,
the confined amplitude is about 30 mg/dL which meets the
required concentration of glucose, that is, between 60 mg/dL
and 140 mg/dL, as shown in Figure 14. On the other hand,
the confined amplitude would decrease to about 15 mg/dL
for the PID controller and 3.7 mg/dL for the fuzzy logic con-
troller while the disturbance happens at the peak point of
the concentration of glucose, as shown in Figure 15. There-
fore, the robustness of PID controller seems a little better
than fuzzy logic controller. In other words, the PID and Fuzzy
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Ficure 14: The robustness test while the unexpected disturbance
occurs at the vale point of the concentration of glucose.

logic controllers have their advantages for different kinds of
patients, and the PID controller is more appropriate for those
who often take some saccharated food unexpectedly, while
the fuzzy is a better one for those taking food on schedule.

4. CONCLUSIONS

In this paper, the problem of continuous drug infusion for
diabetes therapy was considered. Firstly, a continuous drug-
insulin model for closed-loop control system was proposed,
exploring the accumulative effects from drug to insulin. Then
based on the classical Bergman model depicting the relation
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FiGure 15: The robustness test while the unexpected disturbance
occurs at the peak point of the concentration of glucose.

between insulin and glucose, a general plant model is pre-
sented. In order to deal with the resulting nonlinear control
problem, two different control strategies, PID controller and
Fuzzy logic controller, are presented and well analyzed. Based
on our simulation experiments, both strategies meet the ex-
pected objective, that is, maintaining the blood glucose in the
permitted bound.
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