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1. INTRODUCTION

The study of nonbinary LDPC codes over GF(q) was initiated
by Davey and Mackay [1]. However, the symbols of a
nonbinary code over a finite field cannot be matched to
any signal constellation. In other words, it is not possible
to obtain a geometrically uniform code (wherein every
codeword has the same error probability), from a nonbinary,
finite field code. The subject of geometrically uniform codes
has been well studied by various authors including Slepian
[2] and Forney Jr. [3]. More recently, Sridhara and Fuja [4]
introduced geometrically uniform, nonbinary LDPC codes
over certain rings, including integer residue rings. Their
codes are however unstructured. Structured LDPC codes,
which include the family of finite geometry (FG) codes [5]
and balanced incomplete block design (BIBD) codes [6], are
favored over their random counterparts due to the reduction
in storage space for the parity check matrix and the ease in
performance analysis they provide, while achieving relatively
similar performance. Structured nonbinary LDPC codes that
have been proposed thus far however, are constructed over
finite fields, for example, [1, 7], and therefore cannot be
geometrically uniform.

This paper therefore addresses the problem of designing
structured, geometrically uniform, nonbinary LDPC codes
over integer residue rings. Motivated by the fact that

short nonbinary LDPC codes can outperform their binary
counterparts [8—10], we focus our investigations on codes of
short codelength. Studies of the so-called pseudocodewords
arising from finite covers of a Tanner graph, for example,
[11-13], have revealed that while a code’s performance
under maximume-likelihood (ML) decoding is dictated by
its (Hamming) weight distribution, its performance under
iterative decoding is dictated by the weight distribution
of the pseudocodewords associated with its Tanner graph.
More specifically, the presence of pseudocodewords of low
weight, particularly those of weight less than the minimum
Hamming distance of the code, is detrimental to a code’s
performance under iterative decoding. We therefore adopt
the Latin-squares-based approach of Kelley et al. [14] to con-
struct structured codes, as their method aims at maximizing
the minimum pseudocodeword weight of a code. While we
maintain the pseudocodeword framework used there, our
work nevertheless differs from [14] primarily because our
construction relies on an extension of the notion of Latin
squares to multiplicative groups of a Galois ring—a key
contribution of this paper.

We note that codes based on Latin squares were also
studied in [7, 15-17]. However, the authors of these works
did not do so in the pseudocodeword framework. Codes con-
structed using other combinatorial approaches, such as those
presented in [6, 18, 19], were similarly not investigated using
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the notion of pseudocodewords. Specifically, these related
works focused on the optimization of design parameters such
as girth, expansion, diameter, and stopping sets. Our work
therefore differs from these earlier studies in this regard.

For practical reasons, we only consider linear codes over
Za. In the next section, we provide an overview of codes
over Z;« and their natural mapping to a matched signal
constellation, that is, the 2?-PSK constellation. Section 3
introduces the notion of Latin squares over finite fields,
followed by our extension of Latin squares to multiplicative
groups of a Galois ring. A method to construct Tanner
graphs using Latin squares (over a multiplicative group
of a Galois ring) is presented in Section 4. We show that
from these graphs, a wide range of code rates may be
obtained. We further derive in the same section certain
properties of the corresponding codes and, in particular,
show that their minimum pseudocodeword weights equal
their minimum Hamming distances. This is one of our
main results. Finally, Section 5 presents computer simula-
tions which demonstrate that our codes, when mapped to
matched signal sets and transmitted over the additive-white-
Gaussian-noise (AWGN) channel, outperform their random
counterparts of similar length and rate.

2. CODES OVER 7.
2.1. Anoverview

Let C be a Z,.-submodule of the free Z,.-module Z5.. Its ng X
n generator matrix G can be expressed in the form [20]

ZAlgl
- | ¥ |, M
ZA"G.gnG
where 0 < A, < a -1 fori = 1,2,...,ng and

{g1,8...,8nc} C Z5% is a set of linearly independent
elements. The rate of C is
G, nG 1y,
rzlza Ai_ne Xtk 2)
n a n an

i=1

The dual code C* is generated by the ny X n parity-check
matrix of G, which can be expressed in the form

241h,
22,
H= ) , (3)
2tmih,,
where 0 < y; < a—1fori = 12,...,ng and

thi,hy,...,hy,} C 7% is a set of linearly independent
elements. The rate of C can also be obtained by

o nu
jolsaz g mm 2 (4)

n:= a n an
i=1

r =

If G (or H) is not already in the form in (1) (or in (3)),
one could perform Gaussian elimination without dividing
a row by a zero divisor to obtain the ng (or ny) linearly
independent rows.

Remark 1. C is a free Z-submodule if A; = 0 fori = 1,
2,...,ng. This also implies that y; = 0 fori = 1,2,..., ny.

2.2. The matched signal set

The 29-PSK signal set contains 2 points that are equidistant
from the origin while maximally spread apart on a two-
dimensional space. Projecting one dimension on the real axis
and the other on the imaginary axis, a symbol x € Z,. is
mapped to sy = +/Esexp(j2rx/2?) of the signal set, where
VE; is the energy assigned to each symbol [4].

The 2%-PSK is matched to Z,. because for any x, y € Z.,

d}%(smsy) = d}%(Sx—y,SO)» (5)

where dg(sy,sy) denotes the square Euclidean distance
between s, and s, [21].

Let ¢y, ¢, € C, where ¢y = [x1,%2,...,x4] and ¢, = [y1,
¥25...> ¥ul. They are mapped symbol by symbol to [sy,,
Sxyse--»Sx,] and [y, $y,,...,5y,], respectively. The squared
Euclidean distance between these two signal vectors is

dg ([ Sx2--55%, 1> [y Sy o553 ])

Il
4M3

Il
o

n
d}23 (an Syi) = Zdlzi (sxi*}’i’ 50)
i=0

= dlzs([sxryvsxfyzw~~15x,ryn]a [50»50,---,50])-

(6)

Observe that the Hamming distance between two code-
words is mapped proportionally to the Euclidean distance
between their corresponding signal vectors.

3. LATIN SQUARES
3.1. Definition and application to galois fields

The following definition and example are taken from [22,
Chapter 17].

Definition 1. A Latin square of order g is denoted as
(R,C,S; L), where R, C, and S are sets of cardinality g and
L is a mapping L(i, j) = k, wherei € R, j € C,and k € §,
such that given any two of 4, j, and k, the third is unique.

A Latin square can be written as a g X g array for which
the cell in row i and column j contains the symbol L(i, j).
Two Latin squares with mapping functions L and L’ are
orthogonal if (L(3, j), L' (3, j)) is unique for each pair (i, j).
Further, a complete family of g — 1 mutually orthogonal Latin
squares (MOLS) exists for g = p*, where p is prime.

The notion of Latin squares can be easily applied to
Galois fields by setting R = C = § = GF(p*) and mapping
function Lg(i, j) = i+ fj for B € GF(p*) \ {0}.
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Example 1. Let R = C = S = GF2%) = {0,1,a0a%}.
Mapping functions L(i,j) = i+ j, La(i,j) = i+ aj and
Lo (i, j) = i+ a?j yield a complete family of three MOLS

01 a « 0 a o 1
1 0 & « 1 & a 0
Ml:(x(xZOI’ M"‘:ocOloc2
> o« 1 0 > 1 0 «

0 * 1 «

1 a« 0 o

Mez = a 1 o> 0]

a2 0 a 1

(7)
respectively.

3.2. Extension to multiplicative groups of a Galois ring

Extending the notion of Latin squares over integer residue
rings is not trivial. Setting R = C = S = Z,: and mapping
functions Lg(i, j) = i + fBj for B € Z5 \ {0} do not yield a
complete family of 2° — 1 MOLS.

Example 2. Let R = C = § = Z» = {0,1,2,3} and let
mapping functions be Li(4, j) = i+ j, L,(i,j) = i +2j and
Ls(i, j) = i+ 3],

W = o
S W N =
—_— O W N
o= O W
W = o
—_—O W N
[SSIN SR )
— O W N

(8)

M;

W N = O
N = O W
—_— O W N
S W N =

are obtained, respectively. Since the elements in each row of
M, is not unique, M, is not a Latin square. Therefore, we do
not have a complete family of three MOLS.

Hence, we propose an alternative way of constructing
Latin squares over integer residue rings. Let extension ring
R = GR(2%s) = Zyu[y]/{$(y)), where ¢(y) is a degree s
basic irreducible polynomial over Z,.. Embedded in R is a
multiplicative group G»—; of units of order 2° — 1. Further,
we let @’ < a and define Z = zmod 27, where z € R, and
extend this notation to n-tuples and matrices over R.

Example 3. Let R = GR(2%,2) = Zi[y)/{()? + y + 3).
Embedded in R is G = {l,a,a?} = {1,y + 2,3y + 1},
generated by « = y +2. Let R = C = G3 U {0}. Mapping

functions Ly (i, j) = i+j, Lo(i, j) = i+ajand Ly (i, j) = i+a?j

yield matrices

0 1 y+2 3y+1]
M 1 2 y+3 3y+2
Wly+2 y+3 2y 03
[3y+1 3y+2 3 2y+2]
0 y+2 3y+1 1
B 1 y+3 3y+2 2
Ma = y+2 2y 3 y+3 ©)
3y+1 3 2y+2 3y+2]
[0 3y+1 1  y+2]
1 3y+2 2 y+3
M,y =
y+2 3 y+3 2y
3y +1 2y+2 3y+2 3

respectively. Since G3 U {0} is not closed under R-addition,
S C R sothat |S| #|R| = |C| = 2°. Thus, all three matrices
are not Latin squares.

To overcome this problem, the mapping functions have
to be altered slightly such that they map i € Rand j € C
uniquely to Lg(i, j) € Sand [R] = |C| = |S].

Definition 2. L{" (i, j) = ()" +(Bj)"* >, wherei, j
GZS—I U {0} and/3 S G25—1~

Theorem 1. Lé“)(i,j) € Gy_; U {0}.

Proof. 1t is apparent that (i)l/zuil,(ﬂj)l/zﬂ € Gyp_1 U {0}.
Since Gos_; U {0} is not closed under R-addition, (i)l/zkl +

(ﬁj)l/zkl = u+2v,where u € G,:_; U {0} and v € R. Using
binomial expansion, the mapping function can be expressed
as

2a4
a),. . a-1 20-1 a-1_y x
Lz)(z,]):(u+2v)2 = z@( x >u2 v)*.  (10)
o
Observe that (" )u*'~*(2v)* = 0mod 2° for x = 1,2,...,
29" Thus, L (i, j) = w*™" € Gyy U {0} O
Theorem 2. Consider two multiplicative groups Gy_; C
GR(2%s) = Zu[yl/(¢(y)) and Gy_, C GR(2%,s) =

Zyo [y1/{¢(y)), where ¢(y) is a degree-s basic irreducible
polynomial over Za . Let i, j € Gas—1U{0} and § € Gas_y, then

i,j € Gy, U {0} and B € Gh._,. Then, Lg‘”(i,j) = Ly (i, )-
Proof. Using binomial expansion,

zufl

W o 2a-1 o 1/20-1 2071 —x 17201\ % p
$G5 =27 @) (BT mod 2
x=0
(11)



EURASIP Journal on Wireless Communications and Networking

Now, observe that

a—1
(2 ) mod 2%
X

241 ,
( ) , x=y-27%, where y is an integer,
= y

0, otherwise.
(12)

20 , ,
24 -1 . e Zafl_y_zafa ) a1 2070 7
=3 (7))@ ) meas

a1\ iy oo
Z (2}/ ) ((i)l/z ) ’V((ﬁj)l/Z )’v _ L%a)(l,])

2

(=]

prn
(13)

O

Remark 2. When @’ = 1, the mapping function L%l 'G4,7) =
i+ B j coincides with the mapping function applied to the
Galois fields. Since L;—gl )(f,j) = L;;“)(i, j) (from Theorem 2),

L;“)(i, j) is unique for a given pair (i, j). It follows that two
Latin squares constructed by L;;“O)(i, j) and Lgf)(i, ), where
Bo>B1 € Gas—y and fy # P, are orthogonal.

Let R = C = § = Gy U {0}. A complete family
[(R,C,S L") : B € Gy_1} of MOLS is obtained by defining

LG, j) = () + ()™ )y

Example 4. Let R = C = S = G3 U {0} C GR(2%,2) and
mapping functions L(lz)(i,j) = ()" + j1/2)2, L,(xz)(i,j) =
(D" + (@) and LG, j) = ()" + (o2)")”. The
resultant MOLS are

01 a o 0 a o 1
1 0 & « 1 &2 a 0
M=ty w0 1) Me=14 0 1 2|
@ a 1 0 a1 0 «
0 * 1 «
1 o« 0 a?
M”‘z:(xlocZO’
a2 0 a 1
(14)

respectively. A complete family of three MOLS is obtained.
In addition, the mapping function Ly (i, j) = iyields a matrix

0O 0 0 O
1 1 1 1

Mo = @ a o « (15)
ot o ot o

Stlep Step 2 25+1
0| Step3 Step 4 2%
1 28 225

F1GURE 1: Portion of parity check matrix constructed in each step.

which is orthogonal to each Latin square in the complete
family of MOLS.

4, STRUCTURED LDPC CODES OVER 7,.
4.1. Construction of graphs using latin squares

The construction method proposed in [14, Section IV-A] can
be generalized to construct graphs for different values of a
and s by altering the mapping functions according to the
value of a. The procedure is stated here for easy reference by
Theorem 3 that follows. The graph is a tree that has three
layers that enumerate from its root; the root is a variable
node, the first layer has 2° + 1 check nodes, the second layer
has 2°(2° + 1) variable nodes and the third layer has 2% check
nodes. Thus there are 2%+ 25+ 1 variable nodes and the same
number of check nodes. The connectivity of the nodes are
executed in the following steps.

(1) The variable root node is connected to each of the
check nodes in the first layer.

(2) Each check node in the first layer is connected to 2°
consecutive variable nodes in the second layer.

(3) Each of the first 2° variable nodes in the second layer
is connected to 2° consecutive check nodes in the
third layer.

(4) For i,j,k,f € Gp_; U {0}, label the remaining
variable nodes in the second layer (3, i) and all check
nodes in the third layer (j,k). If B = 0, variable
node (0,1) is connected to check node (j,i). If § €
Gas_1, variable node (3, 1) is connected to check node
( j,Lg’)(i, 7)). The tree is completed once all possible
combinations of (i, j, k, $) are exhausted.
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Let 7 (a,s) denote the resultant tree constructed using the
complete family of MOLS derived from Gy—; U {0} & R.
T (a,s) is a degree-2° + 1 regular tree. By reading the variable

(check) nodes as columns (rows) of a matrix H(a,s) €

25, Hs 25, ~s . . .
75 XEEEED Gy top-bottom, left-right manner while

setting the edge weights to be randomly chosen units from
Za, the portion of H(a,s) constructed at each step is
illustrated in Figure 1. The null space of H(a,s) yields an
LDPC code C(a,s) over Za.

Example 5. Leta = 2 and s = 2. The Latin squares are shown
in Example 4. Steps (1)—(3) are illustrated in Figure 2(a). As
observed, this can be perceived as the nonrandom portion of
the parity-check matrix. Step 4, on the other hand, executes
the pseudorandom portion of the parity-check matrix that
is commonly seen in most LDPC parity-check matrices. The
resultant tree is shown in Figure 2(b).

4.2. Properties of C(a,s)

C(a,s) is a length n(s) = 25 425+ 1 regular LDPC code
represented by H(a, s) (or 7 (a,s)). We denote the minimum
distance of C(a,s) as dmin(a,s). Following the definition
given in [14], Wmin(a,s) denotes the minimum pseudocode-
word weight that arises from the Tanner graph of C(a, s) for
the 2%-ary symmetric channel.

Theorem 3. Let T (a, s) denote the graph resulting from reduc-
ing mod 2%, all edge weights of T (a,s). T(a’,s) = T (a,s),
that is, H(a', s) = H(a,s).

Proof. First, the connection procedure is regardless of a
in steps (1)—(3), and similarly for § = 0 in step (4).
Since L;—;,)(f,j) = L;;“)(i,j) (from Theorem 2), the edge
(([S,i),(j,Lé“)(i,j))) in 7 (a,s) is equivalent to the edge
(B, G Ly ) in T (@',). O

Remark 3. The graphs constructed by setting a = 1 yield
binary codes that are the same as those in [14, Section IV-
Al. Further, it has also been shown that these codes are the
binary projective geometry (PG) LDPC codes introduced in
[5]. Thus, it is known that dy;, (1,5) = 2° + 2.

Before deriving dmin(a,s), we state two relationships
between the codewords in C(a, s) and C(a’, s).

Corollary 1. (i) Ifc € C(a,s), then< € C(a',5s).
(ii) If ¢ € C(a,s) can be expressed as c= 2074 ¢! where
Ce 7y, thenc € C(a',s) and is unique.
Proof. Corollary 1(i) is a simple consequence of Theorem 3;
while for Corollary 1(ii),
204 ¢'HT (a,5) = 0 mod2°
= ¢’H (a,5) = 0 mod 2%

= ¢H”(a’,s) = 0 mod 2% (from Theorem 3).
(16)

The uniqueness of ¢’ follows from the natural group
embedding, GR(2*,s) = R : 7 — 2% %r. 0

Theorem 4. dyin(a,s) = dmin(1, ).
Proof. Let d. be the Hamming weight of ¢ € C(a,s) \ {0}.

Case 1. ¢ contains at least one unit. From Corollary 1(i),
when a’ = 1,¢ € C(1,s). Further, d. > dc. If dec = dpin(1, ),
dc = dmin(l)s)-

Case 2.1. c can be expressed as c= 244’ where ¢’ contains
at least one unit of Z,~. From Corollary 1(ii), ¢’ € C(a’,s).
Further, d. = do and from Case 1, dv > dg. When a' = 1,
c=2%1¢;and ¢’ € C(L,s). If de = dpnin(1, ), de = dmin(1,5).

Case 2.2. ¢ can be expressed as c= 2°"% ¢/, where ¢’ does not
contain any unit of Z,« . Similarly, from Corollary 1(ii), ¢’ €
C(a',s). Therefore, d. = d. and the bounds on d. follow
Case 2.1.

Thus, drnin(a)s) = dmin(l’s)- O

It has already been shown in [14, Section IV-A] that
Win(1,8) = dmin(1,s). The following theorem states the
relationship between wpin(a, s) and diin(a, $).

Theorem 5. Win(a,s) = dmin(a, s).

Proof. Since T(1,s) = T (a,s) when a = 1 (from
Theorem 3) and all edge weights in 7 (a, s) are units of Z,.,
Wmin(d,$) and Wmin(1,s) share the same tree bound [14],
that is, Wmin(a,s) = 2° + 2, for all a. Further, dmin(a,s) =
dinin(1,5) = 2° + 2 (from Theorem 4). Thus,

2542 < Wimin(a,5) < dmin(a,s) = 2°+2
(17)
= Wmin(a) S) = dmin(a,S) =242
O

The code rate 7(a, s) has to be computed first by reducing
H(a,s) to the form as discussed in Section 2.1. r(a,s) is
bounded by

2542 -3
225425417

2% 425 - 39

a2 e

<r(a,s) <

where the upper bound corresponds to the code rates
of the binary PG-LDPC codes [5]. We observe that by
setting the edge weights of 7 (a,s) as randomly chosen
units from 7., r(a,s) tends to the lower bound which
results in codes suitable for low-rate applications. On the
other hand, by setting all edge weights to be unity, r(a,s)
increases significantly. The corresponding codes can thus be
deployed in moderate-rate applications. Table 1 compiles the
properties of C(a, s) for various values of a and s.

5. SIMULATION RESULTS

Figures 3 and 4 show the bit error rate (BER) and symbol
error rate (SER) performance of our structured codes over
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(O Variable node
FH Check node

\

O
o
\pe-

7

A\

AANN

()

F1GURE 2: Tree constructed for a = 2, s = 2 after (a) steps (1)—(3), and (b) step (4) (the final structure).

the AWGN channel. In Figure 3(a), the corresponding edge
weights of the codes simulated are randomly chosen units
of Z4, while those in Figures 3(b) and 4 are set to unity.
The codewords are transmitted using the matched signals
discussed in Section 2.2. The received signals are decoded
using the sum-product algorithm. The performance of
random, near-regular LDPC codes with constant variable
node degree of 3, is also shown. These codes have similar
codelengths and rates to that of the structured codes. For
each data point, 10* error bits are obtained for a maximum
of 100 iterations allowed for decoding each received signal
vector.

Figure 3(a) shows our structured Z4 code outperforming
the random code when the codelength is small, that is,
42 bits. On the other hand, Figure 3(b) shows our structured
code performing worse than its random counterpart when
the codelength is much larger, specifically, 2114 bits. At a

glance, it therefore appears that our structured codes are only
better than random codes for short codelengths. To get a
clearer picture as to how our codes fair in comparison to their
random counterparts, we turn to Figures 4(a) and 4(b) which
summarize the BER performance of random and structured
codes over Z,, respectively, Zg, for increasing codelengths
of 21, 146, and 546 bits, respectively, 63, 219, and 819 bits.
From these empirical results, we conclude that our codes
significantly outperform their random counterparts over a
wide BER range for very small codelengths, that is, less than
100 bits. On the other hand, for larger codelengths, random
codes perform better in the higher BER region while our
structured codes are superior at lower BERs, specifically,
10~* and below for codelengths close to 1000 bits and 10~°
and below for larger codelengths, exceeding 2000 bits. This
phenomenon may be attributed to the fact that the minimum
distance of our codes grow linearly with the square root of
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TABLE 1: Properties of C(a, s).
B s n(s) Degree of dmin(a,s) r(a,s) ' r(a,s) '
T (a,s) = Wmin(a, ) (Lower bound) (Unity edge weights)
1 0.5238 0.5238
2 2 21 5 6 0.2619 0.4762
3 0.1746 0.3175
4 0.1309 0.2381
1 0.6164 0.6164
2 3 73 9 10 0.3082 0.5548
3 0.2055 0.4932
4 0.1541 0.3699
1 0.6996 0.6996
2 4 273 17 18 0.3498 0.6337
3 0.2332 0.5653
4 0.1749 0.4982
1 0.7692 0.7692
2 5 1057 33 34 0.3846 0.7053
3 0.2564 0.6367
4 0.1923 0.5669
100 10°
10*1é

g g 1072

£ e

: :

E E 10—3 L

1074
1 1.5 2 2.5 3 3.5 4 4.5
Ep/Ny (dB) Ep/Ny (dB)
—o— Structured BER --0- Random BER —o— Structured BER -©- Random BER
—+— Structured SER -=+- Random SER —+— Structured SER -+- Random SER

(a) a = 2,s = 2, random edge weights

(b) a =2, s =5, unity edge weights

FIGURE 3: Performance of structured and random LDPC codes over Z, with QPSK signaling over the AWGN channel.

their codelength. On the other hand, from [23, Theorem 26], 6. CONCLUSION

we have that the minimum distance of a random, regular

LDPC code with constant variable node degree of 3 grows  To summarize, we have extended the notion of Latin
linearly with its codelength with high probability. As the  squares to multiplicative groups of a Galois ring. Using the
random codes considered here are near regular, we believe  generalized mapping function, we have constructed Tanner
that they have superior minimum distances compared to our ~ graphs representing a family of structured LDPC codes over
structured codes.

Z,. spanning a wide range of code rates. In addition, we
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100

107!

1072 ¢

1073 ¢

BER

1074 ¢

1075k

107°

E,/No (dB)

—— Structured
--- Random

(a) a = 2, unity edge weights, transmitted using QPSK signaling

107!

1072

1073 L

BER

1074 L

107 f

1076 '
7 8 9 10 11 12 13
Ep/Ny (dB)
—— Structured
--- Random

(b) a = 3, unity edge weights, transmitted using 8-PSK signaling

FIGURE 4: Performance of structured and random LDPC codes transmitted using matched signals over the AWGN channel.

have shown that the minimum pseudocodeword weight
of these codes are equal to their minimum Hamming
distance—a desirable attribute under iterative decoding.
Finally, our simulation results show that these codes, when
transmitted by matched signal sets over the AWGN channel,
can significantly outperform their random counterparts of
similar length and rate, at BERs of practical interest.
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